高级检索

海上风电嵌岩桩水平承载力特性数值模拟研究

张力, 黄钺, 王洪庆, 赵学亮, 张景斐

张力,黄钺,王洪庆等.海上风电嵌岩桩水平承载力特性数值模拟研究[J].南方能源建设,2021,08(03):34-43.. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.005
引用本文: 张力,黄钺,王洪庆等.海上风电嵌岩桩水平承载力特性数值模拟研究[J].南方能源建设,2021,08(03):34-43.. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.005
ZHANG Li,HUANG Yue,WANG Hongqing,et al.Numerical Simulation Research on the Horizontal Bearing Capacity of Rock-Socketed Piles for Offshore Wind Turbines[J].Southern Energy Construction,2021,08(03):34-43.. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.005
Citation: ZHANG Li,HUANG Yue,WANG Hongqing,et al.Numerical Simulation Research on the Horizontal Bearing Capacity of Rock-Socketed Piles for Offshore Wind Turbines[J].Southern Energy Construction,2021,08(03):34-43.. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.005
张力,黄钺,王洪庆等.海上风电嵌岩桩水平承载力特性数值模拟研究[J].南方能源建设,2021,08(03):34-43.. CSTR: 32391.14.j.gedi.issn2095-8676.2021.03.005
引用本文: 张力,黄钺,王洪庆等.海上风电嵌岩桩水平承载力特性数值模拟研究[J].南方能源建设,2021,08(03):34-43.. CSTR: 32391.14.j.gedi.issn2095-8676.2021.03.005
ZHANG Li,HUANG Yue,WANG Hongqing,et al.Numerical Simulation Research on the Horizontal Bearing Capacity of Rock-Socketed Piles for Offshore Wind Turbines[J].Southern Energy Construction,2021,08(03):34-43.. CSTR: 32391.14.j.gedi.issn2095-8676.2021.03.005
Citation: ZHANG Li,HUANG Yue,WANG Hongqing,et al.Numerical Simulation Research on the Horizontal Bearing Capacity of Rock-Socketed Piles for Offshore Wind Turbines[J].Southern Energy Construction,2021,08(03):34-43.. CSTR: 32391.14.j.gedi.issn2095-8676.2021.03.005

海上风电嵌岩桩水平承载力特性数值模拟研究

基金项目: 

广东省促进经济发展专项基金“基于大数据的海上风电场支撑结构强度与疲劳实时评估研究” 粤自然资源合〔2019〕019

详细信息
    作者简介:

    张力1986-,男,江西南昌人,水工结构室副主任,高级工程师,同济大学结构工程硕士,主要从事水工、海工结构设计及研究(e-mail)zhangli@gedi.com.cn

    赵学亮(通信作者)1974-,男,山西长治人,东南大学副教授,博士,主要从事海洋岩土方向的科研与教学工作(email)zhaoxl@seu.edu.cn

  • 中图分类号: TK89

Numerical Simulation Research on the Horizontal Bearing Capacity of Rock-Socketed Piles for Offshore Wind TurbinesEn

  • 摘要:
      目的  主要对海上风电嵌岩桩的桩基尺寸与竖向荷载等因素对其水平承载特性的影响进行研究。
      方法  文章采用有限差分的数值方法,基于一处现场试验建立数值模型并进行参数分析。
      结果  结果表明:嵌岩桩基存在一个临界嵌岩长度(长径比),桩基尺寸的改变会影响桩-岩的相对刚度,进而使临界嵌岩长度随之改变,随着桩径的减小,嵌岩桩临界嵌岩长径比逐渐增加;在桩的承载能力范围内,在竖向荷载与水平荷载共同作用下,桩基的水平位移和桩身弯矩有较大程度的减小,如果认为竖向荷载引起的侧摩阻力在桩的两侧大小与方向相同,或将竖向侧摩阻力简化为作用在桩的轴线则会忽略这一效应的影响,会对计算结果造成误差。
      结论  论文结果对于临界嵌岩长度以及竖向荷载影响的分析将有助于水平承载嵌岩桩的合理设计和深入研究。
    Abstract:
      Introduction  The aim of this paper is to analyze the influence of the size and the vertical load of the pile foundation on the horizontal bearing capacity of rock-socketed piles.
      Method  Based on a field test of the rock-socketed concrete pile under horizontal load, a 3-D finite difference numerical model was established and parametric analyses were performed.
      Result  The results show that there is a critical rock-socketed length (ratio of length and diameter) for rock-socketed piles. Changes of the size of the pile will influence the relative stiffness of the pile and the rock, which will affect the critical rock-socketed length. With the decrease of the pile diameter, the critical socket length will increase. Within the scope of the bearing capacity of the pile and under the condition of combined vertical and horizontal load, the horizontal displacement and bending moment of the pile will have a pretty large decrease. This influence will be neglected if the vertical friction is assumed to be the same on the both sides of the pile or simplified to be at the center of the pile, which will cause error to the calculation results.
      Conclusion  This study is supposed to provide contribution to the reasonable design and further research of the horizontal load of rock-socketed piles.
  • 图  1   Dayton桩基试验布置(Yang,2006

