-
目前机组一次调频技术可主要分为调节阀预节流、可调整回热抽汽调频和凝结水节流调频。例如,余海鹏等[10]采用了预节流调频技术,以超超临界汽轮机为研究对象,重点分析了全滑压运行方式,结果发现预先适当减小调节阀开度,能够提高机组的一次调频能力。杜洋洋等[11]采用可调整回热抽汽调频对1 000 MW燃煤火电机组的省煤器蓄热的利用过程展开研究,结果发现该技术可通过增加回热抽汽提高机组的经济性,但在调频增减负荷中由于附加给水加热器抽汽量而导致装置效率的降低,彼此抵消后的效果显示其并不能明显地影响机组的经济性。刘吉臻等[12]采用了凝结水节流调频对1 000 MW超超临界机组的凝结水节流蓄能系数展开了计算,结果发现凝结水节流具有更快的响应速度,可通过调节凝结水流量达到精准节流蓄能,与此同时,通过环境机炉侧的控制压力,使动态控制效果更好。图1呈现了上述一次调频的技术原理。
-
调节阀预节流是指工作条件下调节阀始终维持一定的节流状态,当机组有调频需要时汽轮机进汽量会因调节阀的瞬时打开而快速增加,并在汽轮机内快速膨胀做功,进而通过增加电功率达到响应一次调频指令[13]。对于各调节阀基本维持全开状态的节流配汽机组,此时变负荷一般有两种措施: 一是汽轮机的负荷主要由主蒸汽压力调控汽轮机进汽量来完成,通过数据控制信号发命令锅炉给水泵改变转速来实现负荷的改变,但响应时间稍慢;二是采用改变多个调节阀门开度以实现调控汽轮机进汽量及焓降的方法,达到调节汽轮机负荷的效果[14]。
-
可调整回热抽汽技术的工作原理为通过调节阀实现加热器的汽量减少,进而更多的蒸汽进入汽轮机做功,可满足机组增加出力的需求,实现机组调频。在实际生产中,机组通过调节抽汽阀可达到减少抽汽量的目的,实现负荷调节需求。在此基础上,通过调节回热抽汽的压力和温度等参数,可达到对给水温度波动性“过滤”的作用[13]。
-
凝结水节流调频是指在凝汽器和除氧器允许水位条件下,通过除氧器的上水阀对凝结水流量进行调节,进而可通过控制低压缸抽汽量的改变而满足机组负荷要求,达到调频的目的。需要指出的是,凝结水的节流会导致除氧器水位的下降,受其尺寸限制,过度的节流会带来过低的水位,进而造成水泵联锁停止。因此,如何实现定量调节凝结水节流系统以及精准控制其蓄能成为了待解决的核心问题[12]。
综上所述,三种调频技术的特点见表1。其中调节阀预节流操作简单,但受调控范围约束以及安全性差;可调整回热抽汽调频安全性高,但调频能力受大频差影响;凝结水节流调频响应速度快,但受除氧器蓄热量、凝结水流量限制。
Review on the Research Progress of Primary Frequency Modulation Technology for Thermal Power Units
-
摘要:
目的 火电机组的一次调频技术是保障电网安全稳定运行的重要内容。 方法 文章评述了当前火电机组一次调频技术、辅助一次调频技术、耦合调频控制策略以及一次调频技术潜在的发展方向。 结果 对于机组一次调频技术主要包括调节阀预节流、可调整回热抽汽调频和凝结水节流调频,其中以凝结水节流调频技术为主;辅助一次调频技术主要基于飞轮储能和蓄电池响应速率快的特点满足机组输入输出需求,并对耦合辅助调频技术的焦点和难点进行了分析;基于调频技术的系统建模及控制策略研究能够使机组参数间的匹配性更为优化。 结论 最后,对比了近年来一次调频技术的应用情况,认为飞轮储能一次调频和滑压运行优化将是其重点发展方向。 Abstract:Introduction The primary frequency modulation technology of thermal power units has been considered essential to ensure the power grid's safe and stable operation. Method The current primary frequency modulation technology, the auxiliary primary frequency modulation technology, the coupled frequency modulation control strategy, and the potential development direction of primary frequency modulation technology were reviewed. Result The results show that the primary frequency modulation technology for the unit mainly includes regulating valve pre-throttling, adjustable regenerative steam extraction frequency modulation, and condensate water throttling frequency modulation. Among them, the condensate water throttling frequency modulation technology should be the main mode. Auxiliary primary frequency modulation technology is mainly based on the fast-response rate characteristics of flywheel energy storage and battery to meet the unit input and output requirements. The focus and difficulty of coupled auxiliary frequency modulation technology are then analyzed. The system modeling and control strategy research based on frequency modulation technology can optimize the matching between unit parameters. Conclusion Thus, the application status of primary frequency modulation technology in recent years is compared, and it is considered that flywheel energy storage primary frequency modulation and sliding pressure operation optimization will be the key development direction. -
