-
摘要:目的 大直径单桩基础在我国海洋工程中应用广泛,其通常由锤击贯入的方式完成基础的安装。由于桩锤的锤击作用,桩体在沉桩过程中受到连续的冲击荷载,易出现疲劳问题。因此对大直径单桩基础的贯入过程及所致疲劳损伤的研究就显得尤为重要。方法 文章以大直径单桩基础为研究对象,基于工程现场测试数据,为解决单桩连续贯入计算量过大的问题,提出分段预置建模方法,实现了对单桩锤击贯入过程的分段计算,验证了该方法计算单桩锤击过程中桩身的力学响应的可行性,得到了单桩桩身测试断面在单次锤击作用下的位移、速度和应力的时程响应。基于S-N曲线和Palmgren-Miner理论计算了桩身变截面焊接位置处的疲劳损伤。结果 研究结果表明,所提出的分段预置建模方法能够较好地反映锤击作用下桩身的力学响应,与现场实测数据相比,位移、速度、应力变化趋势均吻合较好。模拟所得的应力最大值与实测值之间误差均在10%以内。结论 单桩目标截面单次锤击损伤与所受有效锤击能的大小直接相关。单桩经历
1017 次锤击作用后桩身变截面焊接位置处的疲劳损伤为7.578%,占构件设计安全前提下疲劳寿命的22.734%。因此,应重视单桩锤击贯入过程中由于锤击作用所导致的桩身疲劳损伤。Abstract:Objective Large-diameter monopile foundations are widely used in marine engineering in China and are typically installed through penetration. Due to the impact of the pile hammer, the pile body experiences continuous impact loads during the driving process, making it susceptible to fatigue issues. Therefore, it is particularly important to study the penetration process and fatigue damage of large-diameter monopile.Method This paper focused on the large-diameter monopile foundations. Based on the engineering field test data, a segmented pre-setting modeling method was proposed to address the issue of excessive computational workload in continuous pile penetration, allowing for segmented calculations of the monopile driving process. The feasibility of this method in calculating the mechanical response of the pile body during driving was verified. Time-history responses of displacement, velocity and stress at target points on the monopile under a single driving action were obtained. Fatigue damage at the welded position of the monopile varying cross-sections was calculated using the S-N curve and Palmgren-Miner theory.Result The results show that the proposed segmented pre-setting modeling method effectively reflects the mechanical response of the pile body under driving action. The trends of displacement, velocity and stress are in good agreement with the measured data. The error between the simulated maximum stress value and the measured value is within 10%.Conclusion The damage to the target cross-section of the monopile caused by a single driving action is directly related to the effective driving energy received. After1017 hammer strikes, the fatigue damage at the welding position of the monopile varying cross-sections is 7.578%, accounting for 22.734% of the fatigue life under the designed safety premise. Therefore, attention should be paid to the fatigue damage of the pile body caused by the driving during the penetration process. -
表 1 单桩目标机位土层参数
Table 1 Soil layer parameters of monopile target position
岩土名称 层底
深度/m天然重度
γ/(kN·m−3)压缩模量
Es/MPa泊松比
μ粘聚力
C/kPa淤泥 5.1 16.25 2.25 0.487 9.00 淤泥质土 18.2 18.00 2.50 0.487 18.50 粉细砂 21.0 20.00 7.00 0.470 - 淤泥质土 28.3 18.00 3.00 0.487 21.00 中细砂 33.6 20.50 10.00 0.470 - 粉质黏土 34.7 20.00 5.25 0.487 37.00 全风化花岗岩 39.0 19.50 7.00 0.270 - 散体状强风化
花岗岩105.0 19.50 7.00 0.270 - 表 2 单桩桩身弹性参数
Table 2 Elastic parameters of monopile body
参数 数值 材料属性 DH36 杨氏模量E/GPa 210 泊松比μ 0.3 密度ρ/(kg·m−3) 7850 表 3 锤击贯入典型工况
Table 3 Typical conditions of penetration process
工况 冲击
力/N有效锤击
能/kJ入土深度
D/m实测最大
应力/MPa数值模拟最大
应力/MPa相对
误差/%1 80.57 280 35.55 - - - 2 89.35 348 36.05 - - - 3 101.32 452 36.30 - - - 4 116.92 609 36.80 - - - 5 132.05 783 38.80 - - - 6 138.97 870 40.55 - - - 7 151.86 1044 41.55 - - - 8 163.71 1218 42.55 87.47 92.20 5.41 9 169.32 1305 43.55 91.89 95.34 3.76 10 174.74 1392 44.55 97.25 98.38 1.16 11 185.10 1566 45.55 105.80 104.20 −1.52 12 185.10 1566 46.60 103.97 104.20 0.22 13 90.41 357 46.64 - - - 表 4 各工况单桩目标截面锤击疲劳损伤
Table 4 Fatigue damage of target cross-section of monopile under different working conditions
工况 有效
锤击能/kJ入土
长度/m单次锤击
损伤/‰锤击
次数/bl单工况锤击
损伤/%1 280 35.55 0.011 84 0.091 2 348 36.05 0.015 27 0.041 3 452 36.30 0.024 23 0.055 4 609 36.80 0.036 61 0.222 5 783 38.80 0.052 209 1.084 6 870 40.55 0.056 81 0.456 7 1044 41.55 0.074 85 0.631 8 1218 42.55 0.097 82 0.799 9 1305 43.55 0.105 84 0.884 10 1392 44.55 0.108 68 0.734 11 1566 45.55 0.123 73 0.901 12 1566 46.60 0.127 132 1.673 13 357 46.64 0.009 8 0.007 合计损伤:7.578% -
[1] ZHOU X X. The development of power system and power system technology in China [C]// Anon. 1997 fourth international conference on advances in power system control, operation and management, Hong Kong, China, November 11-14, 1997. Hong Kong, China: IEEE, 1997: 14-17. DOI: 10.1049/cp:19971798.
