-
摘要:目的
国际氢能委员会预测,至2050年氢能将占全球终端能源总需求的18%。在绿氢制备技术路径中,光伏发电的电力成本是影响电解水制氢经济性的关键因素。
方法文章基于中国典型地区的光照资源数据,构建平准化度电成本(LCOE)测算模型,分析当前及极限组件成本下的光伏发电成本,并量化光电转换效率提升对LCOE的边际影响。
结果研究结果表明:在年有效发电时数
1200 h条件下,晶硅电池系统的LCOE可降至0.133元/kWh;而具有更高理论转换效率的钙钛矿电池、晶硅-钙钛矿叠层电池及双叠层电池系统,分别在年发电时数1008 h、1092 h和864 h时即可实现0.1元/kWh的LCOE阈值。当光伏LCOE突破0.1元/kWh时,电解水制氢成本可降至6.16元/kg。结论随着组件成本下降和转换效率提升,我国90%以上地区的光伏LCOE将具备突破0.1元/kWh的潜力。在此成本区间内,绿氢生产成本将较传统灰氢显现竞争优势,有望成为主流氢源。文章为光伏制氢技术的产业化推进提供了量化依据,对优化能源结构转型路径、实现环境效益与经济效益的协同发展具有重要参考价值。
Abstract:ObjectiveInternational Hydrogen Council predicts that hydrogen energy will account for 18% of the total global end-use energy demand by 2050. In the technical path of green hydrogen preparation, the electricity cost of photovoltaic (PV) power generation is a key factor affecting the cost-effectiveness of hydrogen production by water electrolysis.
MethodBased on the solar resource data of typical regions in China, a levelized cost of energy (LCOE) calculation model was constructed to analyze the PV power generation costs at current and limit module costs, and quantify the marginal impact of photoelectric conversion efficiency improvement on LCOE.
ResultThe results indicate that: with an annual effective power generation hours of
1200 , LCOE for crystalline silicon photovoltaic cell system can be reduced to CNY 0.133 per kWh; However, the LCOE threshold of CNY 0.1 per kWh can be achieved for perovskite solar cell, crystalline silicon-perovskite tandem cell and dual tandem cell system with higher theoretical conversion efficiency when the annual power generation hours are1008 ,1092 and 864 respectively. When the LCOE for PV power generation is less than CNY 0.1 per kWh, the cost of hydrogen production by water electrolysis can be reduced to CNY 6.16 per kg.ConclusionWith the reduction of module cost and the improvement of conversion efficiency, the LCOE for PV power generation in more than 90% of areas in China will have the potential to break through CNY 0.1/kWh. Within this cost range, green hydrogen will show a competitive advantage in production cost compared with traditional grey hydrogen and is expected to become the mainstream hydrogen source. This paper provides a quantitative basis for the industrialization of photovoltaic hydrogen production technology, and has an important reference value for optimizing the transformation path of energy structure and realizing the coordinated development of environmental benefits and economic benefits.