[1] 白暴力, 程艳敏, 白瑞雪. 新时代中国特色社会主义生态经济理论及其实践指引−绿色低碳发展助力我国“碳达峰、碳中和”战略实施 [J]. 河北经贸大学学报, 2021, 42(4): 26-36. DOI: 10.14178/j.cnki.issn1007-2101.20210701.002. BAI B L, CHENG Y M, BAI R X. The ecological economic theory on socialism with Chinese characteristics for a new era andits practical guidelines: Green and low-carbon developmenthelps the implementation of China's strategy of "Peak Carbon Dioxide Emissions, Carbon Neutrality" [J]. Journal of Hebei University of Economics and Business, 2021, 42(4): 26-36. DOI: 10.14178/j.cnki.issn1007-2101.20210701.002. [2] 田汝冰, 杨玉鹏, 刘志武, 等. 风电机组参与电网一次调频的控制策略研究 [J]. 黑龙江电力, 2015, 37(1): 42-48. DOI: 10.13625/j.cnki.hljep.2015.01.010. TIAN R B, YANG Y P, LIU Z W, et al. Research on primary frequency control for power system with participation of wind turbines [J]. Heilongjiang Electric Power, 2015, 37(1): 42-48. DOI: 10.13625/j.cnki.hljep.2015.01.010. [3] 王建君. AGC方式下火电机组间负荷优化分配方法研究 [D]. 吉林: 东北电力大学, 2011. WANG J J. Study on the method for optimal load dispatch of thermal power units under the AGC mode [D]. Jilin: Northeast Electric Power University, 2011. [4] 盛锴, 邹鑫, 邱靖, 等. 火电机组一次调频功率响应特性精细化建模 [J]. 中国电力, 2021, 54(6): 111-118+152. DOI: 10.11930/j.issn.1004-9649.202101111. SHENG K, ZOU X, QIU J, et al. Refined modeling for power response characteristic of thermal power unit under primary frequency control [J]. China Electric Power, 2021, 54(6): 111-118+152. DOI: 10.11930/j.issn.1004-9649.202101111. [5] 周艺环, 刘正, 吴子豪. 水火电力系统短期节能发电优化调度的研究 [J]. 电气技术, 2017, 18(9): 66-71. DOI: 10.3969/j.issn.1673-3800.2017.09.020. ZHOU Y H, LIU Z, WU Z H. Research on optimal dispatch of short-term energy-saving power generation in hydro thermal power system [J]. Electrical technology, 2017, 18(9): 66-71. DOI: 10.3969/j.issn.1673-3800.2017.09.020. [6] 殷建华, 于海存, 霍红岩, 等. 基于电网考核细则的火电机组一次调频优化 [J]. 内蒙古电力技术, 2019, 37(3): 77-82+86. DOI: 10.3969/j.issn.1008-6218.2019.03.023. YIN J H, YU H C, HUO H Y, et al. Optimization of primary frequency compensation for thermal units based on power grid examination rules [J]. Inner Mongolia Electric Power, 2019, 37(3): 77-82+86. DOI: 10.3969/j.issn.1008-6218.2019.03.023. [7] 吴欣, 吴宁, 孙海涛等. 火电机组一次调频性能提升实践 [J]. 山东电力技术, 2018, 45(3): 65-68. DOI: 10.3969/j.issn.1007-9904.2018.03.015. WU X, WU N, SUN H T, et al. Practice of improving the performance of primary frequency regulation of thermal power unit [J]. Shandong Electric Power, 2018, 45(3): 65-68. DOI: 10.3969/j.issn.1007-9904.2018.03.015. [8] 李强. 700 MW机组调频辅助服务控制系统优化提升 [J]. 