高级检索

竖井式重力储能系统发电效率影响因素

Influencing Factors of Generation Efficiency of Vertical Gravity Energy Storage

  • 摘要:
      目的  竖井式重力储能技术作为新型储能的一种,具有对环境污染小、建设成本低、效率高等独特优势,应用前景广泛,但对于系统本身的发电特性及影响因素的研究仍不完善。竖井式重力储能系统的发电效率是储能系统的重要指标之一。
      方法  文章通过对竖井式重力储能系统的效率模型进行数学建模,研究了在3种不同的重物块下落曲线下的效率影响因素,并通过仿真实验探究这些因素对系统发电效率的影响趋势,再对3种类型的速度曲线的效率特性进行对比分析。
      结果  研究结果表明,下落速度对系统效率的影响十分显著,适当降低速度可以提高发电效率;竖井高度和重物块质量对发电效率的影响较小。3种类型的速度曲线对比中,梯形速度曲线和三角形速度的发电效率受其他因素的影响较小,抛物线形速度曲线受其他因素的影响更敏感,发电效率也相对更小,梯形速度曲线在相同条件下的系统效率最大;在大重量的重物块的前提下,3种速度曲线类型下的发电效率受其他因素的影响都很小。
      结论  由此,采用大重量的重物块,降低重物块的最大下落速度,运用梯形速度曲线可以显著提高发电效率,达到更好的系统性能。

     

    Abstract:
      Introduction  As a new type of energy storage means, shaft-type gravity energy storage technology has unique advantages of low environmental pollution, low construction cost and high efficiency, and has a wide application prospect, but the research on the power generation characteristics and influencing factors of the system itself is still imperfect. The power generation efficiency of the shaft-type gravity energy storage system is one of the important indicators of the energy storage system.
      Method  In this paper, through the mathematical modeling of the efficiency model of the shaft-type gravity energy storage system, the influencing factors of efficiency in case of three different heavy block fall curves were studied, and the influence trend of these factors on the power generation efficiency of the system was explored through simulation experiments, and then the efficiency characteristics of the three velocity curves were compared and analyzed.
      Result  The results show that the falling speed has a significant effect on the efficiency of the system, and the power generation efficiency can be improved by reducing the speed appropriately. The height of the shaft and the mass of the heavy block have little effect on the efficiency of power generation. For the three velocity curves, the power generation efficiency of trapezoidal and triangular velocity curves was less affected by other factors, while the parabolic velocity curve was more sensitive to the influence of other factors, and the power generation efficiency was relatively smaller, and the trapezoidal velocity curve has the highest system efficiency under the same conditions. Under the premise of heavy blocks with large weights, the power generation efficiency of the three velocity curves was less affected by other factors.
      Conclusion  Therefore, using heavy blocks with large weights, reducing the maximum falling speed of heavy blocks, and adopting the trapezoidal velocity curve can significantly improve the power generation efficiency to achieve better system performance.

     

/

返回文章
返回