-
表 1 晶硅电池LCOE测算
Table 1 LCOE calculation of crystalline silicon cell
初始全投资/(元·W−1) 增值税抵扣/(元·W−1) 系统残值/(元·W−1) 运维成本/(元·W−1) 年发电小时数/h 25 a发电量/(kWh·W−1) LCOE/(元·kWh−1) 3.40 0.36 0.050 0.55 1 200 26.61 0.133 3.40 0.36 0.050 0.55 1 500 33.26 0.107 3.17 0.33 0.047 0.55 1 200 26.61 0.126 3.17 0.33 0.047 0.55 1 500 33.26 0.101 表 2 钙钛矿电池LCOE测算
Table 2 LCOE calculation of perovskite solar cell
初始全投资/(元·W−1) 增值税抵扣/(元·W−1) 系统残值/(元·W−1) 运维成本/(元·W−1) 年发电小时数/h 7 a发电量/(kWh·W−1) LCOE/(元·kWh−1) 3.08 0.32 0.045 0.23 1 500 8.0 0.410 3.08 0.32 0.045 0.23 1 800 10.0 0.328 2.85 0.29 0.044 0.23 1 500 8.0 0.386 2.85 0.29 0.044 0.23 1 800 10.0 0.308 表 3 光伏组件理论极限成本的LCOE测算
Table 3 LCOE calculation of the theoretical limit cost of photovoltaic modules
电池种类 初始全投资/(元·W−1) 电池片寿命/a 系统残值/(元·W−1) 钙钛矿涂层重涂及额外物流成本/(元·W−1) LCOE/(元·kWh−1) 晶硅(并网) 3.08 25 0.045 0 0.123 晶硅(离网) 2.85 25 0.042 0 0.116 钙钛矿(并网) 2.58 10 0.038 0.937 0.142 钙钛矿(并网) 2.58 15 0.038 0.468 0.124 钙钛矿(并网) 2.58 25 0.038 0 0.107 钙钛矿(离网) 2.35 10 0.035 0.889 0.133 钙钛矿(离网) 2.35 15 0.035 0.444 0.116 钙钛矿(离网) 2.35 25 0.035 0 0.100 电池种类 理论光电转换效率/% 当前最高光电转换效率/% 当前已量产组件的光电转换效率/% p型单晶 24.5 23.56 23.40 n型单晶 28.7 27.30 26.81 钙钛矿 33.0 26.41 18.20 双叠层钙钛矿 44.3 32.50 26.17 晶硅-钙钛矿叠层 43.0 34.60 30.10 表 5 光电转换效率提升影响下的光伏组件理论极限成本的LCOE测算[15]
Table 5 LCOE calculation of the theoretical limit cost of photovoltaic modules under the influence of photoelectric conversion efficiency improvement[15]
电池种类 初始全投资/(元·W−1) 电池片价格/(元·W−1) 不随光电转换效率提高而降低的
相关成本/(元·W−1)光伏生命周期平均度电成本/
(元·kWh−1)n型晶硅(并网) 3.08 0.52 1.20 0.110 n型晶硅(离网) 2.85 0.52 1.20 0.103 钙钛矿(并网) 2.58 0.03 0.71 0.084 钙钛矿(离网) 2.35 0.03 0.71 0.079 双叠层钙钛矿(并网) 2.63 0.06 0.74 0.072 双叠层钙钛矿(离网) 2.40 0.06 0.74 0.067 晶硅-钙钛矿叠层(并网) 3.20 0.55 1.23 0.091 晶硅-钙钛矿叠层(离网) 2.97 0.55 1.23 0.087 表 6 不同电价对应的电解水制氢成本
Table 6 Hydrogen production costs from electrolysis at different electricity prices
成本名称 数额 年产氢量/t 104 104 104 单台设备制氢量/(Nm3·h−1) 1 000 1 000 1 000 设备数量/台 34 34 34 固定投资单台/万元 900 900 900 总固定投资/亿元 3.06 3.06 3.06 折旧/a 15 15 15 固定投资摊销/(万元·a−1) 2 040 2 040 2 040 运维成本/(万元·a−1) 442 442 442 员工工资/(万元·a−1) 200 200 200 年运行时长/(h·a−1) 3 300 3 300 3 300 固定成本/(元·kg−1) 2.67 2.67 2.67 电价/(元·kWh−1) 0.5 0.3 0.1 综合能耗/(kWh·kg−1) 52.8 52.8 52.8 耗电成本/(元·kg−1) 26.41 16.02 5.28 耗水成本/(元·kg−1) 0.08 0.08 0.08 制氢成本/(元·kg−1) 29.16 18.77 8.03 制氢方法 原料及价格 制氢成本/(元·kg−1) 初产物纯度/% 提纯后纯度/% 能量效率/% 煤制氢(Q5500煤) 煤450~900元/t 9.73~13.65 48~54 99.90 83 天然气制氢 天然气1.5~3.5元/Nm3 9.0~16.6 75~80 99.99 63 工业副产氢 烧碱、焦炭等副产物提纯成本300~600元/t 9.3~22.4 44~99.8 99.99 - 煤制氢蓝氢(Q5500煤) 煤450~900元/t 13.03~18.05 44~99.8 99.99 90 表 8 2022年全国光伏重点地区年利用小时数情况[23]
