高级检索

烟气二氧化碳捕集胺类吸收剂研究进展

林海周, 杨晖, 罗海中, 裴爱国, 方梦祥

林海周, 杨晖, 罗海中, 裴爱国, 方梦祥. 烟气二氧化碳捕集胺类吸收剂研究进展[J]. 南方能源建设, 2019, 6(1): 16-21. DOI: 10.16516/j.gedi.issn2095-8676.2019.01.003
引用本文: 林海周, 杨晖, 罗海中, 裴爱国, 方梦祥. 烟气二氧化碳捕集胺类吸收剂研究进展[J]. 南方能源建设, 2019, 6(1): 16-21. DOI: 10.16516/j.gedi.issn2095-8676.2019.01.003
Haizhou LIN, Hui YANG, Haizhong LUO, Aiguo PEI, Mengxiang FANG. Research Progress on Amine Absorbent for CO2 Capture from Flue Gas[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(1): 16-21. DOI: 10.16516/j.gedi.issn2095-8676.2019.01.003
Citation: Haizhou LIN, Hui YANG, Haizhong LUO, Aiguo PEI, Mengxiang FANG. Research Progress on Amine Absorbent for CO2 Capture from Flue Gas[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(1): 16-21. DOI: 10.16516/j.gedi.issn2095-8676.2019.01.003
林海周, 杨晖, 罗海中, 裴爱国, 方梦祥. 烟气二氧化碳捕集胺类吸收剂研究进展[J]. 南方能源建设, 2019, 6(1): 16-21. CSTR: 32391.14.j.gedi.issn2095-8676.2019.01.003
引用本文: 林海周, 杨晖, 罗海中, 裴爱国, 方梦祥. 烟气二氧化碳捕集胺类吸收剂研究进展[J]. 南方能源建设, 2019, 6(1): 16-21. CSTR: 32391.14.j.gedi.issn2095-8676.2019.01.003
Haizhou LIN, Hui YANG, Haizhong LUO, Aiguo PEI, Mengxiang FANG. Research Progress on Amine Absorbent for CO2 Capture from Flue Gas[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(1): 16-21. CSTR: 32391.14.j.gedi.issn2095-8676.2019.01.003
Citation: Haizhou LIN, Hui YANG, Haizhong LUO, Aiguo PEI, Mengxiang FANG. Research Progress on Amine Absorbent for CO2 Capture from Flue Gas[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(1): 16-21. CSTR: 32391.14.j.gedi.issn2095-8676.2019.01.003

烟气二氧化碳捕集胺类吸收剂研究进展

基金项目: 

广东省自然科学基金博士启动项目资助“基于混合胺类化学吸收法的燃煤电厂烟气二氧化碳捕集工艺改进研究” 2018A030310692

中国能建广东院科技项目“火电厂二氧化碳捕集及利用技术应用研究” EV04431W

中国能建广东院科技项目“基于胺类化学吸收法的电厂烟气二氧化碳捕集工艺技术研究” EV04531W

详细信息
    作者简介:

    林海周(通信作者) 1989-,男,广东汕头人,博士后,浙江大学能源环境工程博士,主要从事二氧化碳捕集研究(e-mail)linhaizhou@gedi.com.cn。

  • 中图分类号: X701.7;TQ028.1

Research Progress on Amine Absorbent for CO2 Capture from Flue GasEn

  • 摘要:
      [目的]  胺类化学吸收法是目前燃烧后捕集烟气CO2最成熟的技术,但存在捕集能耗过高的问题,开发新型吸收剂替代传统MEA吸收剂是降低能耗的重要途径。
      [方法]  根据近些年公开文献报道的胺类吸收剂组成,将其分成单一吸收剂、混合胺吸收剂、两相吸收剂和非水吸收剂四类,并对这四类吸收剂的技术特点、研究现状和存在问题进行了介绍。
      [结果]  混合胺结合了不同单一胺类的优点,能较好满足高吸收速率,高吸收容量和低能耗的要求;而相变吸收剂和无水吸收剂为新一代吸收剂,潜力巨大,但仍需深入研究改进。
      [结论]  相比而言,混合胺型吸收剂更为成熟,短期内进行工业化应用更具优势。
    Abstract:
      [Introduction]  Chemical absorption based on amines is the most mature technology for post-combustion CO2 capture. However, this technology has the drawback of high energy cost, and developing new amine absorbent as an alternative of monoethanolamine (MEA) solution will be an important method to deal with this problem.
      [Method]  In this review, the amine absorbent was classified into four categories according to the compositions, namely single amine absorbent, blended amine absorbent, phase-change amine absorbent and water-lean amine absorbent. The technological characteristics and research situation of these absorbents were introduced.
      [Result]  The blended amines combine the advantages of different single amine, showing good CO2 capture performance with high reaction rate, high absorption capacity and low energy cost. Phase-change amine absorbent and water-lean amine absorbent are the new generation of absorbents, which have great potential, but still need to be further studied and improved.
      [Conclusion]  Therefore, blended amine is a more mature solvent which has better advantages in industrial application in the near term.
  • 我国是能源消费大国,2015年一次能源消费总量达到43亿tce,其中化石能源占比达到88%[]。大量化石能源的利用使我国成为目前碳排放量最大的国家,2015年碳排放量达到91亿t,占世界总量的27.3%[]。2015年联合国气候大会上,我国向联合国提交“国家自主决定贡献”:CO2排放在2030年左右达到峰值,单位GDP CO2排放比2005年下降60%~65%[]。国家能源局发布的《能源发展“十三五”规划》要求在“十三五”期间CO2排放强度大幅降低,到2020年单位GDP碳排放相比2015年下降18%[]。因此,我国面临严峻的CO2减排压力。由于我国的资源禀赋决定了我国的能源结构是以煤炭为主导地位。2015年我国煤炭消费总量占总能源消费的64%,达到39.6亿t原煤,而这其中电煤占比达到49%[],这使得煤电行业成为目前我国最大的CO2排放源。为履行我国碳减排的承诺和责任,煤电行业必将承担起重要的角色。