南方能源建设, 2021, 8(3): 114-121. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.017. LI Q. Optimization and improvement of frequency modulation auxiliary service control system for the 700 MW unit [J]. Southern Energy construction, 2021, 8(3): 114-121. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.017. [9] 庄义飞. 火电机组一次调频分析及性能优化 [J]. 黑龙江电力, 2019, 41(2): 151-157+162. DOI: 10.13625/j.cnki.hljep.2019.02.013. ZHUANG Y F. Primary frequency modulation analysis and performance optimization of thermal power units [J]. Heilongjiang Electric Power, 2019, 41(2): 151-157+162. DOI: 10.13625/j.cnki.hljep.2019.02.013. [10] 余海鹏, 康剑南. 660 MW等级超超临界机组的进汽调节方式分析 [J]. 内蒙古科技与经济, 2017, 21(16): 108-109. YU H P, KANG J N. Analysis of inlet steam regulation mode of the 660 MW ultra-supercritical unit [J]. Inner Mongolia Science Technology & Economy, 2017, 21(16): 108-109. [11] 杜洋洋, 冯伟忠. 基于弹性回热技术的调频性能研究 [J]. 华东电力, 2014, 42(9): 1944-1949. DU Y Y, FENG W Z. Research of properties of frequency regulation based on the flexible extraction technology [J]. East China electric power, 2014, 42(9): 1944-1949. [12] 刘吉臻, 王耀函, 曾德良, 等. 凝结水节流参与的超超临界机组一次调频控制方法 [J]. 中国电机工程学报, 2017, 37(24): 7216-7222+7435. DOI: 10.13334/j.0258-8013.pcsee.162405. LIU J Z, Wang Y H, ZENG D L, et al. A primary frequency regulation method of USC units based on condensate throttling [J]. Proceedings of the CSEE, 2017, 37(24): 7216-7222+7435. DOI: 10.13334/j.0258-8013.pcsee.162405. [13] 包伟伟, 曹瑞峰, 段金鹏, 等. 1 000 MW超超临界机组一次调频技术经济性分析 [J]. 发电设备, 2018, 32(5): 348-352+356. doi: 10.3969/j.issn.1671-086X.2018.05.010 BAO W W, CAO R F, DUAN J P, et al. Techno economic analysis on primary frequency regulation technologies of a 1 000 MW ultra-supercritical unit [J]. Power Equipment, 2018, 32(5): 348-352+356. doi: 10.3969/j.issn.1671-086X.2018.05.010 [14] 李兴华, 段金鹏. 660 MW高效超超临界机组配汽方式研究及应用分析 [J]. 汽轮机技术, 2020, 62(3): 227-230. DOI: 10.3969/j.issn.1001-5884.2020.03.019. LI X H, DUAN X P. Study and application analysis on steam inlet mode of 660 MW ultra-supercritical unit [J]. Steam Turbine Technology, 2020, 62(3): 227-230. DOI: 10.3969/j.issn.1001-5884.2020.03.019. [15] 康浩强, 何青, 杜冬梅. 汽轮发电机组一次调频技术分析 [J]. 电力与能源, 2019, 40(2): 269-274. KANG H Q, HE Q, DU D M. Technical analysis of primary frequency modulation for turbine generator set [J]. Power and energy, 2019, 40(2): 269-274. [16] 高春雷. 储能技术在电力系统中的应用 [J]. 黑龙江电力, 2013, 35(5): 394-396+426. DOI: 10.13625/j.cnki.hljep.2013.05.010. GAO C L. Application of energy storage technology in electric power system [J]. Heilongjiang Electric Power, 2013, 35(5): 394-396+426. DOI: 10.13625/j.cnki.hljep.2013.05.010. [17] 井文辉. 