-
实验装置如图1所示,主要由定容燃烧弹、光学系统、数据采集系统以及进排气系统构成。该系统的核心是中心的定容燃烧弹,如图2所示,视窗直径为90 mm,容积为2.067 L。K型热电偶监测定容燃烧室中燃料/空气混合物的温度,并通过温度显示器显示出来。压力传感器以电压信号的形式实时监测容器内的压力。点火控制器控制容器中心的两根直径为0.4 mm的铂丝电极进行电火花点火,点火能量约为15 mJ。数字脉冲发生器与高速摄像机和示波器相连,保证高速摄像机和示波器在点火后同步拍摄图像和记录信号。高速摄像机以12 800 fps的拍摄速度和1 024×1 024像素的分辨率记录了0.1 s内完成的火焰燃烧过程。
-
首先使用新鲜空气对定容燃烧弹进行连续5 min的洗气,可以有效去除定容燃烧弹内多余的杂质气体。之后关闭进气阀对定容燃烧进行抽真空,直到压力表显示0.2 bar左右的数值时停止抽真空,等待加热到实验温度。然后使用微量注射器注入所需体积的燃料,等待其在定容燃烧系统中蒸发6 min。最后把掺混设定体积的氢气和新鲜空气通过进气阀通入到定容燃烧弹内,使燃料和空气混合物充分混合5 min,再次等待温度回升到实验所需数值即可使用铂丝电极进行电火花点火。每次试验结束后需重复上述步骤,为了保证实验的可靠性,每组工况至少重复三次实验。
-
可燃极限指气体或蒸汽与空气混合的最低浓度和最高浓度,能够形成可燃混合物的范围,分为可燃性上限和可燃性下限。在常温常压下氢气的可燃极限为4%、74.2%,乙醇的可燃极限为3.3%、19%[25]。通过Drysdale等[26]指出在常压下对于任何温度都可以根据在常温下确定的可燃极限进行计算,如式(1)和式(2)所示:
$$ \rm{UFL} _{ \mathrm{T}} \mathrm= \rm{UFL} _{ \mathrm{298}} \mathrm{[1+0.000\;721(} \mathit{T} _{ \mathrm{0}} \mathrm{-298)]} $$ (1) $$ \rm{LFL} _{ \mathrm{T}} = \rm{LFL} _{ \mathrm{298}} \mathrm{[1-0.000\;78(} \mathit{T} _{ \mathrm{0}} \mathrm{-298)]} $$ (2) 式中:
UFLT ——可燃性上限(%vol);
LFLT ——可燃性下限(%vol);
UFL298 ——常温常压下的可燃性上限(%vol);
LFL298 ——常温常压下的可燃性上限(%vol)。
根据Le Chatelier公式[27]可以算出混合的气体的可燃极限,如式(3)和式(4)所示:
$$ {{\mathrm{UFL}}}_{{\mathrm{mixture}}}=\frac{100}{\left({C}_{1}/{{\mathrm{UFL}}}_{1}\right)+\left({C}_{2}/{{\mathrm{UFL}}}_{2}\right)+\dots +\left({C}_{i}/{{\mathrm{UFL}}}_{i}\right)} $$ (3) $$ {{\mathrm{LFL}}}_{{\mathrm{mixture}}}=\frac{100}{\left({C}_{1}/{{\mathrm{LFL}}}_{1}\right)+\left({C}_{2}/{{\mathrm{LFL}}}_{2}\right)+\dots +\left({C}_{i}/{{\mathrm{LFL}}}_{i}\right)} $$ (4) 式中:
C1, C2, ..., Ci——每种燃料气体在燃料混合物中的比例(%体积基数);
UFLmixture ——混合物可燃性上限;
LFLmixture ——混合物可燃性下限。
数据采集系统采集到的数据为电压值,根据转换公式可以将电压值转变为压力值,然后通过经验公式进行修正,得到压力的值,如公式(5)所示:
$$ p=0.5\left(V-{V}_{0}\right)\frac{100\;000}{101\;325}+{p}_{0} $$ (5) 式中:
p ——压力(bar);
p0 ——初始压力(bar);
V ——电压值(v);
V0 ——初始电压(v)。
代表爆炸危害的参数主要为爆炸时间tc、最大爆炸压力pmax和最大压力上升速率(dp/dt)max以及爆燃指数KG,其中爆燃指数KG代表容器中的定容气体燃烧和爆炸单位体积,本研究使用KG来代表爆炸的强度,如公式(6)所示:
$$ {K}_{G}={\left({{\mathrm{d}}p}/{{\mathrm{d}}t}\right)}_{{\mathrm{max}}}{V}^{\frac{1}{3}} $$ (6) -
图3展示了T0=400 K、氢气比例为50%、当量比为1.0、常压下的爆炸压力、压力上升率以及爆炸持续时间。图中蓝色为压力曲线,红色为压力上升率曲线,对压力曲线求导得到压力上升率曲线,由电压值转变的压力值有小幅度震荡,故对得到的压力曲线和压力上升率曲线进行平滑。图中还标注了pmax、(dp/dt)max以及tc的位置。
-
可燃极限是分析爆炸特性时的一个重要参数,LEL和UEL的差值可以反映出爆炸发生的浓度范围,从而帮助我们判断是否存在爆炸风险[28-30]。图4展示了在常压下、400 K下,不同乙醇掺混比例对可燃极限的影响。观察图4可知,当向氢气中掺入乙醇时,可燃极限持续降低。随着乙醇比例的增加,降低速度逐渐减缓。同时,UEL的降低幅度明显高于LEL。当氢气比例从70%降低至30%时,LEL和UEL分别降低了0.27%和16.3%。这是因为乙醇的燃烧温度比氢气低,所以在相同条件下,含有乙醇的混合气体更容易燃烧。当乙醇比例增加时,混合气体的LEL和UEL都会降低,意味着混合气体的爆炸性会减弱。因此乙醇可以在一定程度上抑制氢气爆炸的范围。
