高级检索

开孔和补强对圆柱壳轴压屈曲的影响分析

胡服全, 李鹏飞, 何铮

胡服全, 李鹏飞, 何铮. 开孔和补强对圆柱壳轴压屈曲的影响分析[J]. 南方能源建设, 2018, 5(4): 60-65. DOI: 10.16516/j.gedi.issn2095-8676.2018.04.009
引用本文: 胡服全, 李鹏飞, 何铮. 开孔和补强对圆柱壳轴压屈曲的影响分析[J]. 南方能源建设, 2018, 5(4): 60-65. DOI: 10.16516/j.gedi.issn2095-8676.2018.04.009
Fuquan HU, Pengfei LI, Zheng HE. Buckling Impact Analysis of Cylinderial Shells with Opening and Reinforcement Under Axial Compression[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(4): 60-65. DOI: 10.16516/j.gedi.issn2095-8676.2018.04.009
Citation: Fuquan HU, Pengfei LI, Zheng HE. Buckling Impact Analysis of Cylinderial Shells with Opening and Reinforcement Under Axial Compression[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(4): 60-65. DOI: 10.16516/j.gedi.issn2095-8676.2018.04.009
胡服全, 李鹏飞, 何铮. 开孔和补强对圆柱壳轴压屈曲的影响分析[J]. 南方能源建设, 2018, 5(4): 60-65. CSTR: 32391.14.j.gedi.issn2095-8676.2018.04.009
引用本文: 胡服全, 李鹏飞, 何铮. 开孔和补强对圆柱壳轴压屈曲的影响分析[J]. 南方能源建设, 2018, 5(4): 60-65. CSTR: 32391.14.j.gedi.issn2095-8676.2018.04.009
Fuquan HU, Pengfei LI, Zheng HE. Buckling Impact Analysis of Cylinderial Shells with Opening and Reinforcement Under Axial Compression[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(4): 60-65. CSTR: 32391.14.j.gedi.issn2095-8676.2018.04.009
Citation: Fuquan HU, Pengfei LI, Zheng HE. Buckling Impact Analysis of Cylinderial Shells with Opening and Reinforcement Under Axial Compression[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(4): 60-65. CSTR: 32391.14.j.gedi.issn2095-8676.2018.04.009

开孔和补强对圆柱壳轴压屈曲的影响分析

基金项目: 

国家科技重大专项经费资助项目“关键设备设计分析技术研究” 2012ZX06004-012

详细信息
    作者简介:

    胡服全(通信作者) 1978-,男,江西玉山人,工程师,博士,主要从事核电设备力学分析、抗震分析、屈曲分析等研究工作(e-mail)hufuquan@mail.snptc.com.cn。

    李鹏飞 1987-,男,内蒙古赤峰人,工程师,硕士,主要从事核电设备力学分析、屈曲分析等研究工作(e-mail)lipengfei5@mail.snptc.com.cn。

    何铮 1983-,男,北京市人,高级工程师,博士,现为博思英诺科技(北京)有限公司项目经理,主要从事核电关键设备分析设计,核设施、设备退役工程,放射性废物处理、处置相关技术服务。

  • 中图分类号: TM623; O342

Buckling Impact Analysis of Cylinderial Shells with Opening and Reinforcement Under Axial CompressionEn

