高级检索

吸附式液态二氧化碳储能系统热经济性分析

Thermo-Economic Analysis of Adsorption-Based Liquid Carbon Dioxide Energy Storage System

  • 摘要:
    目的 可再生能源的间歇性对电网稳定运行构成严峻挑战,对大规模储能技术提出了更高要求。压缩二氧化碳储能技术是满足电网调节的有效解决方案之一。然而,低压侧二氧化碳的储存问题是制约该技术发展的关键瓶颈。
    方法 文章提出了一种吸附式液态二氧化碳储能系统,通过构建热力学与经济性模型,系统分析了关键运行参数的优化路径。
    结果 对于100 MW/600 MWh储能系统研究发现,液罐温度与高压冷却器出口温度分别为26 ℃和46 ℃时,系统的度电成本达到最低值。系统的循环效率为70.06%,能量密度7.7 kWh/m3,平准化存储成本为0.8081元/kWh,动态回收期为8.46年。
    结论 敏感性分析表明,优化关键部件参数可显著提升系统综合性能,为大规模储能系统的灵活部署提供了理论支撑与技术依据。

     

    Abstract:
    Objective The intermittency of renewable energy severely challenges grid stability, increasing the demand for large-scale energy storage technologies. Compressed CO2 energy storage emerges as a potential solution for grid peak shaving. However, storing low-pressure CO2 is a critical bottleneck limiting the CCES development.
    Method This paper proposes an adsorption-based liquid CO2 energy storage system. With the developed thermo-economic models, we systematically analyze the optimization of key operating parameters.
    Result Results for an 100 MW/600 MWh system show that the system levelized cost of storage was minimized when the liquid tank and high-pressure cooler outlet temperatures were 26 ℃ and 46 ℃, respectively. The system can achieve a cycle efficiency of 70.06%, energy density of 7.7 kWh/m3, levelized cost of storage of 0.8081 CNY/kWh and dynamic payback period of 8.46 years.
    Conclusion Sensitivity analysis indicates optimizing key component parameters can significantly improve system performance, providing essential theoretical and technical support for the flexible deployment of large-scale energy storage systems.

     

/

返回文章
返回