-
图5展示了不同当量比和不同掺混比下的压力曲线。从图中可以看出,所有的压力都是先处在稳压阶段,然后逐渐上升达到最大值,最后开始缓慢下降。随着当量比的增加,压力达到峰值速度也不断增加,即压力达到峰值的时间缩短。当混合气体中可燃气体的当量比增加时,意味着混合气体中可燃气体的浓度增加。可燃气体浓度的增加会导致爆炸反应的速率增加,因为在更高的浓度下,可燃气体分子之间发生碰撞的几率增加,从而促进了爆炸反应的进行。这样就会导致爆炸产生的压力峰值更快地达到,整个爆炸过程的时间缩短。随着掺混乙醇比例的降低,爆炸达到峰值的时间也在缩短。这是因为乙醇分子具有较高的反应活性,能够参与爆炸反应并吸收部分能量。因此,当乙醇的掺混比例降低时,混合气体中的反应活性也相应减弱,爆炸反应的速率加快,导致爆炸达到峰值的时间缩短,从而促进爆炸反应的进行。
爆炸压力上升率通过对爆炸压力进行求导得到,图6显示了反应爆炸压力的变化情况以及爆炸压力上升速率的变化。从图中可以粗略观察到,随着当量比的增加,爆炸压力上升速率达到峰值的时间不断缩短。在当量比为1.3~1.4的区间,爆炸压力上升速率达到峰值的时间最短,这表明在此工况下爆炸发生得更迅速。此外,乙醇比例的降低也会导致爆炸压力上升速率达到峰值的时间缩短。综上所述,结果显示当量比的提升和掺混乙醇比例的降低都会减少爆炸的发生时间。
爆炸时间也是表征爆炸危害的重要参数,可以帮助进行安全评估,图7展示了爆炸时间的曲线。从图中可以观察到,随着当量比的降低,爆炸延续的时间不断减少。特别是在当量比小于1时,爆炸时间的变化率更大。当当量比大于1时,爆炸延续的时间逐渐趋于一个稳定值。掺混比为30%H2+70%C2H5OH、50%H2+50%C2H5OH以及70%H2+30%C2H5OH对应的稳定爆炸时间为0.03 s、0.025 s以及0.019 s。另外随着乙醇比例的降低,爆炸延续的时间也在缩短。较低的乙醇比例意味着更高的氢气浓度,而氢气具有较高的燃烧反应活性。因此,当乙醇比例降低时,氢气参与的燃烧反应速率增加,导致爆炸延续的时间缩短。近似的爆炸压力发生在更短的时间内会增加爆炸的危害。
-
图8和图9分别展示了不同工况下最大爆炸压力和最大压力上升速率,能够直观地表达爆炸带来的危害。从图8和图9中可以看出,随着当量比的增加,最大爆炸压力和最大压力上升速率呈现先增大后降低的趋势。在当量比为1.3时达到最大值,此时爆炸带来的危害最大。氢气比例的变化对最大爆炸压力的影响不明显,但在当量比大于1的情况下,随着氢气比例的增加,最大爆炸压力略微降低,这说明在当量比大于1时,降低氢气比例会稍微增加爆炸的危害。乙醇比例对最大压力上升速率的影响较大,乙醇比例的降低会很大程度上提高最大压力上升速率,也表明爆炸会发生在更短的时间内,与上一节爆炸压力上升率展示的结果一致。
NFPA 68(2002)标准是美国国家消防协会发布的关于爆炸压力释放防护的标准。这个标准将爆燃指数分为4个等级,用于表征爆炸的强度和危害,越高的爆燃指数表征更大爆炸危害,爆燃指数的分级情况如表1所示。本研究不同工况下的爆燃指数如图10所示,图中展示了随着当量比的增加爆燃指数先增高后降低,在当量比为1.3时达到顶峰,表明此时的爆炸危害最大。随着乙醇比例的提升,爆燃指数也会明显降低,表明乙醇比例的提升会减小爆炸的危害。本研究最大的爆燃指数为11.85 MPa·m/s,表明爆炸的强度较大,对环境和人员安全构成威胁。此外,还可以将常压和400 K下爆燃指数拟合成关于当量比的三阶多项式,本研究拟合结果为:
表 1 爆燃指数等级划分
Table 1. Classification of deflagration index
等级 KG/(MPa·m·s−1) st0 0 st1 1~20 st2 20~30 $$ \mathit{u} _{ \mathrm{L1}} \mathrm{=-51.569} {\varphi } ^{ \mathrm{3}} \mathrm{+152.615} {\varphi } ^{ \mathrm{2}} \mathrm{-136.139} {\varphi } \mathrm{+40.012} $$ (7) $$ \mathit{u} _{ \mathrm{L2}} \mathrm{=-7.002} {\varphi } ^{ \mathrm{3}} \mathrm{+7.383} {\varphi } ^{ \mathrm{2}} \mathrm{+17.831} {\varphi } \mathrm{-11.648} $$ (8) $$ \mathit{u} _{ \mathrm{L3}} \mathrm{=-28.095} {\varphi } ^{ \mathrm{3}} \mathrm{+71.519} {\varphi } ^{ \mathrm{2}} \mathrm{-42.923} {\varphi } \mathrm{+8.024} $$ (9) 式中:
uL1、uL2和uL3——氢气体积分数(30%、50%、70%)的爆燃指数,根据所得的关系式可以近似求出常压下、初始温度为400 K和当量比(φ=0.7~1.4)下混合气的近似爆燃指数。
Experimental Research on Ethanol Inhibition of Hydrogen-Air Mixture Explosion
-
摘要:
目的 在加氢站制氢过程中,乙醇和氢气混合后易形成可燃气体,一旦受到火花或高温引燃,可能发生爆炸。为了降低加氢站制氢储氢过程中的爆炸风险,进行实验研究是至关重要的。 方法 针对在1 bar和400 K下不同当量比和不同乙醇掺混比例的氢气-乙醇-空气混合物,进行爆炸特性参数的分析。通过计算混合燃气的可燃极限和爆燃指数来评估爆炸危险程度,从而制定有效的安全措施降低爆炸风险。 结果 实验研究结果表明,当量比的增长会缩短爆炸时间,使其最终趋于稳定值,氢气体积分数(30%、50%、70%)对应的稳定爆炸时间为0.03 s、0.025 s以及0.019 s。最大爆炸压力、最大压力上升率以及爆燃指数都是随着当量比的增加先增大后降低,在当量比为1.3时达到峰值。随着乙醇的添加混合气的可燃极限不断降低,且UELmixture(混合物可燃性上限)的降低幅度明显高于LELmixture(混合物可燃性下限)。此外,最大压力上升率以及爆燃指数随着乙醇的添加都呈现明显的降低趋势,计算得出本研究的最大爆燃指数为11.85 MPa·m/s。 结论 研究成果揭示了当量比和掺混比例对混合燃料爆炸特性影响规律,为加氢站制氢和储氢过程中降低爆炸风险提供坚实的理论基础。 Abstract:Introduction During the hydrogen production process at hydrogen refueling stations, the mixture of ethanol and hydrogen can easily form a combustible gas, which may explode if ignited by sparks or high temperatures. In order to reduce the risk of explosion during hydrogen production and storage at hydrogen refueling stations, experimental research is essential. Method The explosion characteristic parameters were analyzed for hydrogen-ethanol-air mixture with different equivalence ratios and ethanol blending ratios at 1 bar and 400 K. By calculating the flammability limit and deflagration index of mixed gas, the degree of explosion hazard was evaluated, and effective safety measures were formulated to reduce the risk of explosion. Result The experimental research results show that an increase in the equivalence ratio will shorten the explosion time, making it ultimately tend to a stable value. The stable explosion times corresponding to hydrogen volume fractions (30%, 50%, 70%) are 0.03 s, 0.025 s, and 0.019 s. The maximum explosion pressure, maximum pressure rise rate, and deflagration index all increase and then decrease with the increase of equivalence ratio, reaching their peak at an equivalence ratio of 1.3. The flammability limit of the mixed gas continues to decrease with the addition of ethanol, and the decrease in UELmixture (upper flammability limit of mixture) is significantly higher than that in LELmixture (lower flammability limit of mixture). In addition, the maximum pressure rise rate and deflagration index show a significant decreasing trend with the addition of ethanol, and the maximum deflagration index calculated for this research is 11.85 MPa·m/s. Conclusion The research results have revealed the effect of equivalence ratio and blending ratio on the explosion characteristics of mixed fuels, providing a solid theoretical basis for reducing explosion risks in hydrogen production and storage processes at hydrogen refueling stations. -
Key words:
- explosion characteristics /
- ethanol /
- hydrogen /
- mixed gas /
- flammability limits
-
表 1 爆燃指数等级划分
Tab. 1. Classification of deflagration index
