高级检索

光伏LCOE的技术经济性突破对绿氢成本的影响

张洪禹, 徐宏宁, 李丹, 李军良, 王杰, 王德明, 赵海超, 甄崇礼, 赵宏

张洪禹,徐宏宁,李丹,等. 光伏LCOE的技术经济性突破对绿氢成本的影响[J]. 南方能源建设,2025,12(3):42-51.. DOI: 10.16516/j.ceec.2024-287
引用本文: 张洪禹,徐宏宁,李丹,等. 光伏LCOE的技术经济性突破对绿氢成本的影响[J]. 南方能源建设,2025,12(3):42-51.. DOI: 10.16516/j.ceec.2024-287
ZHANG Hongyu, XU Hongning, LI Dan, et al. Impact of techno-economic breakthroughs in photovoltaic LCOE on green hydrogen costs [J]. Southern energy construction, 2025, 12(3): 42-51. DOI: 10.16516/j.ceec.2024-287
Citation: ZHANG Hongyu, XU Hongning, LI Dan, et al. Impact of techno-economic breakthroughs in photovoltaic LCOE on green hydrogen costs [J]. Southern energy construction, 2025, 12(3): 42-51. DOI: 10.16516/j.ceec.2024-287
张洪禹,徐宏宁,李丹,等. 光伏LCOE的技术经济性突破对绿氢成本的影响[J]. 南方能源建设,2025,12(3):42-51.. CSTR: 32391.14.j.ceec.2024-287
引用本文: 张洪禹,徐宏宁,李丹,等. 光伏LCOE的技术经济性突破对绿氢成本的影响[J]. 南方能源建设,2025,12(3):42-51.. CSTR: 32391.14.j.ceec.2024-287
ZHANG Hongyu, XU Hongning, LI Dan, et al. Impact of techno-economic breakthroughs in photovoltaic LCOE on green hydrogen costs [J]. Southern energy construction, 2025, 12(3): 42-51. CSTR: 32391.14.j.ceec.2024-287
Citation: ZHANG Hongyu, XU Hongning, LI Dan, et al. Impact of techno-economic breakthroughs in photovoltaic LCOE on green hydrogen costs [J]. Southern energy construction, 2025, 12(3): 42-51. CSTR: 32391.14.j.ceec.2024-287

光伏LCOE的技术经济性突破对绿氢成本的影响

基金项目: 

八师石河子市科技计划项目“构网型电网储能与电网消纳系统优化技术研究与示范系统”(2023JB02);中国石化北京燕山联合技术开发项目“新型碱性水电解制氢系统研发”(31550108-23-ZC0607-0007)

详细信息
    作者简介:

    张洪禹,1997-,男,博士研究生,主要研究方向为新能源催化材料(e-mail)a1476136226@163.com

    赵宏,1977-,男,北京化工大学化工学院研究员,博士生导师,主要研究方向为新能源先进材料和关键器件制备技术(e-mail)13693022763@163.com

    通讯作者:

    赵宏,(e-mail)13693022763@163.com

  • 中图分类号: TK91;TK51

Impact of Techno-Economic Breakthroughs in Photovoltaic LCOE on Green Hydrogen CostsEn

  • 摘要:
    目的 

    国际氢能委员会预测,至2050年氢能将占全球终端能源总需求的18%。在绿氢制备技术路径中,光伏发电的电力成本是影响电解水制氢经济性的关键因素。

    方法 

    文章基于中国典型地区的光照资源数据,构建平准化度电成本(LCOE)测算模型,分析当前及极限组件成本下的光伏发电成本,并量化光电转换效率提升对LCOE的边际影响。

    结果 

    研究结果表明:在年有效发电时数1200 h条件下,晶硅电池系统的LCOE可降至0.133元/kWh;而具有更高理论转换效率的钙钛矿电池、晶硅-钙钛矿叠层电池及双叠层电池系统,分别在年发电时数1008 h、1092 h和864 h时即可实现0.1元/kWh的LCOE阈值。当光伏LCOE突破0.1元/kWh时,电解水制氢成本可降至6.16元/kg。