  • 摘要:
      [目的]  早期的圆柱壳轴压屈曲试验结果与理论偏差较大,导致差异的因素较多,其中初始几何缺陷是产生差异的主要因素。
      [方法]  文章采用一种专用的轴压屈曲试验平台,可以利用激光位移传感器扫描壳体三维实际形貌。屈曲试验轴压采用液压装置,轴压数据通过称重传感器读取。
      [结果]  试验结果表明:开孔降低了圆柱壳轴压屈曲临界载荷,在开孔处插入圆管补强件,提高了圆柱壳轴压屈曲临界载荷。基于壳体形貌实测数据建立了有限元模型,利用Abaqus对圆柱壳、开孔圆柱壳和补强圆柱壳进行非线性屈曲有限元分析。
      [结论]  模拟得到的规律与试验规律一致,壳体轴向载荷均是先呈线性增大后减小,开孔圆柱壳轴压屈曲临界载荷最小,含补强件圆柱壳轴压屈曲临界载荷次之,未开过孔的圆柱壳轴压屈曲临界载荷最大。对不同壳体的临界载荷模拟值与试验值进行了比较,其中最小的相对误差只有13.8%。说明运用此方法可以预测壳体轴压屈曲临界载荷,对壳体屈曲设计具有参考价值。
    Abstract:
      [Introduction]  The early buckling theory of cylindrical shells under axial compression has a great deviation from the experimental results, there are many factors that lead to differences, the initial geometrical defect is the main factor that produces the difference.
      [Method]  In this paper, a special axial compression buckling test platform was used to scan the three-dimensional actual topography of the shell by using a laser displacement sensor, and the axial compression buckling test was carried out by the hydraulic device.
      [Results]  The results show that the critical load of axial buckling of cylindrical shells is reduced by opening holes, and the buckling load of the cylindrical shell is improved by inserting a circular tube in the opening hole. Based on the measured data of shell topography, a finite element model is established, and the nonlinear buckling finite element analysis of cylindrical shells, cylindrical shells with openings and reinforcement is carried out by Abaqus.
      [Conclusion]  The law of simulation is consistent with the experiment, the axial load of the shell is increased firstly and then decreased, the critical load of the axial compressive buckling of the cylindrical shell with opening is the least, the critical load of the cylindrical shell with the reinforcement is the second larger, the buckling critical load of the cylindrical shell without openings is the largest. The critical load simulation values of different shells are compared with the experimental values, in which the minimum relative error is only 13.8%. This method can be used to predict the critical buckling load of the shell, and it is of reference value to the buckling design of the shell.
  • 图  1   试验平台照片

    Figure  1.   Photo of test platform

    图  2   试验件模型

    Figure  2.   Photo of experiment models

    图  3   壳体轴向压力曲线

    Figure  3.   The axial pressure curve of different cylindrical shells

    图  4   不同圆柱壳的屈曲照片

    Figure  4.   The buckling photo of different cylindrical shells

    图  5   圆柱壳应变片曲线

    Figure  5.   Strain curve of the cylindrical shell

    图  6   开孔圆柱壳应变曲线

    Figure  6.   Strain curve of the cylindrical shell with opening

    图  7   含补强件圆柱壳应变曲线

    Figure  7.   Strain curve of the cylindrical shell with reinforcement

    图  8   测试材料应力应变曲线

    Figure  8.   The stress-strain curve of B340 steel

    图  9   圆柱壳轴向应力与轴向位移关系

    Figure  9.   Relationship between axial stress and axial displacement

    图  10   不同圆柱壳的应力云图

    Figure  10.   The mises stress nephogram of cylindrical shells

    表  1   模拟值与试验值比较

    Table  1   Comparison between simulation and test

    类型 模拟值/MPa 试验值/MPa 相对误差/%
    圆柱壳 195.4 149.4 30.8
    开孔圆柱壳 158.4 118.3 33.9
    含补强件圆柱壳 164.8 144.8 13.8
    下载: 导出CSV
  • [1] 赵阳,滕锦光. 轴压圆柱钢薄壳稳定设计综述 [J]. 工程力学,2003,20(6):116-126.

    ZHAO Y,TENG J G. Stability design of axially compressed thin steel cylindrial shells [J]. Engineering Mechanics,2003,20(6):116-126.

    [2] 祝恩淳,MANDAL P,CALLADINE C R. 轴压圆柱薄壳的屈曲分析.工程土木工程学报 [J]. 2001,34(3):18-28.

    ZHU E C,MANDAL P,CALLADINE C R. Analysis of buckling of thin cylindrical shells under axial compression [J]. China Civil Engineering Journal,2001,34(3):18-28.

    [3]

    HUTCHINSON J W,BUDIANSKY B. Dynamic buckling estimates [J]. AIAA Journal,1966,4(3):525-530.

    [4]

    LOCKHART D F. Dynamic buckling of a damped externally pressurized imperfect cylindrical shell [J]. Journal of Applied Mechanics,1979,46(2):372-376.

    [5]

    LOCKHART D F. Postbucklingdynamic behavior of periodically supported imperfect shells [J]. International Journal of Non-Linear Mechanics,1982,17(3):165-174.