    在众多燃烧后烟气CO2捕集技术中,以有机胺为吸收剂的碳捕集工艺是目前最成熟也是工业化应用最多的技术[,]。典型的胺液化学吸收法碳捕集工艺流程如图1所示[]。经除尘、脱硫和初步冷却等预处理后的烟气进入吸收塔内,与塔顶喷淋下来的吸收剂贫CO2溶液(简称贫液)逆相接触反应,其中脱碳后烟气从吸收塔上部排出,而吸收了CO2的吸收剂富CO2吸收液(简称富液)经贫富液热交换器与热贫液进行热交换后,被送入解吸塔中再生。产品气CO2经冷凝和干燥脱水后进行压缩,以利于后续的存储运输。而解吸塔底的贫液则经过贫富液换热器换热和贫液冷却器冷却到所需的温度后重新喷入吸收塔中,从而实现系统的循环。

    图 1 典型电厂烟气胺法碳捕集工艺流程图[6]
    图  1  典型电厂烟气胺法碳捕集工艺流程图[]
    Figure  1.  Typical system process flowsheet of CO2 capture from flue gas by amine chemical absorption

    上世纪30年代有机胺吸收法便出现并逐渐发展成为工业气体净化的主要方法之一。对于烟气CO2捕集,以乙醇胺MEA作为吸收剂具有吸收效果好、成本低、吸收剂可循环使用并且产品纯度较高的特点。目前,MEA吸收剂被视为基准吸收剂,并广泛用于中试和工业示范性装置中,其脱碳效率可超过90%[]。尽管如此,基于MEA的化学吸收法在商业大规模推广应用仍存在明显的限制,其中最主要的原因之一是运行能耗太高,会导致电厂发电净效率降低约10%,其中吸收剂的再生能耗占到整个系统能耗的70%左右。此外,MEA吸收剂在运行过程中还存在由于氧化和降解等因素导致损耗过大的问题。据挪威TCM碳捕集测试分析结果,每捕集1 t CO2损耗的MEA高达1.5 kg[]。因此,开发更为高效稳定的吸收剂替代传统MEA吸收剂当前研究重点之一[,]

    吸收剂是化学吸收法脱除CO2的核心,理想的CO2吸收剂首先应具备吸收速率快,吸收容量大和再生能耗低,其次是安全稳定、环境友好、对设备腐蚀小和经济性好等特性。对此,国内外针对吸收剂的开发做了许多研究工作,并取得了一定的进展。目前所研究的胺类吸收剂大体可以分成以下四种:单一吸收剂、混合胺吸收剂、两相吸收剂和非水吸收剂,下文将对这四类吸收剂分别展开介绍。

    有机胺吸收CO2过程是胺分子与CO2反应生成不稳定盐,由于有机胺种类繁多,不同的胺吸收CO2的过程特性存在巨大差异。通常而言,有机胺类可以分为直链有机胺和环状有机胺(如PZ<哌嗪>),其中直链有机胺按氨基氮原子上连接的氢原子个数分为一级胺(如MEA<乙醇胺>),二级胺(如DEA<二乙醇胺>)和三级胺(如MDEA<N-甲基二乙醇胺>)[]。一级胺和二级胺吸收剂能够和CO2结合生成氨基甲酸根,而三级胺的氨基氮原子上不存在氢原子,只能作为弱碱来与CO2反应,而无法与CO2结合生成氨基甲酸根,这导致三级胺的反应速率明显慢于一级胺和二级胺。而在CO2的吸收容量上,一般一级胺和二级胺的CO2的理论最大吸收容量为0.5 mol CO2/mol吸收剂,而三级胺可达到1mol CO2/mol吸收剂。哌嗪及其衍生物由于其特殊的环状结构,也具有很快的与CO2反应速率,同时也具有较高的CO2吸收容量,因而受到广泛的关注[]

