-
摘要:目的 为实现“双碳”目标,电源侧的绿色低碳转型是广东实现绿色低碳转型的关键。同时,紧紧围绕新能源发展构建高比例新能源的多元电源支撑体系也是广东建设新型电力系统的重中之重。因此,提前谋划面向碳中和的广东电源结构具有十分重要的意义。方法 在对广东省远景能源供需格局进行研判的基础上,统筹低碳转型和能源安全,考虑非化石能源消费比重、资源条件、电力供应平衡3个方面约束,提出广东面向碳中和的电源发展思路,对不同转型路径进行分析,并提出相关建议。结果 研究表明,碳中和时期,广东省电源总装机规模预计将达到当前电源装机规模的3倍左右;电源供应主体由当前的“火电+核电+外电”组合,转变为“新能源+核电+外电”组合,非化石能源装机比重达到80%,其中,省内新能源装机比重达到50%。结论 广东省的电源结构调整前景看似乐观,然而,这个过程仍然面临政策、技术、产业和市场等诸多挑战,建议转型过程中关注火电在电力系统中的定位转变、保障非化石能源发展关键要素、重视新型电力系统调节能力建设;为了满足碳中和时期广东两倍于现状的电力消费需求,更为重要的是需特别关注引领电源结构清洁低碳转型的科技创新问题,通过科技创新推动新能源类型、能源新技术的探索,向能量密度更大、能效转换效率更高的方向发展。Abstract:Introduction In order to realize the goal of "dual-carbon", the green and low-carbon transformation of power supply side is the key to realize the green and low-carbon transformation of Guangdong, and at the same time, the construction of a diversified power supply support system with a high proportion of new energy is also the most important task for achieving a new type of power system in Guangdong. Therefore, it is of great significance to plan the carbon neutral power supply structure of Guangdong in advance.Method Based on the study of the prospective energy supply and demand pattern of Guangdong Province, this paper integrated the low-carbon transformation and energy security, considered the constraints from the proportion of non-fossil energy consumption, resource conditions, and the balance of power supply, and proposed a carbon-neutral power supply development idea for Guangdong, analyzed different transformation paths, and put forward relevant suggestions.Result The study shows that during the period of carbon neutrality, the total installed capacities of power supply in Guangdong Province is expected to reach about three times of the current installed capacities; the main body of power supply will be transformed from the current combination of "thermal power + nuclear power + external power supply" to "new energy + nuclear power + external power supply"; The proportion of non-fossil energy installed capacity will reach 80%, of which the proportion of new energy resources in the province will reach 50%.Conclusion The prospect of power structure adjustment in Guangdong Province seems optimistic. However, this process still faces many challenges from policy, technology and market, etc. It is suggested to pay attention to the role change of thermal power in the power system, safeguard the key factors of non-fossil energy development, and emphasize the building of regulating capacity for new power system; in order to meet the demand for electricity consumption in Guangdong twice as much as the status quo during the period of carbon neutrality, it is even more important to pay special attention to technological innovation issues leading the clean and low-carbon transformation of power supply structures, and through scientific and technological innovation, to promote the exploration of new energy types and new energy technologies towards the development of greater energy density and more efficient energy conversion.
-
表 1 2060年非化石能源装机情景
Table 1 Scenario of installed non-fossil energy in 2060
情景 高海风 高外电 高核电 装机/
GW电量占比/
%装机/
GW电量占比/
%装机/
GW电量占比/
%外电 65 17 85 22 65 17 核电 50~55 24~27 50~60 24~29 65~70 32~34 海上风电 150~160 34~36 110~130 25~30 110~120 25~27 光伏 100~120 8 100~120 8 100~120 8 陆上风电 10 1 10 1 10 1 水电 9.38 2 9.38 2 9.38 2 生物质 10 3 10 3 10 3 表 2 70%敏感性方案主要差异
Table 2 Key differences between 70% sensitivity programs
非化石能源消费比重 80%(以高海风
情景为例)70% 差异 海上风电装机/GW 155 120~130 减少30~40 核电装机/GW 50 40~45 减少5~10 火电装机/GW 120 140~150 退役减少10~20 抽蓄储能装机/GW 60 40~50 减少10 煤电发电小时/h 1 200~1 600 2 300~2 500 提高1 000 -
[1] 田雨扬, 卢锦玲, 赵洪山, 等. 基于联盟区块链的直购电交易模型 [J]. 电力系统保护与控制, 2022, 50(8): 139-148. DOI: 10.19783/j.cnki.pspc.210901. TIAN Y Y, LU J L, ZHAO H S, et al. Direct purchase electricity transaction model based on a consortium chain [J]. Power system protection and control, 2022, 50(8): 139-148. DOI: 10.19783/j.cnki.pspc.210901.
