• 匿名盲审
  • 学术期刊非营利性
  • 全球免费开放获取全文
  • 最新科研成果提供绿色通道

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过灰堤盾构电力隧道实测沉降规律和机理分析

聂卫平 陈峰 曹波

聂卫平, 陈峰, 曹波. 过灰堤盾构电力隧道实测沉降规律和机理分析[J]. 南方能源建设, 2019, 6(2): 84-88. doi: 10.16516/j.gedi.issn2095-8676.2019.02.015
引用本文: 聂卫平, 陈峰, 曹波. 过灰堤盾构电力隧道实测沉降规律和机理分析[J]. 南方能源建设, 2019, 6(2): 84-88. doi: 10.16516/j.gedi.issn2095-8676.2019.02.015
Weiping NIE, Feng CHEN, Bo CAO. Measured Settlement Regular and Mechanism Analysis of Shield Cable Tunnel Through Ash Dam[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(2): 84-88. doi: 10.16516/j.gedi.issn2095-8676.2019.02.015
Citation: Weiping NIE, Feng CHEN, Bo CAO. Measured Settlement Regular and Mechanism Analysis of Shield Cable Tunnel Through Ash Dam[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(2): 84-88. doi: 10.16516/j.gedi.issn2095-8676.2019.02.015

过灰堤盾构电力隧道实测沉降规律和机理分析

doi: 10.16516/j.gedi.issn2095-8676.2019.02.015
基金项目: 

中国能建广东院科技项目“电缆隧道选型施工与地层变形研究” EV00801W

详细信息
    作者简介:

    聂卫平(通信作者) 1982-,男,江西抚州人,高级工程师,岩土工程博士,主要从事架空输电线路、电力电缆隧道和综合管廊等方面的设计和研究工作(e-mail)nieweiping@gedi.com.cn。

  • 中图分类号: TM7; TU45

Measured Settlement Regular and Mechanism Analysis of Shield Cable Tunnel Through Ash Dam

图(9) / 表 (2)
计量
  • 文章访问数:  279
  • HTML全文浏览量:  72
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-22
  • 修回日期:  2018-12-01
  • 刊出日期:  2020-07-11

过灰堤盾构电力隧道实测沉降规律和机理分析

doi: 10.16516/j.gedi.issn2095-8676.2019.02.015
    基金项目:

    中国能建广东院科技项目“电缆隧道选型施工与地层变形研究” EV00801W

    作者简介:

    聂卫平(通信作者) 1982-,男,江西抚州人,高级工程师,岩土工程博士,主要从事架空输电线路、电力电缆隧道和综合管廊等方面的设计和研究工作(e-mail)nieweiping@gedi.com.cn。

  • 中图分类号: TM7; TU45

摘要:   [目的]  根据灰堤实测沉降数据分析了实测沉降与一般规律的异同点,研究了灰堤沉降的规律和机理。  [方法]  介绍了盾构施工引起沉降的一般规律,通过盾构掘进穿越灰堤实测沉降曲线研究了灰堤沉降规律,并与数值模拟沉降规律、一般规律做了对比分析,分析了灰堤沉降突变原因,得出了灰堤沉降机理。  [结果]  研究表明:灰堤抛石块头较大且不均匀,粘结力差、空隙大,隧道开挖时很难均匀开挖,容易造成超挖和欠挖现象,这是灰堤沉降与一般沉降规律差异原因所在;盾构机过后各测点同时向隧道掌子面方向快速滑移,有外部因素引起地层变形突变,实测规律与一般规律明显相悖;灰堤抛石重组,导致地层向掌子面滑移,得出灰堤地表沉降机理,表明灰堤加固对盾构安全施工至关重要。  [结论]  研究成果可为其他类似工程提供参考。