    结论 

    随着组件成本下降和转换效率提升,我国90%以上地区的光伏LCOE将具备突破0.1元/kWh的潜力。在此成本区间内,绿氢生产成本将较传统灰氢显现竞争优势,有望成为主流氢源。文章为光伏制氢技术的产业化推进提供了量化依据,对优化能源结构转型路径、实现环境效益与经济效益的协同发展具有重要参考价值。

    Abstract:
    Objective 

    International Hydrogen Council predicts that hydrogen energy will account for 18% of the total global end-use energy demand by 2050. In the technical path of green hydrogen preparation, the electricity cost of photovoltaic (PV) power generation is a key factor affecting the cost-effectiveness of hydrogen production by water electrolysis.

    Method 

    Based on the solar resource data of typical regions in China, a levelized cost of energy (LCOE) calculation model was constructed to analyze the PV power generation costs at current and limit module costs, and quantify the marginal impact of photoelectric conversion efficiency improvement on LCOE.

    Result 

    The results indicate that: with an annual effective power generation hours of 1200, LCOE for crystalline silicon photovoltaic cell system can be reduced to CNY 0.133 per kWh; However, the LCOE threshold of CNY 0.1 per kWh can be achieved for perovskite solar cell, crystalline silicon-perovskite tandem cell and dual tandem cell system with higher theoretical conversion efficiency when the annual power generation hours are 1008, 1092 and 864 respectively. When the LCOE for PV power generation is less than CNY 0.1 per kWh, the cost of hydrogen production by water electrolysis can be reduced to CNY 6.16 per kg.

    Conclusion 

    With the reduction of module cost and the improvement of conversion efficiency, the LCOE for PV power generation in more than 90% of areas in China will have the potential to break through CNY 0.1/kWh. Within this cost range, green hydrogen will show a competitive advantage in production cost compared with traditional grey hydrogen and is expected to become the mainstream hydrogen source. This paper provides a quantitative basis for the industrialization of photovoltaic hydrogen production technology, and has an important reference value for optimizing the transformation path of energy structure and realizing the coordinated development of environmental benefits and economic benefits.

  • 图  1   晶硅和薄膜电池的产业链对比

    Figure  1.   Industrial chain comparison of crystalline silicon and thin film battery

    图  2   当前晶硅电池不同年发电小时数对应的光伏LCOE

    Figure  2.   LCOE for photovoltaics corresponding to different annual generation hours for current crystalline silicon cells

    图  3   理论光电转换效率下不同年发电小时数对应的光伏LCOE

    Figure  3.   LCOE for photovoltaics corresponding to different annual generation hours under theoretical photoelectric conversion efficiency

    表  1   晶硅电池LCOE测算

    Table  1   LCOE calculation of crystalline silicon cell

    初始全投资/(元·W−1) 增值税抵扣/(元·W−1) 系统残值/(元·W−1) 运维成本/(元·W−1) 年发电小时数/h 25 a发电量/(kWh·W−1) LCOE/(元·kWh−1)
    3.40 0.36 0.050 0.55 1 200 26.61 0.133
    3.40 0.36 0.050 0.55 1 500 33.26 0.107
    3.17 0.33 0.047 0.55 1 200 26.61 0.126
    3.17 0.33 0.047 0.55 1 500 33.26 0.101
    下载: 导出CSV

    表  2   钙钛矿电池LCOE测算

    Table  2   LCOE calculation of perovskite solar cell

    初始全投资/(元·W−1) 增值税抵扣/(元·W−1) 系统残值/(元·W−1) 运维成本/(元·W−1) 年发电小时数/h 7 a发电量/(kWh·W−1) LCOE/(元·kWh−1)
    3.08 0.32 0.045 0.23 1 500 8.0 0.410
    3.08 0.32 0.045 0.23 1 800 10.0 0.328
    2.85 0.29 0.044 0.23 1 500 8.0 0.386
    2.85 0.29 0.044 0.23 1 800 10.0 0.308
    下载: 导出CSV