    [6]

    LOCKHART D F,AMAZIGO J C. Dynamic buckling of externally pressurized imperfect cylindrical shells [J]. Journal of Applied Mechanics,1975,42(2):316-320.

    [7]

    LEE D S. Nonlinear dynamic buckling of orthotropic cylindrical shells subjected to rapidly applied loads [J]. Journal of Engineering Mathematics,2000,38(2):141-154.

    [8]

    KIM S E,KIM C S. Buckling strength of the cylindrical shell and tank subjected to axially compressive loads [J]. Thin-walled Structures,2002,40(4):329-353.

    [9]

    BLACHUT J. Buckling of axially compressed cylinders with imperfect length. Computer and Structures [J]. 2010,88(5-6):365-374.

    [10]

    TENNYSON C R. A note on the classical buckling load of circular cylindrical shells under axial compression [J]. AIAA Journal,1963,1(2):475.

    [11]

    TENNYSON R. Buckling modes of circular cylindrical shells under axial compression [J]. AIAA Journal,1969,7(8):1481-1487.

    [12]

    MANDAL P,CALLADINE C. Buckling of thin cylindrical shells under axial compression [J]. International Journal of Solids and Structures,2000,37(33):4509-4525.

    [13]

    HORNUNG U,SAAL H. Buckling Loads of tank shells with imperfections [J]. International Journal of Non-linear Mechanics,2002,37(4):605-621.

    [14] 王绍杰. 钢骨混凝土倒T型梁受力性能的研究 [J]. 工程力学,2003,12(增刊1):652-655.

    WANG S J. Research on the performance of T type steel reinforced concrete beams [J]. Engineering Mechanics,2003,12(Supp.1):652-655.

    [15] 陈丽敏,陈思作. 轴压圆柱壳的局部稳定数值分析与试验研究 [J]. 工业建筑,2005,35(10):69-72.

    CHEN L M,CHEN S Z. Numerical analysis and experimental study on local stabiity of cylindrical shell under axial loads [J]. Industrial Construction,2005,35(10):69-72.

    [16] 宋晓飞,郑小华,陈立飞. 接管壁厚度变化对圆柱壳开孔接管应力集中系数的影响 [J]. 山东化工,2013,42(5):122-124.

    SONG X F,ZHENG X H,CHEN L F. The influence of the wall thickness on the stress concentration factor of the nozzle of the cylindrical shell [J]. Shandong Chemical Industry,2013,42(5):122-124.

    [17] 李玉坤,何茂林,段冠. 大型油罐罐壁开孔补强应力分析 [J]. 油气田地面工程,2009,28(9):27-29.

    LI Y K,HE M L,DUAN G. Stress analysis of reinforcement for opening in large oil tank wall [J]. Oil and Gas Field Surface Engineering,2009,28(9):27-29.

    [18] 管凤阶. 大型钢制焊接储罐设计 [J]. 油气田地面工程,2004,23(1):38-39.

    GUAN F J. Design of large steel welded tank [J]. Oil and Gas Field Surface Engineering,2004,23(1):38-39.

    [19] 李玉坤,孙文红,李春,等. 大型立式储罐罐壁开孔补强应力分析 [J]. 压力容器,2012,29(10):237-240.

    LI Y K,SUN W H,LI C,et al. Stress analysis of reinforcement for openings in large vertical storage tanks′ skin [J]. Pressure Vessel,2012,29(10):237-240.

    [20] 李晓蒙,何铮. 核电厂非能动安全壳冷却系统储水箱的振动特性分析 [J]. 南方能源建设,2015,2(4):102-106.

    LI X M,HE Z. Dynamic characteristic analysis of the passive containment cooling system water tank of nuclear power plants [J]. Southern Energy Construction,2015,2(4):102-106.

    [21] 李晓蒙. 钢制安全壳的抗震可靠性计算研究 [J]. 南方能源建设,2016,3(3):79-84.

    LI X M. Study on the seismic reliability of steel containment [J]. Southern Energy Construction,2016,3(3):79-84.

    [22]

    ZHAO Y,TENG J G. Buckling experiments on steel silo transition junctions I: experimental results [J]. Journal of Constructional Steel Research,2004,60(12):1783-1801.

图(10)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-23
  • 修回日期:  2017-10-16
  • 刊出日期:  2018-12-24

目录

    Zheng HE

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回