高级检索

港口实景下大型风电机组工程化设计分析

Engineering Design Analysis of Large-Scale Wind Turbine in a Port

  • 摘要:
      目的  港口面临着巨大的生产用电需求和碳减排压力,港区丰富的风能资源使得风电在港口具有较大应用前景。风电机组选址及选型设计将直接影响电站的经济效益和港区生产安全,在风能系统工程化设计中具有重要的研究意义。
      方法  以宁波舟山港穿山港区为例,研究了港口特定环境下大型风电机组的工程化设计原则与限制因素,分析了港区风能资源情况与风资源能源化潜力,基于历史统计信息,分析了影响港区的特殊气候;基于港区实景,考虑港区特定环境下的限制因素,对风电机组的选址设计进行分析;研究了风电机组的选型设计方法,并以市场上4种主流机型为例,从多个维度对港区风机选型设计进行了分析。
      结果  最终,选用IEC I类及以上且具备抗台特别设计的WTG2型风电机组风机,年发电量可达24.53 GWh,节约用电成本0.233亿元,减少CO2排放约1.425 1万t。
      结论  所提出的港口实景下大型风电机组工程设计方法经验证可行,且可以实现较大的经济和生态效益,助力港口实现碳达峰和能源自给,对港口风电场工程设计具有一定的借鉴参考价值。

     

    Abstract:
      Introduction  Ports are facing significant electricity demand and carbon reduction pressure. The abundant wind energy resources in port areas make wind power highly promising for port applications. The site selection and design of wind turbines directly impact the economic benefits of power plants and production safety in the port area, thus, it has important research significance in the engineering design of wind energy systems.
      Method  Taking Chuanshan port area of Ningbo-Zhoushan Port as an example, this study investigated the engineering design principles and limiting factors for large-scale wind turbines in port areas and analyzed the wind resources and the potential for wind energy utilization in the port and the special weather affecting the port area based on statistic history data; based on the actual conditions of the port, the site selection and design of wind turbines were analyzed considering the limiting factors of the port area. The study also examined the selection and design methods of wind turbines and analyzed the selection and design from multiple dimensions, taking four mainstream models on the market as examples.
      Result  Ultimately, the WTG2 wind turbine that meets at least IEC Class I standards and has been specially designed to withstand typhoons is selected. The annual electricity generation can reach 24.53 GWh, resulting in cost savings of 0.233 hundred million and a reduction in CO2 emissions of approximately 1.425 1 ten thousand tons.
      Conclusion  The proposed engineering design method for large-scale wind turbines in port areas, based on actual conditions, has been verified as feasible and can achieve significant economic and ecological benefits. It can contribute to carbon peaking and energy self-sufficiency in ports, providing valuable references for the engineering design of wind farms in port areas.

     

/

返回文章
返回