English Abstract

聂卫平, 陈峰, 曹波. 过灰堤盾构电力隧道实测沉降规律和机理分析[J]. 南方能源建设, 2019, 6(2): 84-88. doi: 10.16516/j.gedi.issn2095-8676.2019.02.015
引用本文: 聂卫平, 陈峰, 曹波. 过灰堤盾构电力隧道实测沉降规律和机理分析[J]. 南方能源建设, 2019, 6(2): 84-88. doi: 10.16516/j.gedi.issn2095-8676.2019.02.015
Weiping NIE, Feng CHEN, Bo CAO. Measured Settlement Regular and Mechanism Analysis of Shield Cable Tunnel Through Ash Dam[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(2): 84-88. doi: 10.16516/j.gedi.issn2095-8676.2019.02.015
Citation: Weiping NIE, Feng CHEN, Bo CAO. Measured Settlement Regular and Mechanism Analysis of Shield Cable Tunnel Through Ash Dam[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(2): 84-88. doi: 10.16516/j.gedi.issn2095-8676.2019.02.015
  • 近年来,电力隧道建设在我国多个城市开展[1,2],因盾构法对周边环境影响小,已成为电力隧道常用的施工方法之一。盾构的掘进使得地层变形不断变化[3],分为三个阶段:前期微小变形、变形急剧增加、后期缓慢变形。引起盾构变形的主要原因是地层损失和重塑土的再固结[4]。电力隧道断面虽然较小,但其埋藏较浅,其施工对地表及其建筑物的影响明显,且灰堤为抛石混合结构,其变形规律异于其它地层。目前盾构施工对软土、砂卵石等地层影响研究较为常见[5,6,7,8],而对灰堤这种特殊地层的研究极为罕见,因此,盾构电力隧道过灰堤地层变形规律和机理具有重要的研究意义。本文以汕头华月电厂灰堤电力隧道工程盾构过电厂灰堤为例,以实测数据为基础研究盾构施工过程中抛石回填灰堤地层的变形规律和机理,对指导安全施工和管理决策有重要的意义(文中各测点布置于各管片对应地表正上方)。

    • 盾构推进施工过程中必然对周围土体产生扰动,表现为地层移动和沉降[9]。沉降符合一定的规律,一般分以下五阶段,如图1所示。

      图  1  盾构施工土体沉降图

      Figure 1.  Settlement figure of soil caused by shield construction

      根据经验统计,各沉降阶段具体描述如表1所示[9]

      表 1  盾构施工引起的沉降发展阶段

      Table 1.  Development stage of settlement caused by shield construction

      阶段 原因 沉降占总比例/% 出现时间及位置
      第1阶段:盾构到达前 密封舱内压力或网格式盾构切口、封板和网格板侧向面积与土体摩擦阻力大于水土压力,则隆起,否则下沉 0.00~4.50 切口前3.00~12.00 m
      第2阶段:开挖面到达前 开挖面土体受到挤压导致固结 0.00~44.00 切口前3.00 m至切口后1.00 m
      第3阶段:盾构通过时 土体扰动、盾壳与土摩擦、土体超挖 0.00~38.00 切口后1.00 m至盾尾脱出
      第4阶段:盾尾脱出时 盾尾空隙、注浆不及时 20.00~100.00 盾尾脱出后100 h以内

      从盾构沉降一般规律可知,引起地层沉降的原因有[10]:(1)地层下沉或隆起:盾构机正面土压力的不平衡;(2)地层隆起:盾构的外壳和土体摩擦;(3)地层下沉:盾构姿态的变化引起地层损失;(4)地层下沉:盾尾空隙引起地层损失;(5)地层隆起:壁后注浆量过少或过大;(6)地层下沉:超孔隙水压力和扰动引起的地层固结和蠕变。

    • 汕头华月电厂抛石灰堤电力隧道穿越采用水力网格式盾构,灰堤测点布置与管片上下对照如图2所示[11]

      图  2  测点布置与隧道管片上下对照图

      Figure 2.  Upper and lower contrast figure of measuring points and segments of tunnel

    • 灰堤附近海滩地面标高约-1.00 m,电厂灰堤顶面标高4.00 m,灰堤顶面外侧设有挡浪墙高1.00 m,电厂灰堤顶面宽度5.00 m,灰堤内坡1∶2,灰堤外坡1∶1.5。灰堤结构为抛石堤,灰堤基础处理采用混合石料爆炸挤淤,淤泥层以下为淤泥质土和粘土层。