    Figure  1.   Layout of Dayton shaft test

    图  2   数值模拟模型尺寸

    Figure  2.   The size of numerical simulation model

    图  3   数值模拟与试验桩桩顶荷载-位移曲线对比

    Figure  3.   Comparison of load-displacement curves at pile top between numerical simulation and field test

    图  4   数值模拟与试验桩的桩身位移曲线对比

    Figure  4.   Comparison of displacement curves between numerical simulation and field test

    图  5   数值模拟与试验桩的桩身弯矩曲线对比

    Figure  5.   Comparison of moment curves between numerical simulation and field test

    图  7   不同嵌岩长度下桩顶的荷载-位移曲线

    Figure  7.   Load-displacement curves of piles with different lengths

    图  8   H=3.496 MN时不同嵌岩长度桩基弯矩曲线

    Figure  8.   Moment curves of piles with different lengths when H= 3.496 MN

    图  9   H=3.496 MN时不同嵌岩长度桩基桩侧基岩反力曲线

    Figure  9.   Bedrock reaction curves of piles with different lengths when H=3.496 MN

    图  10   不同桩径条件下桩顶位移随长径比的变化

    Figure  10.   The variation of displacement of piles with length-diameter ratios under different pile diameters

    图  11   不同桩径条件下桩顶位移变化率随长径比的变化

    Figure  11.   The variation of displacement gradients of piles with length-diameter ratios under different pile diameters

    图  12   H=5 MN时竖向荷载对水平承载桩水平位移的影响

    Figure  12.   Influence of vertical loads on horizontal displacement of the horizontal bearing pile when H=5 MN

    图  13   H=5 MN时竖向荷载对水平承载桩弯矩的影响

    Figure  13.   Influence of vertical loads on moment of the horizontal bearing pile when H=5 MN

    图  14   不同水平荷载下竖向荷载对桩顶水平位移的影响

    Figure  14.   The influence of vertical load on horizontal displacements of piles under different levels of horizontal loads

    表  1   基岩RMR值和GSI值计算

    Table  1   The RMR and GSI values of bedrock

    深度/m强度等级RQD等级节理间距节理状况地下水状况RMR均值GSI
    0~2.1343~55~155~20154641
    2.13~5.484~7135~1520~25156661
    下载: 导出CSV

    表  2   Hoek-Brown准则中各参数取值

    Table  2   The values of the parameter in Hoek-Brown failure criterion

    深度/mGSImimbsaEm/GPa
    0~2.134160.7300.0010.5110.695
    2.13~5.486161.4900.0130.5032.208
    下载: 导出CSV
  • [1] 刘述丽,易神州,张昆. 海上大直径钢管桩水平向桩土界面参数试桩分析 [J]. 水利水电技术,2018,49(5):205-212.

    LIUS L,YIS Z,ZHANGK. Analysis on trial pile for horizontal pile-soil interface parameters of large diameter offshore steal-pipe pile [J]. Water Resources and Hydropower Engineering,2018,49(5):205-212.

    [2] 郭骞,吴宪锴,杜海鑫. 浑河大桥嵌岩桩水平加载试验研究 [J]. 水利与建筑工程学报,2017,15(5):144-148.

    GUOQ,WUX K,DUH X. Horizontal loading test of piles embedded in Hun River Bridge [J]. Journal of Water Resources and Architectural Engineering,2017,15(5):144-148.

    [3] 劳伟康,周治国,周立运. 水平推力桩在大位移情况下m值的确定 [J]. 岩土力学,2008,29(1):192-196.

    LAOW K,ZHOUZ G,ZHOUL Y. Analysis of m value for lateral loaded pile under large deflection [J]. Rock and Soil Mechanics, 2008,29(1):192-196.

    [4] 李鹏飞. 基于大比尺模型试验的钢护筒嵌岩桩承载特性研究 [D]. 重庆:重庆交通大学,2015.

    LIP F. Study on bearing capacity of rock-socketed pile with steel casing based on large scale model test [D]. Chongqing:Chongqing Jiaotong University,2015.

    [5] 王多垠,兰超,何光春,等. 内河港口大直径嵌岩灌注桩横向承载性能室内模型试验研究 [J]. 岩土工程学报,2007,29(9):1307-1313.

    WANGD Y,LANC,HEG C,et al. Researches on lateral support behavior of large diameter rock-socketed cast-in-place piles at river port by laboratory model test [J]. Chinese Journal of Geotechnical Engineering,2007,29(9):1307-1313.

    [6] 张埕豪,赵其华,娄琛,等. 考虑基岩层面影响的水平受荷嵌岩桩模型试验研究 [J]. 工程地质学报,2019,27(2):286-293.

    ZHANGC H,ZHAOQ H,LOUC,et al. Model experimental study of rock socketed pile in slope strata subjected to horizontal loading [J]. Journal of Engineering Geology,2019,27(2):286-293.

    [7] 徐海滨,吕鹏远,杜修力. 基于现场试验的海上风电大直径单桩三维水平承载力研究 [J]. 水利水电技术,2020,51(7):154-160.