    表  3   光伏组件理论极限成本的LCOE测算

    Table  3   LCOE calculation of the theoretical limit cost of photovoltaic modules

    电池种类初始全投资/(元·W−1)电池片寿命/a系统残值/(元·W−1)钙钛矿涂层重涂及额外物流成本/(元·W−1)LCOE/(元·kWh−1)
    晶硅(并网)3.08250.04500.123
    晶硅(离网)2.85250.04200.116
    钙钛矿(并网)2.58100.0380.9370.142
    钙钛矿(并网)2.58150.0380.4680.124
    钙钛矿(并网)2.58250.03800.107
    钙钛矿(离网)2.35100.0350.8890.133
    钙钛矿(离网)2.35150.0350.4440.116
    钙钛矿(离网)2.35250.03500.100
    下载: 导出CSV

    表  4   不同光伏技术的光电转换效率[15, 19-20]

    Table  4   Photoelectric conversion efficiency of different photovoltaic technologies[15, 19-20]

    电池种类理论光电转换效率/%当前最高光电转换效率/%当前已量产组件的光电转换效率/%
    p型单晶24.523.5623.40
    n型单晶28.727.3026.81
    钙钛矿33.026.4118.20
    双叠层钙钛矿44.332.5026.17
    晶硅-钙钛矿叠层43.034.6030.10
    下载: 导出CSV

    表  5   光电转换效率提升影响下的光伏组件理论极限成本的LCOE测算[15]

    Table  5   LCOE calculation of the theoretical limit cost of photovoltaic modules under the influence of photoelectric conversion efficiency improvement[15]

    电池种类 初始全投资/(元·W−1) 电池片价格/(元·W−1) 不随光电转换效率提高而降低的
    相关成本/(元·W−1)
    光伏生命周期平均度电成本/
    (元·kWh−1)
    n型晶硅(并网) 3.08 0.52 1.20 0.110
    n型晶硅(离网) 2.85 0.52 1.20 0.103
    钙钛矿(并网) 2.58 0.03 0.71 0.084
    钙钛矿(离网) 2.35 0.03 0.71 0.079
    双叠层钙钛矿(并网) 2.63 0.06 0.74 0.072
    双叠层钙钛矿(离网) 2.40 0.06 0.74 0.067
    晶硅-钙钛矿叠层(并网) 3.20 0.55 1.23 0.091
    晶硅-钙钛矿叠层(离网) 2.97 0.55 1.23 0.087
    下载: 导出CSV

    表  6   不同电价对应的电解水制氢成本

    Table  6   Hydrogen production costs from electrolysis at different electricity prices

    成本名称数额
    年产氢量/t104104104
    单台设备制氢量/(Nm3·h−1)1 0001 0001 000
    设备数量/台343434
    固定投资单台/万元900900900
    总固定投资/亿元3.063.063.06
    折旧/a151515
    固定投资摊销/(万元·a−1)2 0402 0402 040
    运维成本/(万元·a−1)442442442
    员工工资/(万元·a−1)200200200
    年运行时长/(h·a−1)3 3003 3003 300
    固定成本/(元·kg−1)2.672.672.67
    电价/(元·kWh−1)0.50.30.1
    综合能耗/(kWh·kg−1)52.852.852.8
    耗电成本/(元·kg−1)26.4116.025.28
    耗水成本/(元·kg−1)0.080.080.08
    制氢成本/(元·kg−1)29.1618.778.03
    下载: 导出CSV

    表  7   不同制氢方法的成本[22]

    Table  7   Costs of different hydrogen production methods[22]

    制氢方法原料及价格制氢成本/(元·kg−1)初产物纯度/%提纯后纯度/%能量效率/%
    煤制氢(Q5500煤)煤450~900元/t9.73~13.6548~5499.9083
    天然气制氢天然气1.5~3.5元/Nm39.0~16.675~8099.9963
    工业副产氢烧碱、焦炭等副产物提纯成本300~600元/t9.3~22.444~99.899.99
    煤制氢蓝氢(Q5500煤)煤450~900元/t13.03~18.0544~99.899.9990
    下载: 导出CSV