[2] ESTEBAN M, LEARY D. Current developments and future prospects of offshore wind and ocean energy [J]. Applied energy, 2012, 90(1): 128-136. DOI: 10.1016/j.apenergy.2011.06.011.
[3] 王洪庆, 孙伟, 刘东华, 等. 海上风电大直径单桩自沉与溜桩分析 [J]. 南方能源建设, 2023, 10(1): 64-71. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.008. WANG H Q, SUN W, LIU D H, et al. Statistical analysis of self-weight penetration and pile running for large diameter monopiles in offshore wind farm [J]. Southern energy construction, 2023, 10(1): 64-71. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.008.
[4] 校建东. 海上风电单桩基础地基加固技术研究 [J]. 南方能源建设, 2023, 10(4): 184-192. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.019. XIAO J D. Research on ground reinforcement technology of offshore wind power monopile foundation [J]. Southern energy construction, 2023, 10(4): 184-192. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.019.
[5] TIMILSINA G R, VAN KOOTEN G C, NARBEL P A. Global wind power development: economics and policies [J]. Energy policy, 2013, 61: 642-652. DOI: 10.1016/j.enpol.2013.06.062.
[6] TABASSUM-ABBASI N, PREMALATHA M, ABBASI T, et al. Wind energy: increasing deployment, rising environmental concerns [J]. Renewable and sustainable energy reviews, 2014, 31: 270-288. DOI: 10.1016/j.rser.2013.11.019.
[7] PERVEEN R, KISHOR N, MOHANTY S R. Off-shore wind farm development: present status and challenges [J]. Renewable and sustainable energy reviews, 2014, 29: 780-792. DOI: 10.1016/j.rser.2013.08.108.
[8] JIANG Z Y. Installation of offshore wind turbines: a technical review [J]. Renewable and sustainable energy reviews, 2021, 139: 110576. DOI: 10.1016/j.rser.2020.110576.
[9] 王诗超, 刘嘉畅, 刘展志, 等. 海上风电产业现状及未来发展分析 [J]. 南方能源建设, 2023, 10(4): 103-112. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.010. WANG S C, LIU J C, LIU Z Z, et al. Analysis of current situation and future development of offshore wind power industry [J]. Southern energy construction, 2023, 10(4): 103-112. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.010.
[10] KALLEHAVE D, THILSTED C L, LIINGAARD M A. Modification of the API p-y formulation of initial stiffness of sand [C]// Anon. Offshore site investigation and geotechnics: integrated technologies: present and future, London, UK, September 12-14, 2012. London: SUT, 2012: SUT-OSIG-12-50.
[11] BYRNE B W, BURD H J, ZDRAVKOVIĆ L, et al. PISA: new design methods for offshore wind turbine monopiles [J]. Revue franç aise de géotechnique, 2019(158): 3. DOI: 10.1051/geotech/2019009.
[12] 东方风力发电网. 莆田平海湾风电二期工程单桩成功制成 [EB/OL]. (2018-06-06) [2024-10-28]. http://www.eastwp.net/news/show.php?itemid=50752. EASTWP. NET. Putian Pinghai bay wind power phase II project monopile successfully fabricated [EB/OL]. (2018-06-06) [2024-10-28]. http://www.eastwp.net/news/show.php?itemid=50752.
[13] LOTSBERG I, SIGURDSSON G, ARNESEN K, et al. Recommended design fatigue factors for reassessment of piles subjected to dynamic actions from driving [J]. Journal of offshore mechanics and arctic engineering, 2010, 132(4): 041603. DOI: 10.1115/1.4001418.
[14] CHUNG J, WALLERAND R, HÉLIAS-BRAULT M. Pile fatigue assessment during driving [J]. Procedia engineering, 2013, 66: 451-463. DOI: 10.1016/j.proeng.2013.12.098.
