-
摘要:目的
随着“碳达峰、碳中和”目标的提出,低碳环保理念被推向了一个崭新的高度。园区作为能源终端,成为低碳减排的重要载体。
方法针对含电-气-热耦合的园区综合能源系统运行经济性及弃风弃光问题,提出一种基于电转气(P2G)的园区综合能源优化运行方法。引入电解槽、甲烷反应器、氢燃料电池替换传统的P2G,为新能源消纳提供了有效的方法。
结果为进一步降低园区二氧化碳的排放,引入基于碳超额率的阶梯式碳交易机制。以园区的日运行成本作为优化目标,建立优化调度模型,设定满足园区综合能源系统的供需平衡及设备的运行约束条件。结果显示:系统运行成本降低了12.4%,系统的碳排放量降低了16.2%,风电与光伏的利用率分别提高了29.3%和25.7%。
结论运用CPLEX商业求解器进行求解,通过设置多个运行情景,对比验证了所提策略有效提升了园区综合能源系统的经济性和低碳性,为园区实现碳减排目标提供了有力支持。
Abstract:ObjectiveWith the proposal of "carbon peak, carbon neutrality" goal, the concept of low-carbon environmental protection has been raised to a new height. As energy terminals, the parks have become an important carrier of low-carbon emission reduction.
MethodAiming at the operation economy of the integrated energy system in the parks with electricity-gas-heat coupling and the problem of wind and light curtailment, an optimization operation method for the integrated energy systems in parks based on electricity-to-gas (P2G) conversion was proposed. The electrolysis tanks, methane reactors and hydrogen fuel cells were introduced to replace the traditional P2G, providing an effective method for new energy consumption.
ResultIn order to further reduce the carbon dioxide emissions in the parks, a stepped carbon trading mechanism based on the carbon excess rate was introduced. Taking the daily operating cost of the parks as the optimization target, an optimal scheduling model was established to set constraints to satisfy the supply/demand balance of the integrated energy system and the operation of the equipment in the parks. The results show a 12.4% reduction in system operating costs, a 16.2% reduction in system carbon emissions, and a 29.3% and 25.7% increase in wind and photovoltaic utilization, respectively.
ConclusionThe CPLEX business solver is used as a solution, and the proposed strategy is compared and verified to effectively improve the economy and low carbon of the integrated energy system in the parks by setting up multiple operation scenarios, which provides a strong support for the parks to achieve the goal of carbon emission reduction.
-
表 1 园区购电分时电价
Table 1 Time-of-use electricity price in parks
时段 购电价格/[元·(kWh)−1] 17:00-19:00 1.30 19:00-21:00,07:30-11:30 1.04 05:00-7:30,11:30-17:00,21:00-22:00 0.71 22:00-次日05:00 0.37 表 2 不同方案设置情况
Table 2 Settings of different schemes
方案设置 考虑电、
热能耦合模型电/热储能 氢气
甲烷化氢气甲烷化/
氢氧燃料电池方案一 √ √ × × 方案二 √ √ √ × 方案三 √ √ × √ 表 3 不同场景下的系统运行成本
Table 3 System operating costs in different scenarios
参数 方案一 方案二 方案三 总运行成本/元 12 508 10 962 10 739 购电成本/元 2 235 1 214 1 186 购气成本/元 9 921 9 608 9 535 弃风成本/元 324 131 16 弃光成本/元 28 9 2 碳排放量/kg 8 151 8 359 7 002 表 4 考虑碳交易机制前后运行对比
Table 4 Operation comparison before and after considering the carbon trading mechanism
参数 方案四 方案五 总运行成本/元 11 299 11 558 购电成本/元 1 917 1 858 购气成本/元 7 162 7 249 弃风成本/元 12 8 弃光成本/元 0 0 碳交易成本/元 2 208 2 443 二氧化碳排放量/kg 5 990 5 395 -
[1] 雷博涵. 国家能源局印发《2022年能源工作指导意见》 [N]. 国家电网报, 2022-03-30(001). DOI: 10.28266/n.cnki.ngjdw.2022.000873. LEI B H. National Energy Administration issues guiding opinions on energy work in 2022 [N]. State grid news, 2022-03-30(001). DOI: 10.28266/n.cnki.ngjdw.2022.000873.
[2] 何鑫, 尹璐, 涂彬, 等. 我国综合能源服务的现状与发展趋势 [J]. 中国电力企业管理, 2020(31): 51-53. DOI: 10.3969/j.issn.1007-3361.2020.31.013. HE X, YIN L, TU B, et al. Status quo and development trend of integrated energy services in China [J]. China power enterprise management, 2020(31): 51-53. DOI: 10.3969/j.issn.1007-3361.2020.31.013.