    表  8   2022年全国光伏重点地区年利用小时数情况[23]

    Table  8   Annual utilization hours of national PV key areas in 2022[23] h

    省(区)资源区地区2021年
    实际利用小时数
    2022年
    实际利用小时数
    实际利用小时
    数增加值
    内蒙古I类除赤峰市、通辽市、兴安盟、呼伦贝尔市以外其他地区1 5681 61648
    II类赤峰市、通辽市、兴安盟、呼伦贝尔市1 5621 60846
    新疆I类哈密、塔城、阿勒泰1 5971 526-71
    克拉玛依
    II类除I类外其他地区1 4551 364-91
    甘肃I类嘉峪关、武威、张掖、酒泉、敦煌、金昌1 5621 514-48
    II类除I类外其他地区1 3891 3934
    青海I类海西1 4741 430-44
    II类除I类外其他地区1 2481 538290
    宁夏I类宁夏1 4711 53968
    陕西II类榆林、延安1 4551 421-34
    黑龙江II类黑龙江1 5031 644141
    吉林II类吉林1 5371 58851
    辽宁II类辽宁1 3271 459132
    河北II类承德、张家口、唐山1 3431 501158
    秦皇岛
    山西II类忻州、朔州、大同1 4241 52096
    下载: 导出CSV
  • [1] 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径 [J]. 北京工业大学学报(社会科学版), 2021, 21(3): 1-15. DOI: 10.12120/bjutskxb202103001.

    HU A G. China's goal of achieving carbon peak by 2030 and its main approaches [J]. Journal of Beijing University of Technology (social sciences edition), 2021, 21(3): 1-15. DOI: 10.12120/bjutskxb202103001.

    [2] 张雅娟, 王铮, 李双成. 能源电力系统转型对中国环境影响评估 [J]. 资源科学, 2023, 45(9): 1830-1843. DOI: 10.18402/resci.2023.09.10.

    ZHANG Y J, WANG Z, LI S C. Environmental impact assessment of energy and power system transformation in China [J]. Resources science, 2023, 45(9): 1830-1843. DOI: 10.18402/resci.2023.09.10.

    [3] 宋天琦, 马韵婷, 张智慧. 光伏耦合电解水制氢系统作为虚拟电厂资源的运行模式与经济性分析 [J]. 发电技术, 2023, 44(4): 465-472. DOI: 10.12096/j.2096-4528.pgt.22181.

    SONG T Q, MA Y T, ZHANG Z H. Operation mode and economy of photovoltaic coupled water electrolysis hydrogen production system as a kind of virtual power plant resource [J]. Power generation technology, 2023, 44(4): 465-472. DOI: 10.12096/j.2096-4528.pgt.22181.

    [4] 邹才能, 李建明, 张茜, 等. 氢能工业现状、技术进展、挑战及前景 [J]. 天然气工业, 2022, 42(4): 1-20. DOI: 10.3787/j.issn.1000-0976.2022.04.001.

    ZOU C N, LI J M, ZHANG Q, et al. Industrial status, technological progress, challenges and prospects of hydrogen energy [J]. Natural gas industry, 2022, 42(4): 1-20. DOI: 10.3787/j.issn.1000-0976.2022.04.001.

    [5] 王宏铎. 绿色氢能技术发展现状及应用展望 [J]. 山东化工, 2024, 53(6): 96-98. DOI: 10.19319/j.cnki.issn.1008-021x.2024.06.019.

    WANG H D. The current status and prospects of green hydrogen energy technology development [J]. Shandong chemical industry, 2024, 53(6): 96-98. DOI: 10.19319/j.cnki.issn.1008-021x.2024.06.019.

    [6]

    International Energy Agency. Global hydrogen review 2022 [EB/OL]. (2022-09-22) [2024-08-29]. https://www.iea.org/reports/global-hydrogen-review-2022.