[2] 国网能源研究院有限公司. 中国能源电力发展展望(2021) [M]. 北京: 中国电力出版社, 2021. State Grid Energy Research Institute. China energy & electricity outlook (2021) [M]. Beijing: China Electric Power Press, 2021.
[3] 全球能源互联网发展合作组织. 中国碳中和之路 [M]. 北京: 中国电力出版社, 2021. Global Energy Internet Development Cooperation Organization. China's path to carbon neutrality [M]. Beijing: China Electric Power Press, 2021.
[4] 新华社. 中共中央 国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见 [EB/OL]. (2021-10-24) [2022-03-18]. http://www.gov.cn/zhengce/2021-10/24/content_5644613.htm. Xinhua News Agency. Opinions of the Central Committee of the Communist Party of China and the State Council on fully implementing the new development concept and doing a good job in carbon peaking and carbonneutrality [EB/OL]. ( 2021-10-24 ) [ 2022-03-18 ]. http://www.gov.cn/zhengce/2021-10/24/content_5644613.htm.
[5] 丁仲礼, 张涛. 碳中和: 逻辑体系与技术需求 [M]. 北京: 科学出版社, 2022. DING Z L, ZHANG T. Carbon neutral logic system and technical requirements [M]. Beijing: Science Press, 2022.
[6] 杨胜, 樊艳芳, 侯俊杰, 等. 考虑平抑风光波动的ALK-PEM电解制氢系统容量优化模型 [J]. 电力系统保护与控制, 2024, 52(01): 85-96. DOI: 10.19783/j.cnki.pspc.230500. YANG S, FAN Y F, HOU J J, et al. Capacity optimization model for an ALK-PEM electrolytic hydrogen production system considering the stabilization of wind and PV fluctuations [J]. Power system protection and control, 2024, 52(01): 85-96. DOI: 10.19783/j.cnki.pspc.230500.
[7] 周楠, 梁馨予, 于向华, 等. 基于DRL的综合能源系统优化运行研究 [J]. 电力大数据, 2023, 26(6): 49-57. DOI: 10.19317/j.cnki.1008-083x.2023.06.006. ZHOU N, LIANG X Y, YU X H, et al. Research on optimal operation of integrated energy system based on DRL [J]. Power systems and big data, 2023, 26(6): 49-57. DOI: 10.19317/j.cnki.1008-083x.2023.06.006.
[8] 毕锐, 王孝淦, 袁华凯, 等. 考虑供需双侧响应和碳交易的氢能综合能源系统鲁棒调度 [J]. 电力系统保护与控制, 2023, 51(12): 122-132. DOI: 10.19783/j.cnki.pspc.221371. BI R, WANG X G, YUAN H K, et al. Robust dispatch of a hydrogen integrated energy system considering double side response and carbon trading mechanism [J]. Power system protection and control, 2023, 51(12): 122-132. DOI: 10.19783/j.cnki.pspc.221371.
[9] 舒印彪, 张丽英, 张运洲, 等. 我国电力碳达峰、碳中和路径研究 [J]. 中国工程科学, 2021, 23(6): 1-14. DOI: 10.15302/J-SSCAE-2021.06.001. SHU Y B, ZHANG L Y, ZHANG Y Z, et al. Carbon peak and carbon neutrality path for China's power industry [J]. Strategic study of CAE, 2021, 23(6): 1-14. DOI: 10.15302/J-SSCAE-2021.06.001.
[10] 魏泓屹, 卓振宇, 张宁, 等. 中国电力系统碳达峰·碳中和转型路径优化与影响因素分析 [J]. 电力系统自动化, 2022, 46(19): 1-12. DOI: 10.7500/AEPS20220228009. WEI H Y, ZHUO Z Y, ZHANG N, et al. Transition path optimization and influencing factor analysis of carbon emission peak and carbon neutrality for power system of China [J]. Automation of electric power systems, 2022, 46(19): 1-12. DOI: 10.7500/AEPS20220228009.
[11] 苏步芸, 张英杰, 熊晓晟. 双碳、双区背景下深圳电力需求预测 [J]. 南方能源建设, 2022, 9(4): 127-134. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.016. SU B Y, ZHANG Y J, XIONG X S. Power demand forecast for Shenzhen under carbon peak and neutrality and Greater Bay Area and pilot demonstration area of socialism with Chinese characteristics [J]. Southern energy construction, 2022, 9(4): 127-134. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.016.
[12] 郭挺, 饶建业. “新常态”下广东省中长期电力需求预测 [J]. 广东电力, 2015, 28(6): 6-11. DOI: 10.3969/j.issn.1007-290X.2015.06.002. GUO T, RAO J Y. Medium and long term electric power demand forecasting for Guangdong province under the "new normal" [J]. Guangdong electric power, 2015, 28(6): 6-11. DOI: 10.3969/j.issn.1007-290X.2015.06.002.