    近些年,空间位阻胺(如AMP2-氨基-2-甲基-1-丙醇胺)也受到较多重视,此类有机胺分子结构中至少有一个氨基与仲碳或者叔碳原子连接,导致了空间位阻效应非常显著,这使得生成的氨基甲酸盐不稳定,容易与H2O反应进一步生成胺与 ,因此,空间位阻胺吸收CO2后较容易解吸,且对CO2的理论最大吸收容量为1mol CO2/mol吸收剂[]。几种典型有机胺吸收剂的特性如表1所示[]

    表  1  典型胺吸收剂对CO2吸收特性
    Table  1.  CO2 absorption properties of typical amine solvents
    吸收剂 MEA MDEA AMP PZ
    类型 直链一级 直链三级 空间位阻 环状
    CO2吸收容量/(mol·mol-1) 0.5~0.55 1~1.68 1~1.26 0.8~0.9
    CO2吸收速率k1/(106mol·m-2sPa) 2.5 0.26 0.7 6.5
    吸收反应热/(kJ·mol-1) 81.8 54.6 73 70
    能耗/(GJ·t-1 CO2) 3.5~4.0
    下载: 导出CSV 
    | 显示表格

    目前,许多研究者开展了对众多有机胺类化合物作为CO2吸收剂的性能测试,希望对这些有机胺的筛选找到具有吸收容量和反应速率高、反应热低且热稳定性好的吸收剂。其中典型的工作如Puxty等[]对76种有机胺的CO2吸收容量进行了分析测试,由此筛选出了7种CO2吸收容量较高的胺类,这类胺结构中主要含有位阻和距离氮原子2个或3个碳原子上含有羟基。El Hadri等[]对30种胺类吸收CO2的热力学和动力学进行了分析,结果发现N-乙基乙醇胺表现出了较好的CO2吸收容量、较低的反应热和较高的反应动力学等优点,具备替代MEA吸收剂的潜力。

    由于单一吸收剂很难同时满足高吸收速率和高吸收容量和低反应热等要求。因此,将不同特性的有机胺进行混合从而获得吸收速率和吸收容量高同时再生能耗和损耗低的新型吸收剂成为当前的研究焦点之一[]

    混合胺吸收剂的研究思路可分为两种,一种则是以吸收速率较高一级胺或二级胺为主体,加入其他胺类(如MDEA)从而降低再生能耗和提高吸收剂整体性能。Idem等[]则发现在MEA水溶液中加入MDEA后明显降低了对CO2捕集的再生能耗。Conway等[]研究了由MEA与三级胺(DMEA,DEEA)和位阻胺(AMP)组成的混合胺吸收剂特性,发现组成的混合胺吸收剂的循环容量均高于同等浓度下的MEA吸收剂,其中MEA和AMP组成的混合胺吸收剂表现了最好的吸收能力。

    另一种研究思路是在高吸收容量和低再生能耗的三级胺或位阻胺中进一步添加活化剂(如MEA,DEA和PZ等),从而提高整体吸收剂的CO2吸收速率。Hinai等[]研究多种混合胺对CO2的吸收容量和反应热,发现2EAE或2MAE和TMDAP混合得到的吸收剂吸收容量大于1.0 mol/mol且反应热在60 kJ/mol~70 kJ/mol。Gao等[]研究了9种胺(EA、DEA、EEA、AMP、AEEA、MAPA、DETA、TETA和PZ)对三级胺DEEA捕集CO2特性的影响,研究结果表明这些混合胺的对CO2的吸收和再生速率以及循环容量均优于单独MEA或DEEA吸收剂,其中DEEA/PZ在这三个性能指标上均为最佳。

    此外,由多种不同性质的胺组成的混合吸收剂近来也开始受到关注。Zhang等[]研究了不同组成比例的MEA/MDEA/PZ混合胺吸收剂的碳捕集能耗,发现随比例的不同可降低能耗15.22%~49.22%。Nwaoha等[]比较了由AMP、MDEA和DETA组成的三元混合胺吸收剂和MEA吸收剂的特性差异,相比MEA吸收剂,三元混合胺吸收剂的循环负荷和循环容量提高超过100%,同时再生能耗降低超过50%。