等级 KG/(MPa·m·s−1) st0 0 st1 1~20 st2 20~30 -
[1] BECKEN S, MACKEY B, LEE D S. Implications of preferential access to land and clean energy for sustainable aviation fuels [J]. Science of the total environment, 2023, 886: 163883. DOI: 10.1016/j.scitotenv.2023.163883. [2] ZHANG Y, WANG X R, ZHANG J W, et al. Investigation of cellular characteristics of hydrogen-ethanol flame at elevated temperatures and pressures [J]. Fuel, 2023, 341: 127643. DOI: 10.1016/j.fuel.2023.127643. [3] LIANG C, LI X L, XU C S, et al. Hydrogen addition effect on cellularization and intrinsic instability of ethyl acetate spherical expanding flame [J]. International journal of hydrogen energy, 2024, 49: 222-239. DOI: 10.1016/j.ijhydene.2023.07.157. [4] OKONKWO P C. A case study on hydrogen refueling station techno-economic viability [J]. International journal of hydrogen energy, 2024, 49: 736-746. DOI: 10.1016/j.ijhydene.2023.11.086. [5] 刘畅, 林汉辰, 史陈芳达, 等. 中国氢燃料电池汽车市场发展现状及展望 [J]. 南方能源建设, 2024, 11(2): 162-171. DOI: 10.16516/j.ceec.2024.2.16. LIU C, LIN H C, SHI C F D, et al. Development status and outlook of hydrogen powered fuel cell vehicle market in China [J]. Southern energy construction, 2024, 11(2): 162-171. DOI: 10.16516/j.ceec.2024.2.16. [6] 危昊翔,王筱蓉,姜根柱,等.掺醇生物柴油混合燃料蒸发特性 [J/OL].南方能源建设,1-8(2024-07-31) [2024-08-16]. http://kns.cnki.net/kcms/detail/44.1715.TK.20240731.0852.002.html. WEI H X, WANG X R, JIANG G Z, et al. Evaporation Characteristics of Ethanol Blended Biodiesel Fuel for Generators [J/OL]. Southern energy construction, 1-8 (2024-07-31) [2024-08-16]. http://kns.cnki.net/kcms/detail/44.1715.TK.20240731.0852.002.html. [7] 苏傲成, 姜根柱, 王筱蓉, 等. 乙醇-氢气-空气混合燃气的层流燃烧速度测定 [J]. 车用发动机, 2024(1): 42-48. SU A C, JIANG G Z, WANG X R, et al. Measurement of laminar combustion velocity of ethanol-hydrogen-air mixed gas [J]. Vehicle engine, 2024(1): 42-48. [8] MA Y, WANG X R, LI T, et al. Hydrogen and ethanol: production, storage, and transportation [J]. International journal of hydrogen energy, 2021, 46(54): 27330-27348. DOI: 10.1016/j.ijhydene.2021.06.027. [9] YAN S, FENG J, XIA Z H, et al. Effect of corn stalks on coal catalytic hydrogasification in a pressurized fluidized bed for manufacturing CH4 [J]. Fuel, 2024, 358: 130118. DOI: 10.1016/j.fuel.2023.130118. [10] 朱源, 姜根柱, 王筱蓉, 等. 高温下掺氢燃气层流燃烧速度和稳定性研究 [J]. 车用发动机, 2023(6): 26-32. ZHU Y, JIANG G Z, WANG X R, et al. Laminar combustion speed and stability of hydrogen-doped-gas at high temperature [J]. Vehicle engine, 2023(6): 26-32. [11] 张嘉玮. 掺氢预混燃气燃烧爆炸特性及密闭空间泄爆仿真研究 [D]. 