[13] 辛保安, 单葆国, 李琼慧, 等. “双碳”目标下“能源三要素”再思考 [J]. 中国电机工程学报, 2022, 42(9): 3117-3125. DOI: 10.13334/j.0258-8013.pcsee.212780. XIN B A, SHAN B G, LI Q H, et al. Rethinking of the "three elements of energy" toward carbon peak and carbon neutrality [J]. Proceedings of the CSEE, 2022, 42(9): 3117-3125. DOI: 10.13334/j.0258-8013.pcsee.212780.
[14] 蔡绍宽. 双碳目标的挑战与电力结构调整趋势展望 [J]. 南方能源建设, 2021, 8(3): 8-17. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.002. CAI S K. Challenges and prospects for the trends of power structure adjustment under the goal of carbon peak and neutrality [J]. Southern energy construction, 2021, 8(3): 8-17. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.002.
[15] 张浩楠. 面向碳中和的电力低碳转型规划与决策研究 [D]. 北京: 华北电力大学(北京), 2022. DOI: 10.27140/d.cnki.ghbbu.2022.000116. ZHANG H N. Research on low-carbon power transition planning and decision making aligned with China's carbon neutral target [D]. Beijing: North China Electric Power University (Beijing), 2022. DOI: 10.27140/d.cnki.ghbbu.2022.000116.
[16] 辛保安, 陈梅, 赵鹏, 等. 碳中和目标下考虑供电安全约束的我国煤电退减路径研究 [J]. 中国电机工程学报, 2022, 42(19): 6919-6930. DOI: 10.13334/j.0258-8013.pcsee.221673. XIN B A, CHEN M, ZHAO P, et al. Research on coal power generation reduction path considering power supply adequacy constraints under carbon neutrality target in China [J]. Proceedings of the CSEE, 2022, 42(19): 6919-6930. DOI: 10.13334/j.0258-8013.pcsee.221673.
[17] 黎博, 陈民铀, 钟海旺, 等. 高比例可再生能源新型电力系统长期规划综述 [J]. 中国电机工程学报, 2023, 43(2): 555-580. DOI: 10.13334/j.0258-8013.pcsee.212716. LI B, CHEN M Y, ZHONG H W, et al. A review of long-term planning of new power systems with large share of renewable energy [J]. Proceedings of the CSEE, 2023, 43(2): 555-580. DOI: 10.13334/j.0258-8013.pcsee.212716.
[18] 李明节, 陈国平, 董存, 等. 新能源电力系统电力电量平衡问题研究 [J]. 电网技术, 2019, 43(11): 3979-3986. DOI: 10.13335/j.1000-3673.pst.2019.0440. LI M J, CHEN G P, DONG C, et al. Research on power balance of high proportion renewable energy system [J]. Power system technology, 2019, 43(11): 3979-3986. DOI: 10.13335/j.1000-3673.pst.2019.0440.
[19] 蔡博峰, 李琦, 张贤, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021): 中国CCUS路径研究 [R]. 北京: 生态环境部环境规划院, 2021. CAI B F, LI Q, ZHANG X, et al. Carbon capture utilization and storage (CCUS) annual report (2021) in China: China's CCUS pathway research [R]. Beijing: Chinese Academy of Environmental Planning, 2021.
[20] 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望 [J]. 中国电机工程学报, 2022, 42(8): 2806-2818. DOI: 10.13334/j.0258-8013.pcsee.220467. ZHANG Z G, KANG C Q. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future [J]. Proceedings of the CSEE, 2022, 42(8): 2806-2818. DOI: 10.13334/j.0258-8013.pcsee.220467.
[21] 樊星, 李路, 秦圆圆, 等. 主要发达经济体从碳达峰到碳中和的路径及启示 [J]. 气候变化研究进展, 2023, 19(1): 102-115. DOI: 10.12006/j.issn.1673-1719.2022.073. FAN X, LI L, QIN Y Y, et al. The pathway from carbon peak to carbon neutrality in major developed economies and its insights [J]. Climate change research, 2023, 19(1): 102-115. DOI: 10.12006/j.issn.1673-1719.2022.073.
[22] 周孝信, 赵强, 张玉琼. “双碳”目标下我国能源电力系统发展前景和关键技术 [J]. 中国电力企业管理, 2021(31): 14-17. DOI: 10.3969/j.issn.1007-3361.2021.31.005. ZHOU X X, ZHAO Q, ZHANG Y Q. Development prospect and key technologies of China's energy and power system under the "dual carbon" target [J]. China power enterprise management, 2021(31): 14-17. DOI: 10.3969/j.issn.1007-3361.2021.31.005.