    [7] 程方. 钙钛矿高转换效率光伏材料合成技术进展综述 [J]. 山东电力技术, 2023, 50(10): 18-27. DOI: 10.20097/j.cnki.issn1007-9904.2023.10.003.

    CHENG F. Progress in synthesis and application of perovskite photovoltaic materials [J]. Shandong electric power, 2023, 50(10): 18-27. DOI: 10.20097/j.cnki.issn1007-9904.2023.10.003.

    [8] 吕鑫, 刘天予, 董馨阳, 等. 2019年光伏及风电产业前景预测与展望 [J]. 北京理工大学学报(社会科学版), 2019, 21(2): 25-29. DOI: 10.15918/j.jbitss1009-3370.2019.7283.

    LÜ X, LIU T Y, DONG X Y, et al. Outlook and prospect of the photovoltaic and wind power industry in 2019 [J]. Journal of Beijing Institute of Technology (social sciences edition), 2019, 21(2): 25-29. DOI: 10.15918/j.jbitss1009-3370.2019.7283.

    [9] 李宏, 廖鑫, 侯静, 等. 钙钛矿太阳能电池界面缺陷及其抑制方法 [J]. 人工晶体学报, 2024, 53(1): 38-50. DOI: 10.16553/j.cnki.issn1000-985x.20231128.002.

    LI H, LIAO X, HOU J, et al. Interface defects of perovskite solar cells and their suppression methods [J]. Journal of synthetic crystals, 2024, 53(1): 38-50. DOI: 10.16553/j.cnki.issn1000-985x.20231128.002.

    [10] 王恒田, 杨晓龙. 平价上网光伏发电项目经济性评价、影响因素及对策 [J]. 企业经济, 2021, 40(3): 96-104. DOI: 10.13529/j.cnki.enterprise.economy.2021.03.011.

    WANG H T, YANG X L. Economic evaluation, influencing factors and countermeasures of grid-parity photovoltaic power generation projects [J]. Enterprise economy, 2021, 40(3): 96-104. DOI: 10.13529/j.cnki.enterprise.economy.2021.03.011.

    [11] 陈柯延. 基于LCOE模型的光伏发电项目优化研究 [J]. 现代工业经济和信息化, 2023, 13(9): 128-130, 133. DOI: 10.16525/j.cnki.14-1362/n.2023.09.039.

    CHEN K Y. Optimisation study of photovoltaic power generation project based on LCOE model [J]. Modern industrial economy and informationization, 2023, 13(9): 128-130, 133. DOI: 10.16525/j.cnki.14-1362/n.2023.09.039.

    [12] 徐伟, 刘振领, 王华智, 等. 基于LCOE模型的农村光伏系统社会经济效益评价——以北京郊区屋顶分布式光伏项目为例 [J]. 中国农业大学学报, 2023, 28(9): 208-217. DOI: 10.11841/j.issn.1007-4333.2023.09.19.

    XU W, LIU Z L, WANG H Z, et al. Evaluation of socio-economic benefits of rural PV systems based on LCOE model: an example of rooftop distributed PV projects in Beijing suburbs [J]. Journal of China Agricultural University, 2023, 28(9): 208-217. DOI: 10.11841/j.issn.1007-4333.2023.09.19.

    [13] 刘江, 胡萍. 光伏发电项目LCOE模型的应用分析 [J]. 水电与新能源, 2022, 36(8): 19-22. DOI: 10.13622/j.cnki.cn42-1800/tv.1671-3354.2022.08.005.

    LIU J, HU P. Application of the LCOE model in photovoltaic power generation projects [J]. Hydropower and new energy, 2022, 36(8): 19-22. DOI: 10.13622/j.cnki.cn42-1800/tv.1671-3354.2022.08.005.

    [14] 国家能源局. 光伏发电系统效能规范: NB/T 10394—2020 [S]. 北京: 中国水利水电出版, 2020.