    XUH B,LÜP Y,DUX L. Research on 3D horizontal bearing capacity of large diameter monopile of offshore wind power based on field test [J]. Water Resources and Hydropower Engineering,2020,51(7):154-160.

    [8]

    SORENSENS P H,BRODBAEKK T,MOLLERM,et al. Evaluation of the load-displacement relationships for large-diameter piles in sand[C]//Topping B H V,Neves L F C,Barros R C. Proceedings of the Twelfth International Conference on Civil, Scotland,2009. Scotland:Structural and Environmental Engineering Computing Civil-Comp Press,2009:244-262.

    [9]

    CHONGW L,HAQUEA,RANJITHP G,et al. Effect of joints on p–y behaviour of laterally loaded piles socketed into mudstone [J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(3):372-379.

    [10]

    LIANGR Y,SHATNAWIE S. Estimating subgrade reaction modulus for transversely isotropic rock medium [J]. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(8):1077-1085.

    [11] 王建华,陈锦剑,柯学. 水平荷载下大直径嵌岩桩的承载力特性研究 [J]. 岩土工程学报,2007(8):1194-1198.

    WANGJ H,CHENJ J,KEX. Characteristics of large diameter rock-socketed piles under lateral loads [J]. Chinese Journal of Geotechnical Engineering,2007(8):1194-1198.

    [12] 王俊林,王复明,任连伟,等. 大直径扩底桩单桩水平静载试验与数值模拟 [J]. 岩土工程学报,2010,32(9):1406-1411.

    WANGJ L,WANGF M,RENL W,et al. Horizontal static load test and numerical simulation of single large diameter under-reamed pile [J]. Chinese Journal of Geotechnical Engineering,2010,32(9):1406-1411.

    [13] 王永艺,周世良,廖冬. 港口工程斜坡上嵌岩桩水平承载能力分析 [J]. 中国港湾建设,2018,38(4):6-11.

    WANGY Y,ZHOUS L,LIAOD. Analysis on horizontal bearing capacity of slope rock-socketed pile in port engineering [J]. China Harbour Engineering,2018,38(4):6-11.

    [14]

    GABRM A,BORDENR H,CHOK H,et al. P-y curves for laterally loaded drilled shafts embedded in weathered rock [R]. North Carolina:North Carolina State University,2002.

    [15]

    LIANGR,YANGK,NUSAIRATJ. P-y criterion for rock mass [J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(1):26-36.

    [16] 张坤勇,李广山,杜伟,等. 基于数值试验的嵌岩桩横向承载力研究 [J]. 四川大学学报(工程科学版),2016,48(6):58-67.

    ZHANGK Y,LIG S,DUW,et al. Study on lateral bearing capacity of rock-socketed piles based on numerical tests [J]. Journal of Sichuan University (Engineering Science Edition),2016,48(6):58-67.

    [17]

    YANGK. Analysis of laterally loaded drilled shafts in rock [D]. Ohio:University of Akron,2006.

    [18]

    BIENIAWSKIZ T. Engineering rock mass classifications:a complete manual for engineers and geologists in mining,civil,and petroleum engineering [M]. New York:Wiley,1989.

    [19]

    HAZZARL,HUSSIENM N,KARRAYM. Influence of vertical loads on lateral response of pile foundations in sands and clays [J]. Journal of Rock Mechanics and Geotechnical Engineering,2017,9(2):291-304.

    [20] 张磊,龚晓南,俞建霖. 考虑土体屈服的纵横荷载单桩变形内力分析 [J]. 岩土力学,2011,32(8):2441-2445+2478.

    ZHANGL,GONGX N,YUJ L. Analysis of deformation and internal force for single pile under combined vertical and lateral loads considering yielding of soil [J]. Rock and Soil Mechanics,2011,32(8):2441-2445+2478.

    [21] 陈林靖,郑俊,余其凤. 坡顶面复合荷载刚性短桩工程设计要素分析 [J]. 工程地质学报,2017,25(6):1593-1602.

    CHENL J,ZHENGJ,YUQ F. Analysis of design elements of incline load short rigid pile in slope crest zone [J]. Journal of Engineering Geology,2017,25(6):1593-1602.

    [22]

    LIANGF Y,ZHANGH,WANGJ L. Variational solution for the effect of vertical load on the lateral response of offshore piles [J]. Ocean Engineering,2015,99(5):23-33.

    [23]

    NIRAULAL D. Development of modified t-z curves for large diameter piles/drilled shafts in limestone for fb-pier [D]. Florida:University of Florida,2004.

    [24] 中交公路规划设计院有限公司. 公路桥涵地基与基础设计规范:JTG 3363—2019 [S]. 北京:人民交通出版社,2019.

    CCCCHighway Consultants Co., Ltd. Specifications for design of foundation of highway bridges and culverts:JTG 3363—2019 [S]. Beijing:China Communications Press,2019.

图(19)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-06
  • 修回日期:  2021-08-16
  • 刊出日期:  2021-09-24

目录

    Jingfei ZHANG

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回