    目前,已有多家企业和研究机构开发了配方混合胺吸收剂并进行了中试规模以上的验证。如日本三菱重工开发了以位阻胺为主要成分的KS-1吸收剂,再生能耗约为3.0 GJ/t CO2,相比MEA吸收剂能耗可降低20%以上;KS-1吸收剂已应用于多个大型碳捕集示范项目[,]。英国Carbon Clean Solutions公司开发了APBS吸收剂并在碳捕集规模为6 t/d的中试装置进行了测试,其中CO2能耗可低至2.5 GJ/t CO2[]。国内南化集团研究院在胜利电厂4万吨/年的碳捕集装置上测试了所开发的新型复配胺吸收剂,再生能耗相比MEA法降低了30%以上,并在成功应用于多套工业装置[]

    除了混合胺类吸收剂,近些年研究者也着力开发其他类型的胺基吸收剂,如相变吸收剂等。相变吸收剂是指吸收液在吸收CO2后形成两种不互溶的贫液相(CO2含量低)和富液相(CO2含量高),将这两者分离后的贫液继续循环至吸收塔用来捕获CO2,而富液则被循环至解吸塔中进行解吸,该过程既能够提高吸收过程和解吸过程的效率,同时还能有效减少再生过程中的显热和汽化潜热的消耗,进而降低能耗的成本[]。因此,相比传统吸收剂,相变吸收剂具有显著的节能优势。

    Kim等[]的实验研究发现MEA-乙醇和DEA-乙醇混合吸收剂在吸收CO2后会出现相分离现象,其中上层为贫CO2相,主要含乙醇,下层为富CO2相,主要含氨基甲酸盐和游离的胺。Zhang等[]发现相比于传统30%MEA吸收剂,由30%MEA+30%1-丙醇+40%水组成的相变吸收剂显著提高了CO2的初始吸收速率,最大值可高于5倍;同时该相变吸收剂的CO2吸收循环容量可达1.70 mol/kg,提高了52%。汪明喜等[]发现由15%亲脂性胺类DMCA(N,N-二甲基环己胺)和15%活性剂MCA(N-甲基环己胺)组成的相变吸收剂对CO2吸收速率与30wt%MEA相当,同时再生率显著提高了69%,循环净负荷从2.67 mol/kg提高到6.57 mol/kg。法国石油研究所[]开发了DMX™相变吸收剂,针对该吸收剂开发的DMX™工艺在可将再生能耗降低至2.1 GJ/t CO2。相变吸收剂由于在碳捕集过程中存在相分离,因此需要开发相应能够匹配发生相分离的温度压力的工艺流程,同时如何应对相分离后的富CO2相粘度较大带来的输送问题也需要进一步研究[]

    传统胺液吸收剂中水含量较高而导致能耗较高,对此可通过采用其他溶剂替代或者部分替代吸收剂中水,从而降低过程能耗[],此时吸收剂不含水或水含量较低而不为溶剂,故称为非水吸收剂。郭超等[]采用苯甲醇,二甘醇和N-甲基吡咯烷酮分别替代传统MEA吸收剂中的水,发现无水的MEA吸收剂吸收能力与解吸能力均有所降低,但其解吸速率大大增加且解吸能耗降低。Barzagli等[]比较了水相和有机相(二乙二醇单甲醚)的多种有机胺(二甘醇胺、2-胺基-2-甲基-1、3-丙二醇、2-氨基-2-甲基-1-丙醇、二乙醇胺和2-(丁基氨基)乙醇)吸收剂对CO2的吸收特性和能耗水平,结果表明水相吸收剂具对CO2的吸收负荷更高,而有机相吸收剂的吸收速率则更快,此外有机相的二甘醇胺由于更低的反应热和显热潜热而具备替代传统MEA吸收剂的前景。

    Fu等[]研究了由MEA和甲醇组成吸收剂,发现比传统的水相MEA吸收剂具有更好的吸收CO2传质特性。Kang等[]比较了MEA/H2O,MEA/H2O/乙二醇和MEA/乙二醇三种水相,半水相和非水相吸收剂对CO2的吸收特性和再生能耗,发现随着吸收剂中水的减少,吸收剂的吸收速率、吸收容量和再生能耗得到改善,其中非水相MEA再生过程中的潜热、显热和反应热消耗均有较明显的下降,总的再生能耗相比水相MEA可减少31.3%。Lin等[]通过实验研究发现在PZ和DETA组成的水溶液吸收剂中加入乙二醇或甲醇后解吸能耗明显降低,其中加入甲醇后的效果最好,由水溶液时的2.99 GJ/t CO2降低至1.84 GJ/t CO2且对CO2的吸收性能基本保持不变。

