高级检索

基于马尔科夫矩阵的灌浆连接段疲劳性能研究

张力, 陈珂, 元国凯, 陈涛

张力, 陈珂, 元国凯, 陈涛. 基于马尔科夫矩阵的灌浆连接段疲劳性能研究[J]. 南方能源建设, 2022, 9(S2): 6-10. DOI: 10.16516/j.gedi.issn2095-8676.2022.S2.002
引用本文: 张力, 陈珂, 元国凯, 陈涛. 基于马尔科夫矩阵的灌浆连接段疲劳性能研究[J]. 南方能源建设, 2022, 9(S2): 6-10. DOI: 10.16516/j.gedi.issn2095-8676.2022.S2.002
ZHANG Li, CHEN Ke, YUAN Guokai, CHEN Tao. Research on Fatigue Performance of Grouted Connections Based on Markov Matrix[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S2): 6-10. DOI: 10.16516/j.gedi.issn2095-8676.2022.S2.002
Citation: ZHANG Li, CHEN Ke, YUAN Guokai, CHEN Tao. Research on Fatigue Performance of Grouted Connections Based on Markov Matrix[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S2): 6-10. DOI: 10.16516/j.gedi.issn2095-8676.2022.S2.002
张力, 陈珂, 元国凯, 陈涛. 基于马尔科夫矩阵的灌浆连接段疲劳性能研究[J]. 南方能源建设, 2022, 9(S2): 6-10. CSTR: 32391.14.j.gedi.issn2095-8676.2022.S2.002
引用本文: 张力, 陈珂, 元国凯, 陈涛. 基于马尔科夫矩阵的灌浆连接段疲劳性能研究[J]. 南方能源建设, 2022, 9(S2): 6-10. CSTR: 32391.14.j.gedi.issn2095-8676.2022.S2.002
ZHANG Li, CHEN Ke, YUAN Guokai, CHEN Tao. Research on Fatigue Performance of Grouted Connections Based on Markov Matrix[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S2): 6-10. CSTR: 32391.14.j.gedi.issn2095-8676.2022.S2.002
Citation: ZHANG Li, CHEN Ke, YUAN Guokai, CHEN Tao. Research on Fatigue Performance of Grouted Connections Based on Markov Matrix[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S2): 6-10. CSTR: 32391.14.j.gedi.issn2095-8676.2022.S2.002

基于马尔科夫矩阵的灌浆连接段疲劳性能研究

基金项目: 广东省促进经济发展专项基金“基于大数据的海上风电场支撑结构强度与疲劳实时评估研究”(粤自然资源合〔2019〕019)
详细信息
    作者简介:

    张力,1986-,男,江西南昌人,高级工程师,同济大学结构工程硕士,主要从事水工/海工结构设计及研究工作(e-mail)zhangli@gedi.com.cn

    陈珂,1985-,男,湖南衡阳人,高级工程师,结构工程硕士,主要从事水工/海工结构设计及研究工作(email)chenke@gedi.com.cn

    通讯作者:

    陈珂,(email)chenke@gedi.com.cn

  • 中图分类号: TK89; P75

Research on Fatigue Performance of Grouted Connections Based on Markov MatrixEn

  • 摘要:
      目的  由于荷载的时变性与随机性,海上风电基础结构中的灌浆连接段疲劳问题突出,为确保海上风电基础服役安全性,需要研究连接段疲劳性能演化规律。
      方法  从有限元数值模型出发,将马尔科夫荷载矩阵转化为灌浆连接段关键位置处的应力,并结合材料的S-N曲线和线性累积损伤准则,实现对灌浆连接段的疲劳性能评估。
      结果  通过对灌浆连接段有限元模型分析可知,在轴向荷载作用下,钢结构产生的累积损伤值大于灌浆材料,但均小于DNV规范中的限值。
      结论  说明在该风机荷载作用下,灌浆连接段内的两种材料均不会发生疲劳破坏,风机基础结构是安全的,同时该分析方法也是有效的。
    Abstract:
      Introduction  Due to the time variability and randomness of load, the fatigue problem of grouted connections in offshore wind power is serious and it is necessary to research into the fatigue performance of grouted connections to ensure its safety operation.
      Method  Based on the finite element numerical model, the Markov load matrix was transformed into the stress at the key position of the grouted connections in this study, and combined with the S-N curve of materials and the linear cumulative damage rule, the fatigue performance of the grouted connections was evaluated.
      Result  The finite element model of grouted connections shows that the cumulative damage of steel materials under axial load is greater than that of grouting materials, but less than the limit of DNV specification.
      Conclusion  This study shows that fatigue failure will not occur in the two materials in the grouted connections under the specific load, the structure of turbine is safe, and the analysis method is effective.
  • 图  1   数据过滤示意图

    Figure  1.   Data filtering diagram

    图  2   马尔科夫计数阶段1示意图

    Figure  2.   Markov counting process stage 1

    图  3   海上风机荷载示意图

    Figure  3.   Offshore wind turbine load

    图  4   三维坐标下的马尔科夫矩阵

    Figure  4.   Markov matrix under three-dimensional coordinate

    图  5   灌浆连接段形状

    Figure  5.   Dimension of grouted connection

    图  6   有限元模型网格划分

    Figure  6.   Meshing of finite element model

    图  7   钢结构Mises应力云图

    Figure  7.   Mises stress nephogram of steel structure

    图  8   灌浆料第三主应力应力云图

    Figure  8.   Third principal stress nephogram of grouting materials

    图  9   线性外插计算剪力键焊趾处的热点应力

    Figure  9.   Hot spot stress at shear key toe calculated by linear extrapolation

    表  1   灌浆连接段数值模型几何尺寸

    Table  1   Geometrical dimension of numerical models for grouted connections mm

    内部导管架腿外部桩管连接段长度
    DJLtJLDptpLL1L2L3
    1 900602 400557 7001 0005 7001 000
    下载: 导出CSV