Table 8 Annual utilization hours of national PV key areas in 2022[23]
h 省(区) 资源区 地区 2021年
实际利用小时数2022年
实际利用小时数实际利用小时
数增加值内蒙古 I类 除赤峰市、通辽市、兴安盟、呼伦贝尔市以外其他地区 1 568 1 616 48 II类 赤峰市、通辽市、兴安盟、呼伦贝尔市 1 562 1 608 46 新疆 I类 哈密、塔城、阿勒泰 1 597 1 526 -71 克拉玛依 II类 除I类外其他地区 1 455 1 364 -91 甘肃 I类 嘉峪关、武威、张掖、酒泉、敦煌、金昌 1 562 1 514 -48 II类 除I类外其他地区 1 389 1 393 4 青海 I类 海西 1 474 1 430 -44 II类 除I类外其他地区 1 248 1 538 290 宁夏 I类 宁夏 1 471 1 539 68 陕西 II类 榆林、延安 1 455 1 421 -34 黑龙江 II类 黑龙江 1 503 1 644 141 吉林 II类 吉林 1 537 1 588 51 辽宁 II类 辽宁 1 327 1 459 132 河北 II类 承德、张家口、唐山 1 343 1 501 158 秦皇岛 山西 II类 忻州、朔州、大同 1 424 1 520 96 -
[1] 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径 [J]. 北京工业大学学报(社会科学版), 2021, 21(3): 1-15. DOI: 10.12120/bjutskxb202103001. HU A G. China's goal of achieving carbon peak by 2030 and its main approaches [J]. Journal of Beijing University of Technology (social sciences edition), 2021, 21(3): 1-15. DOI: 10.12120/bjutskxb202103001.
[2] 张雅娟, 王铮, 李双成. 能源电力系统转型对中国环境影响评估 [J]. 资源科学, 2023, 45(9): 1830-1843. DOI: 10.18402/resci.2023.09.10. ZHANG Y J, WANG Z, LI S C. Environmental impact assessment of energy and power system transformation in China [J]. Resources science, 2023, 45(9): 1830-1843. DOI: 10.18402/resci.2023.09.10.
[3] 宋天琦, 马韵婷, 张智慧. 光伏耦合电解水制氢系统作为虚拟电厂资源的运行模式与经济性分析 [J]. 发电技术, 2023, 44(4): 465-472. DOI: 10.12096/j.2096-4528.pgt.22181. SONG T Q, MA Y T, ZHANG Z H. Operation mode and economy of photovoltaic coupled water electrolysis hydrogen production system as a kind of virtual power plant resource [J]. Power generation technology, 2023, 44(4): 465-472. DOI: 10.12096/j.2096-4528.pgt.22181.
[4] 邹才能, 李建明, 张茜, 等. 氢能工业现状、技术进展、挑战及前景 [J]. 天然气工业, 2022, 42(4): 1-20. DOI: 10.3787/j.issn.1000-0976.2022.04.001. ZOU C N, LI J M, ZHANG Q, et al. Industrial status, technological progress, challenges and prospects of hydrogen energy [J]. Natural gas industry, 2022, 42(4): 1-20. DOI: 10.3787/j.issn.1000-0976.2022.04.001.
[5] 王宏铎. 绿色氢能技术发展现状及应用展望 [J]. 山东化工, 2024, 53(6): 96-98. DOI: 10.19319/j.cnki.issn.1008-021x.2024.06.019. WANG H D. The current status and prospects of green hydrogen energy technology development [J]. Shandong chemical industry, 2024, 53(6): 96-98. DOI: 10.19319/j.cnki.issn.1008-021x.2024.06.019.