    离子液体具有蒸发压力小、热稳定性好和物理特性可调等优点,被认为是一种环境友好的绿色溶剂。近些年将离子液体应用于CO2吸收受到越来越多的关注[]。Xu等[]研究了两种低粘度离子液体[C2OHmim][DCA]和[Bmim][DCA]对30wt%MEA水溶液吸收CO2的影响,结果表明随离子液体比例的增加,CO2在溶液中的溶解度是降低的,但另一方面也降低了解吸能耗,当离子液体比例达到30wt%时,可降低能耗27%。Khan等[]通过实验分析了30wt%MDEA/3wt%PZ、离子液体([bmim][OTf]和[bmim][AC])和水组成的CO2吸收剂的物理化学特性,结果表明这两种离子液体的存在显著提高了CO2的吸收容量,其中当离子液体含量为10wt%时,CO2的负荷从原来的1.32 mol CO2/mol提高至1.77 mol CO2/mol([bmim][OTf])和1.84 mol CO2/mol([bmim][Ac]),但离子液体也增加了吸收剂的粘度和密度。最近,Yang等[]发现MEA吸收剂添加亲水性离子液体[bmim][BF4]后能显著减少MEA在碳捕集过程中的损失,同时能够显著降低过程能耗,其中50%[bmim][BF4]+30%MEA+20%水组成吸收剂能耗为2.38 GJ/t CO2,相比30%MEA+70%水的可降低33.8%。

    非水吸收剂的研究目前仍存于实验室阶段,有关有机溶剂以及离子液体引入对反应动力学和热力学以及稳定性等问题仍有待进一步深入研究测试。

    开发新型胺类吸收剂是降低当前化学吸收法碳捕集技术再生能耗高的重要技术手段。近些年,研究者们在提高吸收剂吸收特性和降低再生能耗方面做了大量的工作。本文根据所研究的吸收剂组成将其分成单一吸收剂、混合胺吸收剂、两相吸收剂和非水吸收剂四类,并对当前的研究进展情况进行了介绍。大量单一胺类吸收剂的筛选研究工作为吸收剂的开发打下了坚实的基础。混合胺吸收剂结合了多种单一吸收剂的优点,具备较高吸收容量和吸收速率以及较低的再生能耗,总体技术相对比较成熟,已有较多的工业应用案例。双相吸收剂和非水吸收剂作为新兴的吸收剂代表,表现了良好的应用潜力,现仍处于实验室研发阶段,还有较多的问题如吸收剂反应特性、稳定性和工艺系统开发等需要进一步研究完善。

    郑文棠
    1 tce=29.271 GJ。
  • 图  1   典型电厂烟气胺法碳捕集工艺流程图[6]

    Figure  1.   Typical system process flowsheet of CO2 capture from flue gas by amine chemical absorption

    表  1   典型胺吸收剂对CO2吸收特性

    Table  1   CO2 absorption properties of typical amine solvents

    吸收剂 MEA MDEA AMP PZ
    类型 直链一级 直链三级 空间位阻 环状
    CO2吸收容量/(mol·mol-1) 0.5~0.55 1~1.68 1~1.26 0.8~0.9
    CO2吸收速率k1/(106mol·m-2sPa) 2.5 0.26 0.7 6.5
    吸收反应热/(kJ·mol-1) 81.8 54.6 73 70
    能耗/(GJ·t-1 CO2) 3.5~4.0
    下载: 导出CSV
  • [1] 国家发改委,国家能源局. 能源发展“十三五”规划 [EB]. (2016-12-26)[2018-09-06].

    National Development and Reform Commission, National Energy Administration. Energy development 13th five-year plan [EB]. (2016-12-26)[2018-09-06].

    [2] 英国石油公司. BP世界能源统计年鉴 [EB/OL]. (2017-06-12)[2018-09-06]. http://www.bp.com/statisticalreview.

    BP. BP statistical review of world energy [EB/OL]. (2017-06-12)[2018-09-06]. http://www.bp.com/statisticalreview.

    [3] 高云. 巴黎气候变化大会后中国的气候变化应对形势 [J]. 气候变化研究进展,2017, 13(1): 89-94.

    GAO Y. China′s response to climate change issues after paris climate change conference [J]. Climate Change Research, 2017, 13(1): 89-94.

    [4]

    OKO E, WANG M, JOEL A S. Current status and future development of solvent-based carbon capture[J]. International Journal of Coal Science & Technology, 2017, 4(1): 5-14.

    [5]

    RUBIN E S, MANTRIPRAGADA H, MARKS A, et al. The outlook for improved carbon capture technology[J]. Progress in Energy and Combustion Science, 2012, 38(5): 630-671.

    [6]

    ZHAO B, LIU F, CUI Z, et al. Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650 MW power plant: process improvement[J]. Applied Energy, 2017(185): 362-375.

    [7]

    MORKEN A K, PEDERSEN S, KLEPPE E R, et al. Degradation and emission results of amine plant operations from MEA testing at the CO2 technology centre mongstad[J]. Energy Procedia, 2017, 114: 1245-1262.