[3] 徐斌, 王傲, 王小明, 等. 储充换一体站协同多综合能源楼宇的低碳经济调度 [J]. 电力系统保护与控制, 2024, 52(20): 119-130. DOI: 10.19783/j.cnki.pspc.240230. XU B, WANG A, WANG X M, et al. SCSIS collaborative multi-IEB scheduling for a low carbon economy [J]. Power System Protection and Control, 2024, 52(20): 119-130. DOI: 10.19783/j.cnki.pspc.240230.
[4] 赵琛, 叶金池, 和萍, 等. 考虑源荷多重不确定性的园区综合能源系统优化策略 [J]. 电力系统保护与控制, 2025, 53(4): 148-164. DOI: 10.19783/j.cnki.pspc.240322. ZHAO C, YE J C, HE P, et al. A PIES optimization strategy considering multiple uncertainties in source and load [J]. Power System Protection and Control, 2025, 53(4): 148-164. DOI: 10.19783/j.cnki.pspc.240322.
[5] 崔全胜, 白晓民, 董伟杰, 等. 用户侧综合能源系统规划运行联合优化 [J]. 中国电机工程学报, 2019, 39(17): 4967-4981. DOI: 10.13334/j.0258-8013.pcsee.181874. CUI Q S, BAI X M, DONG W J, et al. Joint optimization of planning and operation in user-side multi-energy systems [J]. Proceedings of the CSEE, 2019, 39(17): 4967-4981. DOI: 10.13334/j.0258-8013.pcsee.181874.
[6] CHEN X Y, KANG C Q, O'MALLEY M, et al. Increasing the flexibility of combined heat and power for wind power integration in China: modeling and implications [J]. IEEE transactions on power systems, 2015, 30(4): 1848-1857. DOI: 10.1109/TPWRS.2014.2356723.
[7] WANG C S, Lü C X, LI P, et al. Modeling and optimal operation of community integrated energy systems: a case study from China [J]. Applied energy, 2018, 230: 1242-1254. DOI: 10.1016/j.apenergy.2018.09.042.
[8] GE P D, HU Q R, WU Q W, et al. Increasing operational flexibility of integrated energy systems by introducing power to hydrogen [J]. IET renewable power generation, 2020, 14(3): 372-380. DOI: 10.1049/iet-rpg.2019.0663.
[9] 张晓辉, 刘小琰, 钟嘉庆. 考虑奖惩阶梯型碳交易和电-热转移负荷不确定性的综合能源系统规划 [J]. 中国电机工程学报, 2020, 40(19): 6132-6141. DOI: 10.13334/j.0258-8013.pcsee.191302. ZHANG X H, LIU X Y, ZHONG J Q. Integrated energy system planning considering a reward and punishment ladder-type carbon trading and electric-thermal transfer load uncertainty [J]. Proceedings of the CSEE, 2020, 40(19): 6132-6141. DOI: 10.13334/j.0258-8013.pcsee.191302.
[10] ZHANG X H, ZHAO X X, ZHONG J Q, et al. Low carbon multi-objective scheduling of integrated energy system based on ladder light robust optimization [J]. International transactions on electrical energy systems, 2020, 30(9): e12498. DOI: 10.1002/2050-7038.12498.
[11] 董帅, 王成福, 梁军, 等. 计及电转气运行成本的综合能源系统多目标日前优化调度 [J]. 电力系统自动化, 2018, 42(11): 8-15. DOI: 10.7500/AEPS20170721003. DONG S, WANG C F, LIANG J, et al. Multi-objective optimal day-ahead dispatch of integrated energy system considering power-to-gas operation cost [J]. Automation of electric power systems, 2018, 42(11): 8-15. DOI: 10.7500/AEPS20170721003.
[12] 邓逸天, 王宇辉, 黄景光, 等. 考虑需求响应的含P2G电-气综合能源系统优化调度 [J]. 智慧电力, 2020, 48(12): 8-13,32. DOI: 10.3969/j.issn.1673-7598.2020.12.003. DENG Y T, WANG Y H, HUANG J G, et al. Optimal dispatch of integrated electricity-gas system with power to gas considering demand response [J]. Smart power, 2020, 48(12): 8-13,32. DOI: 10.3969/j.issn.1673-7598.2020.12.003.
[13] 程杉, 卢渊涛, 王灿. 考虑P2G-CCS-HFC协调运行的园区综合能源系统分布鲁棒优化调度 [J]. 电力系统保护与控制, 2025, 53(10): 87-101. DOI: 10.19783/j.cnki.pspc.240607. CHENG S, LU Y T, WANG C. Distributed robust optimal scheduling for a regional integrated energy system considering coordinated operation of P2G-CCS-HFC [J]. Power System Protection and Control, 2025, 53(10): 87-101. DOI: 10.19783/j.cnki.pspc.240607.