电池储能参与电网辅助调频的控制策略及优化配置研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018. JING W H. Research on control strategy and optimizing configuration of battery energy storage participating in auxiliary frequency modulation of power grid [D]. Harbin: Harbin Institute of Technology, 2018. [18] 李庆成. 电池储能辅助火电机组调频研究 [D]. 昆明: 昆明理工大学, 2020. LI Q C. Research on frequency modulation of thermal power unit assisted by battery energy storge [D]. Kunming: Kunming University of Science and Technology, 2020. [19] 张汝峰. 飞轮储能辅助火电机组调频技术研究 [D]. 北京: 华北电力大学(北京), 2021. ZHANG R F. Reserch on frequency regulation technology of flywheel energy storage aided thermal power unit [D]. Beijing: North China Electric Power University(Beijing), 2021. [20] 李林高. 电池储能系统辅助火电机组参与电网调频的控制策略优化 [D]. 太原: 山西大学, 2020. LI L G. Control strategy optimization of battery energy storage system to assist thermal power units to participate in grid frequency modulation [D]. Taiyuan: Shanxi University, 2020. [21] 黄登超. 300 MW供热机组飞轮储能辅助调频研究 [D]. 北京: 华北电力大学(北京), 2020. HUANG D C. Research on flywheel energy storage auxiliary frequency modulation of 300 MW heating unit [D]. Beijing: North China Electric Power University(Beijing), 2020. [22] 苏小林, 李丹丹, 阎晓霞, 等. 储能技术在电力系统中的应用分析 [J]. 电力建设, 2016, 37(8): 24-32. DOI: 10.3969/j.issn.1000-7229.2016.08.004. SU X L, LI D D, YAN X X, et. al. Application analysis of energy storage technology in power system [J]. Electric Power Engineering, 2016, 37(8): 24-32. DOI: 10.3969/j.issn.1000-7229.2016.08.004. [23] 隋云任. 飞轮储能辅助600 MW燃煤机组调频技术研究 [D]. 北京: 华北电力大学(北京), 2020. SUI Y R. Research on frequency modulation technology of coal burning plants with aixiliary of flywheel energy storage [D]. Beijing: North China Electric Power University (Beijing), 2020. [24] 胡尊民, 于国强, 殳建军, 等. 凝结水辅助调频控制难点分析 [J]. 热能动力工程, 2020, 35(4): 293-299. DOI: 10.16146/j.cnki.rndlgc.2020.04.040. HU Z M, YU G Q, SHU J Y, et al. Analysis of difficulties in controlling the auxiliary frequency-modulation by condensation water [J]. Thermal Power Engineering, 2020, 35(4): 293-299. DOI: 10.16146/j.cnki.rndlgc.2020.04.040. [25] 王伟, 陈钢, 常东锋, 等. 超级电容辅助燃煤机组快速调频技术研究 [J]. 热力发电, 2020, 49(8): 111-116. DOI: 10.19666/j.rlfd.202003091. WANG W, CHEN G, CHANG D F, et al. Super capacitor aided fast frequency modulation technology of coal-tired unit [J]. Thermal Power Generation, 2020, 49(8): 111-116. DOI: 10.19666/j.rlfd.202003091. [26] 王若宇. 基于粒子群算法辨识的火电机组一次调频系统建模及性能提升 [D]. 济南: 山东大学, 2020. WANG R Y. Modeling and Performance Improvement of primary frequency modulation system of thermal power unit based on particle swarm optimization identification [D]. Jinan: Shang Dong University, 2020. [27] 廖金龙. 