    [8]

    ROCHELLE G T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948): 1652-1654.

    [9]

    LIANG Z, RONG W, LIU H, et al. Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents[J]. International Journal of Greenhouse Gas Control, 2015(40): 26-54.

    [10] 方梦祥,周旭萍,王涛,等. CO2化学吸收剂 [J]. 化学进展,2015, 27(12): 1808-1814.

    FANG M X, ZHOU X P, WANG T, et al. Solvent development in CO2 chemical absorption [J]. Progress in Chemistry, 2015, 27(12): 1808-1814.

    [11]

    PUXTY G, ROWLAND R, ALLPORT A, et al. Carbon dioxide post combustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines[J]. Environmental Science & Technology,2009, 43(16): 6427-6433.

    [12]

    EL HADRI N, QUANG D V, GOETHEER E L V, et al. Aqueous amine solution characterization for post-combustion CO2 capture process[J]. Applied Energy, 2017(185): 1433-1449.

    [13]

    DU Y, YUAN Y, ROCHELLE G T. Capacity and absorption rate of tertiary and hindered amines blended with piperazine for CO2 capture[J]. Chemical Engineering Science, 2016(155): 397-404.

    [14]

    IDEM R, WILSON M, TONTIWACHWUTHIKUL P, et al. Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the university of regina CO2 capture technology development plant and the boundary dam CO2 capture demonstration plant[J]. Industrial & Engineering Chemistry Research, 2006, 45(8): 2414-2420.

    [15]

    CONWAY W, BRUGGINK S, BEYAD Y, et al. CO2 absorption into aqueous amine blended solutions containing Monoethanolamine (MEA), N, N-dimethylethanolamine (DMEA), N, N-diethylethanolamine (DEEA) and 2-amino-2-methyl-1-propanol (AMP) for post-combustion capture processes[J]. Chemical Engineering Science, 2015(126): 446-454.

    [16]

    HINAI A A, HADRI N E, ZAHRA M A. Amine-blends screening and characterization for CO2 post-combustion capture[M]. Heidelberg: Springer International Publishing, 2017.

    [17]

    GAO H, XU B, LIU H, et al. Effect of amine activators on aqueous N, N-diethylethanolamine solution for postcombustion CO2 capture[J]. Energy & Fuels, 2016, 30(9): 7481-7488.

    [18]

    ZHANG R, ZHANG X, YANG Q, et al. Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC) [J]. Applied Energy, 2017(205) : 1002-1011.

    [19]

    NWAOHA C, SAIWAN C, SUPAP T, et al. Carbon dioxide (CO2) capture performance of aqueous tri-solvent blends containing 2-amino-2-methyl-1-propanol (AMP) and methyldiethanolamine (MDEA) promoted by diethylenetriamine (DETA) [J]. International Journal of Greenhouse Gas Control, 2016(53): 292-304.

    [20]

    MANGALAPALLY H P, HASSE H. Pilot plant experiments for post combustion carbon dioxide capture by reactive absorption with novel solvents[J]. Energy Procedia, 2011(4): 1-8.

    [21]

    IDEM R, SUPAP T, SHI H, et al. Practical experience in post-combustion CO2 capture using reactive solvents in large pilot and demonstration plants[J]. International Journal of Greenhouse Gas Control, 2015(40): 6-25.

    [22]

    BUMB P, KUMAR R, KHAKHARIA P, et al. Demonstration of advanced APBS solvent at TNO′s CO2 capture pilot plant[J]. Energy Procedia,2014, 63(Supp. C): 1657-1666.

    [23] 毛松柏,江洋洋,叶宁,等. 新型高效低耗CO2捕集配方溶剂的开发及工业应用 [J]. 化学反应工程与工艺,2016, 32(6): 559-564.

    MAO S B, JIANG Y Y, YE N, et al. Development and industrial application of a new type of high efficiency and low energy consumption CO2 capture solvent [J]. Chemical Reaction Engineering and Technology, 2016, 32(6): 559-564.

    [24]

    ZHUANG Q, CLEMENTS B, DAI J, et al. Ten years of research on phase separation absorbents for carbon capture: achievements and next steps[J]. International Journal of Greenhouse Gas Control, 2016(52): 449-460.

    [25]

    KIM Y E, PARK J H, YUN S H, et al. Carbon dioxide absorption using a phase transitional alkanolamine–alcohol mixture[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1486-1492.

    [26]

    ZHANG W, JIN X, TU W, et al. A novel CO2 phase change absorbent: MEA/1-Propanol/H2O[J]. Energy & Fuels, 2017, 31(4): 4273-4279.

    [27] 汪明喜,方梦祥,汪桢,等.相变吸收剂对CO2吸收与再生特性 [J]. 浙江大学学报(工学版), 2013, 47(4): 662-668.