镇江: 江苏科技大学, 2023. DOI: 10.27171/d.cnki.ghdcc.2023.000099. ZHANG J W. Simulation study on combustion and explosion characteristics of hydrogen-doped premixed gas and confined space explosion release [D]. Zhenjiang: Jiangsu University of Science and Technology, 2023. DOI: 10.27171/d.cnki.ghdcc.2023.000099. [12] YADAV N K, SAXENA M R, MAURYA R K. Inhalation toxicity characterization of nanoparticle and carbonyl emission from conventional diesel and methanol/gasoline-diesel RCCI engine [J]. Fuel, 2024, 366: 131353. DOI: 10.1016/j.fuel.2024.131353. [13] WANG Z H, HAN X L, HE Y, et al. Experimental and kinetic study on the laminar burning velocities of NH3 mixing with CH3OH and C2H5OH in premixed flames [J]. Combustion and flame, 2021, 229: 111392. DOI: 10.1016/j.combustflame.2021.02.038. [14] 张嘉瑞. 燃气轮机燃烧室中NH3/H2燃烧和排放特性研究 [D]. 济南: 齐鲁工业大学, 2024. DOI: 10.27278/d.cnki.gsdqc.2024.000339. ZHANG J R. Numerical on NH3/H2 combustion and emission characteristics in gas turbine combustion chamber [D]. Jinan: Qilu University of Technology, 2024. DOI: 10.27278/d.cnki.gsdqc.2024.000339. [15] 金宝志. NH3/H2/空气火焰层流燃烧特性的实验及仿真研究 [D]. 北京: 北京交通大学, 2022. DOI: 10.26944/d.cnki.gbfju.2022.001844. JIN B Z. Experimental and numerical study of the laminar burning characteristics of NH3/H2/air flames [D]. Beijing: Beijing Jiaotong University, 2022. DOI: 10.26944/d.cnki.gbfju.2022.001844. [16] 陈家兴. 乙醇—氢气—空气混合物层流燃烧特性的研究 [D]. 镇江: 江苏科技大学, 2021. DOI: 10.27171/d.cnki.ghdcc.2021.000339. CHEN J X. Effect of hydrogen addition on laminar combustion characteristics of ethanol-air mixture [D]. Zhenjiang: Jiangsu University of Science and Technology, 2021. DOI: 10.27171/d.cnki.ghdcc.2021.000339. [17] 李童. 输氢管道泄露燃气燃烧火焰不稳定性和爆炸特性的研究 [D]. 镇江: 江苏科技大学, 2022. DOI: 10.27171/d.cnki.ghdcc.2022.000622. LI T. Research on combustion flame instability and explosion characteristics of gas leaking from hydrogen pipeline [D]. Zhenjiang: Jiangsu University of Science and Technology, 2022. DOI: 10.27171/d.cnki.ghdcc.2022.000622. [18] 马寅. 乙醇制氢储氢过程中气体泄露燃烧与爆炸基础研究 [D]. 镇江: 江苏科技大学, 2022. DOI: 10.27171/d.cnki.ghdcc.2022.000632. MA Y. Basic research on combustion and explosion of leaked gas from the ethanol produced hydrogen and storage [D]. Zhenjiang: Jiangsu University of Science and Technology, 2022. DOI: 10.27171/d.cnki.ghdcc.2022.000632. [19] SHANG S, BI M S, ZHANG C S, et al. Experimental and numerical simulation study of hydrogen explosion suppression by a small amount of ethylene [J]. International journal