    表  2   焊趾处钢结构较大的损伤值 Di 及相应的循环荷载

    Table  2   Damage value Di of steel structure at toe and corresponding cyclic load

    平均值/MN应力范围/MNniNiDi
    −5.1451.7156.329 2×1041.927×10113.285×10−7
    −5.2151.9952.851 9×1049.076×10103.142×10−7
    −5.2151.8553.575 4×1041.305×10112.739×10−7
    −5.4951.7853.661 2×1041.606×10112.280×10−7
    −5.1451.7853.147 3×1041.577×10111.996×10−7
    −4.3051.3651.099 84×1055.743×10111.915×10−7
    −5.5651.7153.710 4×1041.969×10111.884×10−7
    −5.5651.9251.971 6×1041.105×10111.784×10−7
    −5.5651.8552.280 9×1041.330×10111.715×10−7
    −5.1451.9251.797 5×1041.081×10111.663×10−7
    下载: 导出CSV

    表  3   焊趾处灌浆料较大的损伤值 Di 及相应的循环荷载

    Table  3   Damage value Di of grouting materials at toe and corresponding cyclic load

    平均值/MN应力范围/kNniNiDi
    −5.775354.388×1071.156×10193.795×10−12
    −5.705354.390×1071.188×10193.696×10−12
    −5.845354.012×1071.126×10193.563×10−12
    −5.635354.170×1071.220×10193.419×10−12
    −5.355354.395×1071.338×10193.284×10−12
    −5.425354.238×1071.308×10193.241×10−12
    −5.565354.034×1071.248×10193.232×10−12
    −5.495354.104×1071.278×10193.212×10−12
    −5.285354.317×1071.370×10193.151×10−12
    −5.145354.402×1071.435×10193.067×10−12
    下载: 导出CSV
  • [1] 刘东华, 元国凯, 陈涛, 等. 海上风电灌浆连接段疲劳机理研究综述 [J]. 南方能源建设, 2016, 3(增刊1): 68-72. DOI: 10.16516/j.gedi.issn2095-8676.2016.S1.015.

    LIU D H, YUAN G K, CHEN T, et al. Review on fatigue mechanism of grouted connection in offshore wind farm [J]. Southern Energy Construction, 2016, 3(Supp. 1): 68-72. DOI: 10.16516/j.gedi.issn2095-8676.2016.S1.015.

    [2]

    ČERVENKA, J., ČERVENKA, V., PRYL D. Fatigue assessment of grouted connections from high-strength concrete in offshore wind power plants[C]//Czech Concrete Society. 20th Czech Concrete Day, Hradec Kralove, Nov. 27-28, 2013. Hradec Kralove: Czech Concrete Society, 2013: 1–6.

    [3]

    International Federation for Structural Concrete. Fib model code for concrete structures 2010 [M]. Lausanne: Wiley, 2013. DOI: 10.1002/9783433604090.

    [4]

    WILKE F. Load bearing behaviour of grouted joints subjected to predominant bending [D]. Aachen: Shaker Verlag Gmbh, 2014.

    [5]

    SCHAUMANN P, LOCHTE-HOLTGREVEN S. Schädigungsmodell für hybride verbindungen in offshore-windenergieanlagen [J]. Stahlbau, 2011, 80(4): 226-232. DOI: 10.1002/stab.201101414.

    [6]

    LÖHNING T, MUURHOLM U. Design of grouted connections in offshore wind turbines [C]//IABSE Conference. Assessment, Upgrading and Refurbishment of Infrastructures, Rotterdam, The Netherlands, May 6-8, 2013. Rotterdam: Assessment, Upgrading and Refurbishment of Infrastructures, 2013: 410-411. DOI: 10.2749/222137813806501821.

    [7]

    DE JONGE J B. The analysis of load time histories by means of counting methods[R]. Amsterdam: National Aerospace Laboratory NLR, 1982.

    [8]

    DNV G L. Support structures for wind turbines: DNVGL-ST—0126 [S]. Norway: DNVGL, 2018.

    [9] 元国凯, 汤东升, 刘晋超, 等. 海上风电机组基础灌浆技术应用与发展 [J]. 南方能源建设, 2017, 4(1): 10-17. DOI: 10.16516/j.gedi.issn2095-8676.2017.01.002.

    YUAN G K, TANG D S, LIU J C, et al. Grouting technology application and development in offshore wind farm [J]. Southern Energy Construction, 2017, 4(1): 10-17. DOI: 10.16516/j.gedi.issn2095-8676.2017.01.002.

    [10]

    CHEN T, WANG X, GU X L, et al. Axial compression tests of grouted connections in jacket and monopile offshore wind turbine structures [J]. Engineering Structures, 2019(196): 109330. DOI: 10.1016/j.engstruct.2019.109330.

图(9)  /  表(3)
计量
  • 文章访问数:  546
  • HTML全文浏览量:  130
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2022-07-19
  • 网络出版日期:  2023-01-03
  • 刊出日期:  2023-01-03

目录

    CHEN Tao

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回