    • 根据测点布置图,测点P4、Q5、D5分别位于1 997环、2 003环、2 010环管片切口上方地表位置,测点具有代表性。根据盾构掘进的进度,当盾构推进至2 016环时,P4、Q5、D5位置盾尾脱出时间≥100 h。P4、Q5、D5测点随盾构环数推进的沉降曲线,如图3所示,由上述沉降曲线可知:

      图  3  隧道轴线上测点随盾构环数推进的沉降曲线

      Figure 3.  Settlement curve of measuring points on tunnel axis as shield construction

      1)盾构推进至2 016环之前,P4、Q5、D5点的沉降变化较缓,而掘进至2 016环之后沉降速率明显增大,直至盾构掘进至2 060环后才趋于稳定,而根据盾构沉降一般规律,此时,P4、Q5、D5点沉降占总比例约100%,趋于稳定,实测规律与一般规律明显相悖。

      2)各测点在掘进至2 016环之后下沉速率几乎同时加快,表明掘进至2 016环及其之后,各测点同时向隧道掌子面方向快速滑移,说明有外部因素引起地层变形突变。

    • 根据上节分析,盾构掘进至2 016环之后各测点同时向隧道掌子面方向快速滑移,为进一步分析地层沉降规律,本节进行数值模拟分析,并选取P2、P4、P6测点实测和数值模拟曲线进行对比,三个测点位于同一断面上,具有代表性。

      建立了三维有限元计算模型,模型中管片环数位1 945~2 060环,三维计算模型研究范围为:x坐标方向(隧道轴线方向,隧道推进方向为负)长度为112.00 m(x=-2.00~110.00 m);y坐标方向(与x坐标方向同处于水平面内,垂直于x坐标方向)长度为60 m(y=-30.00~30.00 m);z坐标方向(竖直方向,向上为正)底面高程为-40.87 m(z=-40.87~4.00 m)。工程区三维有限元模型如图4所示。隧道模型共分为3层,分别为开挖层、管片层和壁后注浆层,隧道断面数值模型示意图如图5所示。计算模型共划分单元123 493个,节点27 589个,为保证计算精度,灰堤采用较密的单元风格,远离灰堤的两侧单元尺寸逐渐变大,计算模型采用位移边界条件,实体单元模拟。隧道围岩包括淤泥层、淤泥质土层、灰堤混合层。过灰堤处隧道穿越抛石区,其余段隧道均从淤泥质土中穿越。

      图  4  三维有限元计算模型

      Figure 4.  Three-dimensional finite element calculation model

      图  5  隧道断面数值模型示意图

      Figure 5.  Schematic diagram of numerical model of tunnel section

      根据工程地质勘测资料,三维有限元计算时计算参数如表2所示,其中壁后注浆采用弹性本构模拟,其他为弹塑性材料,隧道的衬砌和壁后注浆采用实体单元模拟,衬砌采用C50混凝土的参数,壁后注浆压力范围0.00~0.50 MPa。考虑灰堤的第一次和第二次注浆模拟,如三维数值模拟切面图图6所示。

      图  6  三维数值模拟切面图

      Figure 6.  Three-dimensional numerical simulation section diagram

      表 2  数值模拟计算参数

      Table 2.  Numerical simulation calculation parameters

      土层名称 重度/(kN·m-3) 弹性模量/MPa 泊松比 摩擦角/(°) 粘聚力/kPa 抗拉强度/MPa
      淤泥 15.25 4.12 0.40 1.70 3.60 0.02
      淤泥质土 16.59 6.15 0.38 4.90 6.60 0.10
      灰堤混合层 21.00 8.13 0.30 32.73 14.19 1.00
      管片 25.00 34 500.00 0.167 57.32 4 690.00 4.69
      壁后注浆 21.00 400.00 0.25
      灰堤第一、二次加固层 21.00 494.37 0.20 21.63 2 536.11 6.23

      P2、P4、P6测点实测和数值模拟结果进行对比如图7所示。

      图  7  监测点实测和数值模拟沉降对比曲线

      Figure 7.  Comparison curves of measured and simulated settlement at monitoring points

      对比表明:

      1)在盾构掘进至2 016环之前,P2、P4、P6沉降数值计算值相对实测值的误差平均值为7.76%,8.67%,8.11%,说明在2 016环之前,计算结果和实测沉降比较接近,且随着开挖的发展,实测值与数值模拟计算结果变化规律基本吻合,都符合沉降发展的一般规律。

      2)盾构过2 016环后,由于地层变形太大,隧道围岩粘结力变化程度大,粘聚力变小,采用上述本构模型模拟与实际不符,需要进一步通过实测值分析2 016环之后各测点同时向隧道掌子面方向快速滑移或突变的原因。

    • 为分析上文提到的灰堤沉降突变原因,根据实际工程情况,绘制了盾构穿越过程中灰堤的地层划分和2 016环后盾构推进地层滑移图,如图8所示。

      图  8  灰堤实际地层划分和2 016环后盾构推进地层滑移图

      Figure 8.  Diagram of actual stratigraphic classification and formation sliding as shield construction after the 2 016th segment

      由图可知:

      1)盾构在2 010环(对应地表D5测点)之前分别进行了灰堤第一次和第二次加固,对灰堤地层沉降有较好的保护作用,因此盾构在掘进2 010环之前地层沉降较缓,且符合盾构掘进的一般规律。

      2)盾构掘进至2 016环时,由于2 010至2 016环之间的上部地层没有加固,灰堤为抛石结构,粘结力很差,空隙大,盾构通过时易引起超挖或欠挖状况,盾构掘进后土体扰动导致上部抛石向掌子面方向滑移,直至抛石结构重新组合,此时虽然采取了壁后注浆措施,但不足以平衡抛石结构重新组合引起的地层沉降和变形。

      3)在杂抛石结构重新组合过程中,灰堤两次加固区上方的抛石也因粘结力差,空隙大的特点,向掌子面方向滑移和重组,从而导致P4、Q5、D5点的沉降速率同时迅速增大。

      4)分析表明对隧道通过处的灰堤地层全线加固是防止地表沉降突变的有效措施。

    • 通过上述分析,除一般地层隆起和下沉影响因素和机理之外,汕头华月隧道工程灰堤沉降还增加了地层滑移这个影响因素,综合起来,盾构掘进对电厂灰堤周围地层产生变形的机理如图9所示。

      图  9  盾构推进引起电厂灰堤地表的变形机理

      Figure 9.  Surface deformation mechanism of power plant ash dam as shield construction

      图中1、2、3、4、5、6、7分别代表正面土压力的不平衡、外力摩擦、盾构姿态的变化、盾尾空隙、注浆、超孔隙水压力和扰动、灰堤地层滑移。

    • 1)分析了盾构掘进的一般规律,总结指出了一般规律中盾构掘进引起地层沉降的六种原因。

      2)灰堤是抛石结构的地层,抛石块头较大且不均匀,粘结力差、空隙大,隧道开挖时很难做到掌子面的均匀开挖,很容易造成超挖和欠挖现象,这是灰堤沉降与一般沉降规律差异原因所在。

      3)通过数值模拟分析表明:在盾构掘进至2 016环之前,实测值与数值模拟计算结果变化规律基本吻合,都符合沉降发展的一般规律。盾构过2 016环后,隧道围岩粘结力变化程度大,粘聚力变小,需要通过实测值分析快速滑移或突变的原因。

      4)盾构掘进至2 016环之后,灰堤沉降与一般规律存在较大差异,沉降速率明显增大,直至盾构掘进至2 060环后才趋于稳定,说明盾构机过后各测点同时向隧道掌子面方向快速滑移,有外部因素引起地层变形突变,实测规律与一般规律明显相悖。

      5)通过灰堤地层和盾构掘进过程的对照分析,指出灰堤沉降突变的原因在于灰堤抛石重组,从而导致地层向掌子面滑移,综合分析得出了灰堤地层变形的机理。

      6)分析还表明:为防止盾构穿越灰堤过程中地层变形突变,降低安全事故,对隧道通过处的灰堤地层全线加固至关重要,研究成果可为其他类似工程提供参考。

  • 参考文献 (11)

    目录

      /

      返回文章
      返回