of hydrogen energy, 2024, 50: 1234-1244. DOI: 10.1016/j.ijhydene.2023.10.042. [20] LIANG B, HUANG L, GAO W, et al. Flame evolution and pressure dynamics of methane-hydrogen-air explosion in a horizontal rectangular duct [J]. Fuel, 2024, 357: 129962. DOI: 10.1016/j.fuel.2023.129962. [21] SHI L, MENG X B, WU Y, et al. Numerical simulation study of the mechanism of hydrogen explosion inhibition by fine water mist containing NaOH [J]. Powder technology, 2024, 432: 119166. DOI: 10.1016/j.powtec.2023.119166. [22] ZHANG S Y, WEN X P, GUO Z D, et al. Experimental study on the multi-level suppression of N2 and CO2 on hydrogen-air explosion [J]. Process safety and environmental protection, 2023, 169: 970-981. DOI: 10.1016/j.psep.2022.11.069. [23] JI H, FAN S J, LU R J, et al. Explosion suppression characteristics of modified ABC powder driven by argon/CO2 [J]. Powder technology, 2024, 433: 119254. DOI: 10.1016/j.powtec.2023.119254. [24] 郭宏展, 张衍, 王筱蓉. 氢气-甲烷-乙醇混合燃料的爆炸压力特性 [J]. 爆炸与冲击, 2023, 43(12): 125403. DOI: 10.11883/bzycj-2023-0224. GUO H Z, ZHANG Y, WANG X R. Explosion pressure characteristics of hydrogen-methane-ethanol mixtures [J]. Explosion and shock waves, 2023, 43(12): 125403. DOI: 10.11883/bzycj-2023-0224. [25] CORONADO C J R, CARVALHO J A JR, ANDRADE J C, et al. Flammability limits: a review with emphasis on ethanol for aeronautical applications and description of the experimental procedure [J]. Journal of hazardous materials, 2012, 241-242: 32-54. DOI: 10.1016/j.jhazmat.2012.09.035. [26] DRYSDALE D. An introduction to fire dynamics (3rd ed. ) [M]. Chichester: John Wiley & Sons, 2011: 1-34. [27] KUCHTA J M. Investigation of fire and explosion accidents in the chemical, mining, and fuel-related industries – a manual [R]. Washington: Bureau of Mines, 1985: 680. [28] KUZNETSOV M, KOBELT S, GRUNE J, et al. Flammability limits and laminar flame speed of hydrogen–air mixtures at sub-atmospheric pressures [J]. International journal of hydrogen energy, 2012, 37(22): 17580-17588. DOI: 10.1016/j.ijhydene.2012.05.049. [29] LIU X L, ZHANG Q. Influence of initial pressure and temperature on flammability limits of hydrogen–air [J]. International journal of hydrogen energy, 2014, 39(12): 6774-6782. DOI: 10.1016/j.ijhydene.2014.02.001. [30] LIANG H, WANG T, LUO Z M, et al. Investigation on the lower flammability limit and critical inhibition concentration of hydrogen under the influence of inhibitors [J]. Fuel, 2024, 356: 129595. DOI: 10.1016/j.fuel.2023.129595.