[15] 马骏, 孙肖菲, 孙立强, 等. 海上风电超大直径单桩可打性与沉桩疲劳损伤分析 [J]. 船海工程, 2022, 51(4): 105-109, 115. DOI: 10.3963/j.issn.1671-7953.2022.04.022. MA J, SUN X F, SUN L Q, et al. Drivability and driving fatigue damage analysis of super large diameter mono-pile for offshore wind farm [J]. Ship & ocean engineering, 2022, 51(4): 105-109, 115. DOI: 10.3963/j.issn.1671-7953.2022.04.022.
[16] SALAMA M M, ELLIS N, HANNA S Y, et al. Pile driving dynamic loads on offshore structures [C]// Anon. Proceedings of the offshore technology conference, Houston, USA, May 2-5, 1988. Houston: OnePetro, 1988: 207-214. DOI: 10.4043/5704-MS.
[17] HUNT R J, CHAN J H C, DOYLE E H. Driving fatigue damage estimation for Ursa TLP 96" OD piles [C]// Anon. Proceedings of the ninth international offshore and polar engineering conference, Brest, France, May 30 - June 4, 1999. Brest: OnePetro, 1999: 684-692.
[18] BUITRAGO J, WONG P C. Fatigue design of driven piles for deepwater applications [C]// Anon. The thirteenth international offshore and polar engineering conference, Honolulu, Hawaii, USA, May 25-30, 2003. Honolulu: OnePetro, 2003.
[19] MORIYASU S, KOBAYASHI S I, MATSUMOTO T. Experimental study on friction fatigue of vibratory driven piles by in situ model tests [J]. Soils and foundations, 2018, 58(4): 853-865. DOI: 10.1016/j.sandf.2018.03.010.
[20] TAVASOLI O, GHAZAVI M. Driving behavior of stepped and tapered offshore piles due to hammer blows [J]. Marine georesources & geotechnology, 2020, 38(6): 633-646. DOI: 10.1080/1064119X.2019.1609631.
[21] CHRISOPOULOS S, VOGELSANG J. A finite element benchmark study based on experimental modeling of vibratory pile driving in saturated sand [J]. Soil dynamics and earthquake engineering, 2019, 122: 248-260. DOI: 10.1016/j.soildyn.2019.01.001.
[22] HAMANN T, QIU G, GRABE J. Application of a Coupled Eulerian-Lagrangian approach on pile installation problems under partially drained conditions [J]. Computers and geotechnics, 2015, 63: 279-290. DOI: 10.1016/j.compgeo.2014.10.006.
[23] BIENEN B, FAN S S, SCHRÖDER M, et al. Effect of the installation process on monopile lateral response [J]. Proceedings of the institution of civil engineers - geotechnical engineering, 2021, 174(5): 530-548. DOI: 10.1680/jgeen.20.00219.
[24] CHEN F Q, LIU L Y, LAI F W, et al. Numerical analyses of energy balance and installation mechanisms of large-diameter tapered monopiles by impact driving [J]. Ocean engineering, 2022, 266: 113017. DOI: 10.1016/j.oceaneng.2022.113017.
[25] 中华人民共和国住房和城乡建设部. 建筑基桩检测技术规范: JGJ 106—2014 [S]. 北京: 中国建筑工业出版社, 2014: 10. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical code for testing of building foundation piles: JGJ 106—2014 [S]. Beijing: China Architecture & Building Press, 2014: 10.
[26] BISHOP A W, HIGHT D W. The value of Poisson's ratio in saturated soils and rocks stressed under undrained conditions [J]. Géotechnique, 1977, 27(3): 369-384. DOI: 10.1680/geot.1977.27.3.369.
[27] 曾朋. 花岗岩残积土的压实特性及崩解特性研究 [D]. 广州: 华南理工大学, 2012. ZENG P. A study on compaction characteristics and disintegration behavior of granite residual soil [D]. Guangzhou: South China University of Technology, 2012.
[28] 刘攀. 全风化花岗岩试验及本构模型研究 [D]. 广州: 华南理工大学, 2016. LIU P. Experimental study and constitutive model of completely decomposed granite [D]. Guangzhou: South China University of Technology, 2016.
[29] XIAO Y J, CHEN F Q, DONG Y Z. Numerical investigation of soil plugging effect inside sleeve of cast-in-place piles driven by vibratory hammers in clays [J]. SpringerPlus, 2016, 5(1): 755. DOI: 10.1186/s40064-016-2423-y.
[30] RANDOLPH M F, MAY M, LEONG E C, et al. Soil plug response in open-ended pipe piles [J]. Journal of geotechnical engineering, 1992, 118(5): 743-759. DOI: 10.1061/(ASCE)0733-9410(1992)118:5(743).
[31] Veritas D D N. Fatigue design of offshore steel structures: DNV-RP-C203 [S]. [S.l.]: [s.n.], 2019.