    National Energy Administration. Specification for photovoltaic power generation system performance: NB/T 10394—2020 [S]. Beijing: China Water & Power Press, 2020.

    [15] 中国光伏行业协会. 中国光伏产业发展路线图(2023-2024年) [EB/OL]. (2024-02-28) [2024-08-29]. http://www.chinapv.org.cn/Industry/resource_1380.html.

    China Photovoltaic Industry Association. China photovoltaic industry development roadmap(2023-2024) [EB/OL]. (2024-02-28) [2024-08-29]. http://www.chinapv.org.cn/Industry/resource_1380.html.

    [16]

    ZHAO X M, LIU T R, BURLINGAME Q C, et al. Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells [J]. Science, 2022, 377(6603): 307-310. DOI: 10.1126/science.abn5679.

    [17]

    ZHU H W, TEALE S, LINTANGPRADIPTO M N, et al. Long-term operating stability in perovskite photovoltaics [J]. Nature reviews materials, 2023, 8(9): 569-586. DOI: 10.1038/s41578-023-00582-w.

    [18] 王玉晴, 全泽源. 协鑫光电董事长范斌: 钙钛矿替代晶硅是水到渠成的事 [N]. 上海证券报, 2022-08-19(05). DOI: 10.28719/n.cnki.nshzj.2022.003726.

    WANG Y Q, QUAN Z Y. Fan Bin, chairman of Xiexin optoelectronics: the substitution of perovskite for crystalline silicon is a natural thing [N]. Shanghai securities news, 2022-08-19(05). DOI: 10.28719/n.cnki.nshzj.2022.003726.

    [19] 姚美灵, 廖纪星, 逯好峰, 等. 影响钙钛矿/异质结叠层太阳能电池效率及稳定性的关键问题与解决方法 [J]. 物理学报, 2024, 73(8): 088801. DOI: 10.7498/aps.73.20231977.

    YAO M L, LIAO J X, LU H F, et al. Key issues and solutions affecting efficiency and stability of perovskite/heterojunction tandem solar cells [J]. Acta physica sinica, 2024, 73(8): 088801. DOI: 10.7498/aps.73.20231977.

    [20] 殷高峰. 技术持续突破 钙钛矿叠层电池商业化进程加速 [N]. 证券日报, 2024-08-06(B02). DOI: 10.28096/n.cnki.ncjrb.2024.004102.

    YIN G F. Continuous technological breakthroughs accelerate the commercialization process of perovskite tandem batteries [N]. Securities daily, 2024-08-06(B02). DOI: 10.28096/n.cnki.ncjrb.2024.004102.

    [21]

    PETERS I M, GALLEGOS C D R, SOFIA S E, et al. The value of efficiency in photovoltaics [J]. Joule, 2019, 3(11): 2732-2747. DOI: 10.1016/j.joule.2019.07.028.

    [22] 刘坚, 钟财富. 我国氢能发展现状与前景展望 [J]. 中国能源, 2019, 41(2): 32-36. DOI: 10.3969/j.issn.1003-2355.2019.02.007.

    LIU J, ZHONG C F. Current status and prospects of hydrogen energy development in China [J]. Energy of China, 2019, 41(2): 32-36. DOI: 10.3969/j.issn.1003-2355.2019.02.007.

    [23] 国家能源局. 2022年度全国可再生能源电力发展监测评价报告 [EB/OL]. (2023-09-07) [2024-08-29]. http://zfxxgk.nea.gov.cn/2023-09/07/c_1310741874.htm.

    National Energy Agency. 2022 National renewable energy power development monitoring and evaluation report [EB/OL]. (2023-09-07) [2024-08-29]. http://zfxxgk.nea.gov.cn/2023-09/07/c_1310741874.htm.

图(3)  /  表(8)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  43
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-28
  • 修回日期:  2024-10-08
  • 录用日期:  2024-10-14
  • 发布日期:  2025-03-26
  • 刊出日期:  2025-05-29

目录

    Corresponding author: ZHAO Hong, 13693022763@163.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回