高级检索

基于PKO算法的含电氢耦合综合能源系统优化调度

Optimization and Scheduling of Integrated Energy Systems with Hydrogen-electricity Coupling Based on PKO Algorithm

  • 摘要:
      目的  在“30·60”双碳的背景下,为解决可再生能源的不确定性和不连续性导致综合能源系统功率平衡性表现不佳的问题。
      方法  文章构建含电解水制氢耦合燃气掺氢技术以及氢储的电氢耦合环节,设立了弃风弃光惩罚机制,构建含电氢耦合环节的综合能源系统优化调度模型。针对求解该模型求解时易陷入局部最优和收敛速度慢等问题,引入斑翠鸟优化算法(Pied Kingfisher Optimizer,PKO)。
      结果  模型以系统总成本最小为目标函数,求解得到各能源网络机组出力的优化调度结果;PKO与传统优化算法相比,具有更快的收敛速度,更能达到全局最优解的目标。
      结论  算例分析表明,所提模型和方法相较于其他方案,总成本分别减少了15.04%和6.99%,有效提高了综合能源系统新能源利用水平,降低了系统总成本,更具经济性。

     

    Abstract:
      Introduction  In the context of the "30·60" carbon peak and neutrality targets, this paper’s purpose is to address the problem of poor power balance performance in integrated energy systems caused by the uncertainty and discontinuity of renewable energy.
      Method  This paper constructed a hydrogen-electricity coupling link that included hydrogen production from electrolyzed water coupled with gas hydrogen blending technology and hydrogen storage, established a punishment mechanism for wind and solar curtailment, and constructed an optimization and scheduling model for integrated energy system that included hydrogen-electricity coupling link. To address the problems of getting stuck in local optima and slow convergence speed during the solution process, the Pied Kingfisher Optimizer (PKO) algorithm was introduced.
      Result   The model aims to minimize the total system cost as the objective function, and solves for the optimal scheduling results of the output of each energy network unit; Compared with traditional optimization algorithms, PKO has a faster convergence speed and is better able to achieve the goal of global optimal solution.
      Conclusion  Case analysis indicates that using the model and method proposed in this paper reduces the total cost by 15.04% and 6.99% respectively compared to other schemes, effectively improving the utilization level of new energy in the integrated energy system, reducing the total system cost, and making it more economical.

     

/

返回文章
返回