[6] International Energy Agency. Global hydrogen review 2022 [EB/OL]. (2022-09-22) [2024-08-29]. https://www.iea.org/reports/global-hydrogen-review-2022.
[7] 程方. 钙钛矿高转换效率光伏材料合成技术进展综述 [J]. 山东电力技术, 2023, 50(10): 18-27. DOI: 10.20097/j.cnki.issn1007-9904.2023.10.003. CHENG F. Progress in synthesis and application of perovskite photovoltaic materials [J]. Shandong electric power, 2023, 50(10): 18-27. DOI: 10.20097/j.cnki.issn1007-9904.2023.10.003.
[8] 吕鑫, 刘天予, 董馨阳, 等. 2019年光伏及风电产业前景预测与展望 [J]. 北京理工大学学报(社会科学版), 2019, 21(2): 25-29. DOI: 10.15918/j.jbitss1009-3370.2019.7283. LÜ X, LIU T Y, DONG X Y, et al. Outlook and prospect of the photovoltaic and wind power industry in 2019 [J]. Journal of Beijing Institute of Technology (social sciences edition), 2019, 21(2): 25-29. DOI: 10.15918/j.jbitss1009-3370.2019.7283.
[9] 李宏, 廖鑫, 侯静, 等. 钙钛矿太阳能电池界面缺陷及其抑制方法 [J]. 人工晶体学报, 2024, 53(1): 38-50. DOI: 10.16553/j.cnki.issn1000-985x.20231128.002. LI H, LIAO X, HOU J, et al. Interface defects of perovskite solar cells and their suppression methods [J]. Journal of synthetic crystals, 2024, 53(1): 38-50. DOI: 10.16553/j.cnki.issn1000-985x.20231128.002.
[10] 王恒田, 杨晓龙. 平价上网光伏发电项目经济性评价、影响因素及对策 [J]. 企业经济, 2021, 40(3): 96-104. DOI: 10.13529/j.cnki.enterprise.economy.2021.03.011. WANG H T, YANG X L. Economic evaluation, influencing factors and countermeasures of grid-parity photovoltaic power generation projects [J]. Enterprise economy, 2021, 40(3): 96-104. DOI: 10.13529/j.cnki.enterprise.economy.2021.03.011.
[11] 陈柯延. 基于LCOE模型的光伏发电项目优化研究 [J]. 现代工业经济和信息化, 2023, 13(9): 128-130, 133. DOI: 10.16525/j.cnki.14-1362/n.2023.09.039. CHEN K Y. Optimisation study of photovoltaic power generation project based on LCOE model [J]. Modern industrial economy and informationization, 2023, 13(9): 128-130, 133. DOI: 10.16525/j.cnki.14-1362/n.2023.09.039.
[12] 徐伟, 刘振领, 王华智, 等. 基于LCOE模型的农村光伏系统社会经济效益评价——以北京郊区屋顶分布式光伏项目为例 [J]. 中国农业大学学报, 2023, 28(9): 208-217. DOI: 10.11841/j.issn.1007-4333.2023.09.19. XU W, LIU Z L, WANG H Z, et al. Evaluation of socio-economic benefits of rural PV systems based on LCOE model: an example of rooftop distributed PV projects in Beijing suburbs [J]. Journal of China Agricultural University, 2023, 28(9): 208-217. DOI: 10.11841/j.issn.1007-4333.2023.09.19.
[13] 刘江, 胡萍. 光伏发电项目LCOE模型的应用分析 [J]. 水电与新能源, 2022, 36(8): 19-22. DOI: 10.13622/j.cnki.cn42-1800/tv.1671-3354.2022.08.005. LIU J, HU P. Application of the LCOE model in photovoltaic power generation projects [J]. Hydropower and new energy, 2022, 36(8): 19-22. DOI: 10.13622/j.cnki.cn42-1800/tv.1671-3354.2022.08.005.