[14] 卢涛. 计及碳排放与可再生能源配额制的综合能源系统优化 [D]. 昆明: 昆明理工大学, 2021. DOI: 10.27200/d.cnki.gkmlu.2021.000990. LU T. Integrated energy system optimisation taking into account carbon emission and renewable energy quota system [D]. Kunming: Kunming University of Science and Technology, 2021. DOI: 10.27200/d.cnki.gkmlu.2021.000990.
[15] 李淑珍. 基于博弈论的区域综合能源系统运营策略研究 [D]. 济南: 山东大学, 2021. DOI: 10.27272/d.cnki.gshdu.2021.005253. LI S Z. Research on operation strategy of regional integrated energy system based on game theory [D]. Jinan: Shandong University, 2021. DOI: 10.27272/d.cnki.gshdu.2021.005253.
[16] 崔帅, 唐晓宁, 张彬, 等. 合成气甲烷化过程热力学分析 [J]. 计算机与应用化学, 2015(4): 419-425. DOI: 10.11719/com.app.chem20150407. CUI S, TANG X N, ZHANG B, et al. Thermodynamic analysis for the synthesis process of methane [J]. Computers and applied chemistry, 2015(4): 419-425. DOI: 10.11719/com.app.chem20150407.
[17] 蒙浩, 吕泽伟, 韩敏芳. 日本家用燃料电池热电联供系统商业化应用分析 [J]. 中外能源, 2018, 23(10): 1-8. MENG H, LÜ Z W, HAN M F. Commercial application of household fuel cell CHP system in Japan [J]. Sino-global energy, 2018, 23(10): 1-8.
[18] 陈云, 刘东, 高飞, 等. 考虑电转气环节氢能精细化利用的区域综合能源系统日前优化调度 [J]. 供用电, 2021, 38(11): 59-67. DOI: 10.19421/j.cnki.1006-6357.2021.11.010. CHEN Y, LIU D, GAO F, et al. Day-ahead optimal dispatching of regional integrated energy system considering refined utilization of hydrogen in power to gas process [J]. Distribution & utilization, 2021, 38(11): 59-67. DOI: 10.19421/j.cnki.1006-6357.2021.11.010.
[19] 张又中, 张兴平, 檀勤良. 考虑碳捕集和电转气技术耦合的多能互补系统协同规划 [J]. 可再生能源, 2021, 39(8): 1107-1116. DOI: 10.3969/j.issn.1671-5292.2021.08.018. ZHANG Y Z, ZHANG X P, TAN Q L. Collaborative planning method for multi-energy system considering the coupling of power-to-gas and carbon capture technology [J]. Renewable energy resources, 2021, 39(8): 1107-1116. DOI: 10.3969/j.issn.1671-5292.2021.08.018.
[20] 石梦舒, 宋志成, 黄元生. 考虑绿氢制取和碳捕捉的电转气综合效益评价 [J]. 南方能源建设, 2023, 10(3): 74-88. DOI: 10.16516/j.gedi.issn2095-8676.2023.03.008. SHI M S, SONG Z C, HUANG Y S. Comprehensive benefit evaluation of power to gas conversion considering green hydrogen production and carbon capture [J]. Southern energy construction, 2023, 10(3): 74-88. DOI: 10.16516/j.gedi.issn2095-8676.2023.03.008.
[21] SUN W, HARRISON G P, DODDS P E. A multi-model method to assess the value of power-to-gas using excess renewable [J]. International journal of hydrogen energy, 2022, 47(15): 9103-9114. DOI: 10.1016/j. ijhydene.2021.12.248.
[22] 马跃, 孟润泉, 魏斌, 等. 考虑阶梯式碳交易机制的微电网两阶段鲁棒优化调度 [J]. 电力系统保护与控制, 2023, 51(10): 22-33. DOI: 10.19783/j.cnki.pspc.221249. MA Y, MENG R Q,WEI B, et al. Two-stage robust optimal scheduling of a microgrid with a stepped carbon trading mechanism [J]. Power System protection and control, 2023, 51(10): 22-33. DOI: 10.19783/j.cnki.pspc.221249.
[23] 赵毅, 王维庆, 闫斯哲. 考虑阶梯型碳交易的风光储联合系统分布鲁棒优化调度 [J]. 电力系统保护与控制, 2023, 51(6): 127-136. DOI: 10.19783/j.cnki.pspc.220771. ZHAO Y, WANG W Q, YAN S Z. Distributionally robust optimization scheduling of a joint wind-solar-storage systemconsidering step-type carbon trading [J]. Power system protection and control, 2023, 51(6): 127-136. DOI: 10.19783/j.cnki.pspc.220771.
[24] MA Y M, WANG H X, HONG F, et al. Modeling and optimization of combined heat and power with power-to-gas and carbon capture system in integrated energy system [J]. Energy, 2021, 236: 121392. DOI: 10.1016/j.energy.2021.121392.