高级检索

开孔和补强对圆柱壳轴压屈曲的影响分析

Buckling Impact Analysis of Cylinderial Shells with Opening and Reinforcement Under Axial Compression

  • 摘要:
      目的  早期的圆柱壳轴压屈曲试验结果与理论偏差较大,导致差异的因素较多,其中初始几何缺陷是产生差异的主要因素。
      方法  文章采用一种专用的轴压屈曲试验平台,可以利用激光位移传感器扫描壳体三维实际形貌。屈曲试验轴压采用液压装置,轴压数据通过称重传感器读取。
      结果  试验结果表明:开孔降低了圆柱壳轴压屈曲临界载荷,在开孔处插入圆管补强件,提高了圆柱壳轴压屈曲临界载荷。基于壳体形貌实测数据建立了有限元模型,利用Abaqus对圆柱壳、开孔圆柱壳和补强圆柱壳进行非线性屈曲有限元分析。
      结论  模拟得到的规律与试验规律一致,壳体轴向载荷均是先呈线性增大后减小,开孔圆柱壳轴压屈曲临界载荷最小,含补强件圆柱壳轴压屈曲临界载荷次之,未开过孔的圆柱壳轴压屈曲临界载荷最大。对不同壳体的临界载荷模拟值与试验值进行了比较,其中最小的相对误差只有13.8%。说明运用此方法可以预测壳体轴压屈曲临界载荷,对壳体屈曲设计具有参考价值。

     

    Abstract:
      Introduction  The early buckling theory of cylindrical shells under axial compression has a great deviation from the experimental results, there are many factors that lead to differences, the initial geometrical defect is the main factor that produces the difference.
      Method  In this paper, a special axial compression buckling test platform was used to scan the three-dimensional actual topography of the shell by using a laser displacement sensor, and the axial compression buckling test was carried out by the hydraulic device.
      Results  The results show that the critical load of axial buckling of cylindrical shells is reduced by opening holes, and the buckling load of the cylindrical shell is improved by inserting a circular tube in the opening hole. Based on the measured data of shell topography, a finite element model is established, and the nonlinear buckling finite element analysis of cylindrical shells, cylindrical shells with openings and reinforcement is carried out by Abaqus.
      Conclusion  The law of simulation is consistent with the experiment, the axial load of the shell is increased firstly and then decreased, the critical load of the axial compressive buckling of the cylindrical shell with opening is the least, the critical load of the cylindrical shell with the reinforcement is the second larger, the buckling critical load of the cylindrical shell without openings is the largest. The critical load simulation values of different shells are compared with the experimental values, in which the minimum relative error is only 13.8%. This method can be used to predict the critical buckling load of the shell, and it is of reference value to the buckling design of the shell.

     

/

返回文章
返回