[14] 国家能源局. 光伏发电系统效能规范: NB/T 10394—2020 [S]. 北京: 中国水利水电出版, 2020. National Energy Administration. Specification for photovoltaic power generation system performance: NB/T 10394—2020 [S]. Beijing: China Water & Power Press, 2020.
[15] 中国光伏行业协会. 中国光伏产业发展路线图(2023-2024年) [EB/OL]. (2024-02-28) [2024-08-29]. http://www.chinapv.org.cn/Industry/resource_1380.html. China Photovoltaic Industry Association. China photovoltaic industry development roadmap(2023-2024) [EB/OL]. (2024-02-28) [2024-08-29]. http://www.chinapv.org.cn/Industry/resource_1380.html.
[16] ZHAO X M, LIU T R, BURLINGAME Q C, et al. Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells [J]. Science, 2022, 377(6603): 307-310. DOI: 10.1126/science.abn5679.
[17] ZHU H W, TEALE S, LINTANGPRADIPTO M N, et al. Long-term operating stability in perovskite photovoltaics [J]. Nature reviews materials, 2023, 8(9): 569-586. DOI: 10.1038/s41578-023-00582-w.
[18] 王玉晴, 全泽源. 协鑫光电董事长范斌: 钙钛矿替代晶硅是水到渠成的事 [N]. 上海证券报, 2022-08-19(05). DOI: 10.28719/n.cnki.nshzj.2022.003726. WANG Y Q, QUAN Z Y. Fan Bin, chairman of Xiexin optoelectronics: the substitution of perovskite for crystalline silicon is a natural thing [N]. Shanghai securities news, 2022-08-19(05). DOI: 10.28719/n.cnki.nshzj.2022.003726.
[19] 姚美灵, 廖纪星, 逯好峰, 等. 影响钙钛矿/异质结叠层太阳能电池效率及稳定性的关键问题与解决方法 [J]. 物理学报, 2024, 73(8): 088801. DOI: 10.7498/aps.73.20231977. YAO M L, LIAO J X, LU H F, et al. Key issues and solutions affecting efficiency and stability of perovskite/heterojunction tandem solar cells [J]. Acta physica sinica, 2024, 73(8): 088801. DOI: 10.7498/aps.73.20231977.
[20] 殷高峰. 技术持续突破 钙钛矿叠层电池商业化进程加速 [N]. 证券日报, 2024-08-06(B02). DOI: 10.28096/n.cnki.ncjrb.2024.004102. YIN G F. Continuous technological breakthroughs accelerate the commercialization process of perovskite tandem batteries [N]. Securities daily, 2024-08-06(B02). DOI: 10.28096/n.cnki.ncjrb.2024.004102.
[21] PETERS I M, GALLEGOS C D R, SOFIA S E, et al. The value of efficiency in photovoltaics [J]. Joule, 2019, 3(11): 2732-2747. DOI: 10.1016/j.joule.2019.07.028.
[22] 刘坚, 钟财富. 我国氢能发展现状与前景展望 [J]. 中国能源, 2019, 41(2): 32-36. DOI: 10.3969/j.issn.1003-2355.2019.02.007. LIU J, ZHONG C F. Current status and prospects of hydrogen energy development in China [J]. Energy of China, 2019, 41(2): 32-36. DOI: 10.3969/j.issn.1003-2355.2019.02.007.
[23] 国家能源局. 2022年度全国可再生能源电力发展监测评价报告 [EB/OL]. (2023-09-07) [2024-08-29]. http://zfxxgk.nea.gov.cn/2023-09/07/c_1310741874.htm. National Energy Agency. 2022 National renewable energy power development monitoring and evaluation report [EB/OL]. (2023-09-07) [2024-08-29]. http://zfxxgk.nea.gov.cn/2023-09/07/c_1310741874.htm.