大功率火电机组一次调频能力建模与优化 [D]. 杭州: 浙江大学, 2020. LIAO J L. Primary frequency control ability modeling and optimization of large-scale thermal power units [D]. Hanzhou: Zhe Jiang University, 2020. [28] ZHU Y, JIANG W L, KONG X D, et al. Study on nonlinear dynamics characteristics of electrohydraulic servo system [J]. Nonlinear dynamics, 2015(80): 723-737. DOI: 10.1007/s11071-015-1901-z. [29] 李润, 徐天奇, 李琰, 等. 不同控制策略下虚拟电厂一次调频特性研究 [J]. 现代电子技术, 2021, 44(17): 95-99. DOI: 10.16652/j.issn.1004-373x.2021.17.018. LI R, XU T Q, LI Y, et al. Study on primary frequency modulation characteristics of virtual power plant using different control strategies [J]. Modern Electronic Technology, 2021, 44(17): 95-99. DOI: 10.16652/j.issn.1004-373x.2021.17.018. [30] 李军徽, 高卓, 李翠萍, 等. 基于动态任务系数的储能辅助风电一次调频控制策略 [J]. 电力系统自动化, 2021, 45(19): 52-59. DOI: 10.7500/AEPS20210112002. LI J H, GAO Z, LI C P, et al. Dynamic task coefficient based primary frequency regulation of wind power assisted by energy storage [J]. Power System Automation, 2021, 45(19): 52-59. DOI: 10.7500/AEPS20210112002. [31] 邹包产, 赵宇, 李云, 等. 基于BP神经网络的汽轮机调阀流量特性校正 [J]. 电力科学与工程, 2017, 33(5): 60-64. DOI: 10.3969/j.issn.1672-0792.2017.05.012. ZOU B C, ZHAO Y, LI Y, et al. Correction of Flow Characteristic of Steam Turbine Governing Valve Based on BP Neural Network [J]. Electric Power Science and Engineering, 2017, 33(5): 60-64. DOI: 10.3969/j.issn.1672-0792.2017.05.012. [32] 印佳敏, 郑赟, 杨劲. 储能火电联合调频的容量优化配置研究 [J]. 南方能源建设, 2020, 7(4): 11-17. DOI: 10.16516/j.gedi.issn2095-8676.2020.04.002. YIN J M, ZHENG Y, YANG J. Research on Capacity Optimization of Generator-storage Combined Frequency Regulation System [J]. Southern Energy construction, 2020, 7(4): 11-17. DOI: 10.16516/j.gedi.issn2095-8676.2020.04.002. [33] 何林轩, 李文艳. 飞轮储能辅助火电机组一次调频过程仿真分析 [J]. 储能科学与技术, 2021, 10(5): 1679-1686. DOI: 10.19799/j.cnki.2095-4239.2021.0283. HE L X, LI W Y. Simulation of the primary frequency modulation process of thermal power units with the auxiliary of flywheel energy storage [J]. Energy Storage Science and Technology, 2021, 10(5): 1679-1686. DOI: 10.19799/j.cnki.2095-4239.2021.0283. [34] 刘鑫, 王康平, 郭相阳, 等. 计及深度调峰与一次调频的风火负荷优化分配 [J/OL]. 电测与仪表: 1-9. (2021-05-18) [2021-11-19]. https://kns.cnki.net/kcms/detail/23.1202.TH.20210518.1121.002.html. LIU X, WANG K P, GUO X Y, et. al. Load optimal distribution of wind power and thermal power with the coordination of deep peak regulation and primary frequency modulation [J/OL]. Electrical Measurement & Instrumentation: 1-9. (2021-05-18)[2021-11-19]. https://kns.cnki.net/kcms/detail/23.1202.TH.20210518.1121.002.html