    WANG M X, FANG M X, WANG Z, et al. CO2 absorption and desorption by phase transition lipophilic amin solvents [J]. Journal of Zhejiang Univerisity(Engineering Science Edition), 2013, 47(4): 662-668.

    [28]

    RAYNAL L, ALIX P, BOUILLON P A, et al. The DMX™ process: an original solution for lowering the cost of post-combustion carbon capture[J]. Energy Procedia, 2011(4): 779-786.

    [29]

    HELDEBRANT D J, KOECH P K, GLEZAKOU V-A, et al. Water-lean solvents for post-combustion CO2 capture: fundamentals, uncertainties, opportunities and outlook[J]. Chemical Reviews, 2017, 117(14): 9594-9624.

    [30] 郭超,陈绍云,陈思铭,等. MEA无水溶剂捕集CO2的研究 [J]. 现代化工,2014, 34(8): 107-109.

    GUO C, CHEN S Y, CHEN S M, et al. Mixture absorption system of non-aqueous MEA solution for CO2 capture [J]. Modern Chemical Industry, 2014, 34(8): 107-109.

    [31]

    BARZAGLI F, GIORGI C, MANI F, et al. Reversible carbon dioxide capture by aqueous and non-aqueous amine-based absorbents: a comparative analysis carried out by 13C NMR spectroscopy[J]. Applied Energy, 2018(220): 208-219.

    [32]

    FU K, RONGWONG W, LIANG Z, et al. Experimental analyses of mass transfer and heat transfer of post-combustion CO2 absorption using hybrid solvent MEA–MeOH in an absorber[J]. Chemical Engineering Journal, 2015(260): 11-19.

    [33]

    KANG M K, JEON S B, CHO J H, et al. Characterization and comparison of the CO2 absorption performance into aqueous, quasi-aqueous and non-aqueous MEA solutions[J]. International Journal of Greenhouse Gas Control, 2017(63): 281-288.

    [34]

    LIN P H, WONG D S H. Carbon dioxide capture and regeneration with amine/alcohol/water blends[J]. International Journal of Greenhouse Gas Control, 2014(26): 69-75.

    [35]

    ILIUTA I, HASIB-UR-RAHMAN M, LARACHI F. CO2 absorption in diethanolamine/ionic liquid emulsions-chemical kinetics and mass transfer study[J]. Chemical Engineering Journal, 2014(240): 16-23.

    [36]

    XU F, GAO H, DONG H, et al. Solubility of CO2 in aqueous mixtures of monoethanolamine and dicyanamide-based ionic liquids[J]. Fluid Phase Equilibria, 2014(365): 80-87.

    [37]

    KHAN S N, HAILEGIORGIS S M, MAN Z, et al. Thermophysical properties of concentrated aqueous solution of N-methyldiethanolamine (MDEA), piperazine (PZ), and ionic liquids hybrid solvent for CO2 capture[J]. Journal of Molecular Liquids 2017(229): 221-229.

    [38]

    YANG J, YU X, AN L, et al. CO2 capture with the absorbent of a mixed ionic liquid and amine solution considering the effects of SO2 and O2[J]. Applied Energy, 2017(194): 9-18.

  • 期刊类型引用(28)

    1. 林才顺,王翔. 基于二氧化碳捕集的化学吸收剂研究现状及进展. 有色金属(冶炼部分). 2025(04): 75-83 . 百度学术
    2. 黄钟斌,陈曦,叶宁,郭本帅,周志斌,毛松柏,汪东,江洋洋. MA-2吸收剂在国能锦界电厂15万t/a碳捕集装置上的应用研究. 现代化工. 2024(05): 243-246 . 百度学术
    3. 陈瑞侃,郭江峰,杨新伟. 醇胺类吸收剂在船载碳捕集系统中的应用研究. 船舶工程. 2024(04): 14-25 . 百度学术
    4. 黄昊,李珂,陈秋燕,何志军. 傅里叶红外光谱仪中高饱和蒸气压有机胺体积分数标定方法. 柴油机. 2024(03): 44-49 . 百度学术
    5. 刘强,肖金,于航,罗海中,何庆阳,林海周,薛榕. 变压吸附捕集CO_2技术研究进展及其在石化行业应用案例分析. 南方能源建设. 2024(05): 37-49 . 本站查看
    6. 向勇,侯力,杜猛,贾宁洪,吕伟峰. 中国CCUS-EOR技术研究进展及发展前景. 油气地质与采收率. 2023(02): 1-17 . 百度学术
    7. 张倩,张井鲁. 基于MEA/烟气CO_2捕集系统的工艺模拟和吸收塔高度对模拟的影响分析. 石油与天然气化工. 2023(02): 28-34 . 百度学术
    8. 林海周,吴大卫,范永春,罗必雄,裴爱国,方梦祥. 燃煤电厂烟气CO_2化学吸收捕集液-液两相吸收剂开发进展. 洁净煤技术. 2023(04): 21-30 . 百度学术
    9. 谷俊男,李磊,李睿,韩天竹,李欣. FCC再生烟气胺液吸收法CO_2捕集技术研究. 炼油技术与工程. 2023(11): 15-17 . 百度学术
    10. 罗海中,吴大卫,范永春,李鹏春,曾少雁,林海周. 碳中和背景下CCUS技术发展及广东离岸封存潜力评估. 南方能源建设. 2023(06): 1-13 . 本站查看
    11. 罗海中,曾少雁,吴大卫. 双碳背景下CCUS技术发展现状及展望. 山东化工. 2023(23): 101-106 . 百度学术
    12. 薛原,韩伟嘉,林海雷,陈周龙田,吴爽. 生物燃气化学脱碳技术现状与研究进展. 中外能源. 2022(01): 17-25 . 百度学术
    13. 常慧亮,佟天宇. 控制CO_2排放的途径及展望. 炼油与化工. 2022(01): 13-19 . 百度学术
    14. 陆诗建,贡玉萍,刘玲,康国俊,陈曦,刘苗苗,张娟娟,王风. 有机胺CO_2吸收技术研究现状与发展方向. 洁净煤技术. 2022(09): 44-54 . 百度学术
    15. 吴其荣,陶建国,范宝成,刘舒巍,刘宇. 燃煤电厂开展大规模碳捕集的技术路线选择及经济敏感性分析. 热力发电. 2022(10): 28-34 . 百度学术
    16. 王中辉,苏胜,马智伟,宋亚伟,陈逸峰,刘涛,江龙,汪一,胡松,向军. 混合胺溶液耦合CaO吸收-矿化CO_2特性及矿化过程关键影响因素研究. 燃料化学学报. 2022(10): 1371-1380 . 百度学术
    17. 黄昊,沈飞翔,李晓波,李珂,张严. 基于多传感器融合的船舶烟气脱碳吸收剂状态诊断. 柴油机. 2022(06): 37-45 . 百度学术
    18. 付建欣,赵军,邓帅,王珺瑶,徐耀锋. 关于吸收式碳捕集热力学机制的探索. 工程热物理学报. 2021(01): 48-55 . 百度学术
    19. 马伟春. 基于中空纤维膜接触器的混合胺吸收剂脱除烟气中CO_2. 应用化工. 2021(01): 61-64+69 . 百度学术
    20. 杨柳,孔成栋,张忠孝,刘健. 外部扰动对TiO_2-MDEA纳米流体吸收CO_2影响的研究. 动力工程学报. 2021(02): 160-166 . 百度学术
    21. 孙路长,王争荣,吴冲,王凯亮,张士明,韩文荃. 燃煤电厂万吨级碳捕集工程设计与运行优化研究. 华电技术. 2021(06): 69-78 . 百度学术
    22. 平甜甜,尹鑫,董玉,申淑锋. 有机胺非水溶液吸收CO_2的动力学研究进展. 化工学报. 2021(08): 3968-3983 . 百度学术
    23. 林志杰,陈卓伶,王辉. 碳中和技术的化学原理及发展现状. 广州化工. 2021(19): 26-28 . 百度学术
    24. 郭宇红. 燃煤电厂碳捕集技术及节能优化研究进展. 山西电力. 2021(06): 46-49 . 百度学术
    25. 雷轩邈,王甫,朱先会,袁金良. 胺法碳捕集胺的降解与抑制方式的研究进展. 高校化学工程学报. 2021(06): 966-978 . 百度学术
    26. 时飞,李奕帆. 混合基质膜在碳捕集领域的研究进展. 化工进展. 2020(06): 2453-2462 . 百度学术
    27. 林海周,罗志斌,裴爱国,杨晖,王小博. 二氧化碳与氢合成甲醇技术和产业化进展. 南方能源建设. 2020(02): 14-19 . 本站查看
    28. 杨晖,林海周,罗海中,裴爱国,方梦祥. 基于富液分流改进工艺的混合胺法燃煤电厂烟气碳捕集过程模拟研究. 南方能源建设. 2019(04): 40-46 . 本站查看

    其他类型引用(16)

图(1)  /  表(1)
计量
  • 文章访问数:  4070
  • HTML全文浏览量:  654
  • PDF下载量:  533
  • 被引次数: 44
出版历程
  • 收稿日期:  2018-12-09
  • 修回日期:  2019-01-21
  • 刊出日期:  2020-07-10

目录

Mengxiang FANG

  1. On this Site
  2. On Google Scholar
  3. On PubMed

/

返回文章
返回