• 匿名盲审
  • 学术期刊非营利性
  • 全球免费开放获取全文
  • 最新科研成果提供绿色通道

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核事故应急大气扩散模型ARTM验证与评价

宁莎莎 李璟涛 张怀宇

宁莎莎,李璟涛,张怀宇.核事故应急大气扩散模型ARTM验证与评价[J].南方能源建设,2020,07(04):87-92. doi:  10.16516/j.gedi.issn2095-8676.2020.04.013
引用本文: 宁莎莎,李璟涛,张怀宇.核事故应急大气扩散模型ARTM验证与评价[J].南方能源建设,2020,07(04):87-92. doi:  10.16516/j.gedi.issn2095-8676.2020.04.013
NING Shasha,LI Jingtao,ZHANG Huaiyu.Evaluation of Nuclear Accident Atmospheric Radionuclide Transport Model ARTM[J].Southern Energy Construction,2020,07(04):87-92. doi:  10.16516/j.gedi.issn2095-8676.2020.04.013
Citation: NING Shasha,LI Jingtao,ZHANG Huaiyu.Evaluation of Nuclear Accident Atmospheric Radionuclide Transport Model ARTM[J].Southern Energy Construction,2020,07(04):87-92. doi:  10.16516/j.gedi.issn2095-8676.2020.04.013

核事故应急大气扩散模型ARTM验证与评价

doi: 10.16516/j.gedi.issn2095-8676.2020.04.013
基金项目: 

国家电投集团核应急技术支持中心建设项目 FJ619007

详细信息
    作者简介:

    宁莎莎(通信作者)1987-,女,天津人,国家电投集团电站运营技术(北京) 有限公司工程师,上海交通大学硕士,主要从事核电厂安全及应急研究(e-mail) ningshasha@spic.com.cn

    李璟涛1974-,男,天津人,国家电投集团电站运营技术(北京)有限公司总经理,高级工程师,主要从事核电厂安全及应急研究(e-mail)lijingtao@spic.com.cn

    张怀宇1971-,男,内蒙古通辽人,国家电投集团电站运营技术(北京)有限公司副总经理,教授级高级工程师,主要从事电厂安健环体系研究及设计(e-mail)zhanghuaiyu@spic.com.cn

  • 中图分类号: TL4

Evaluation of Nuclear Accident Atmospheric Radionuclide Transport Model ARTM

  • NING Shasha,LI Jingtao,ZHANG Huaiyu.Evaluation of Nuclear Accident Atmospheric Radionuclide Transport Model ARTM[J].Southern Energy Construction,2020,07(04):87-92.
  • 摘要:   目的  针对国内外普遍关注的核事故应急决策支持与事故后果评价的问题,围绕目前验证、评价大气扩散模型的两个主要困难。  方法  应用目前国际上应用广泛的KINCAID示踪实验数据集和MVK模型验证评价方法,验证了评价放射性核素大气扩散模型ARTM(Atmospheric Radionuclide Transport Model)。  结果  统计结果表明:ARTM的模拟结果基本上是可信赖的,3 km内的预测有低估的趋势,5 km外的预测有高估的趋势。  结论  ARTM模型总体上可以应用于核电厂事故后果评价。
  • 图  1  ARTM模型系统框架

    Fig.  1  Simulation process of ARTM model

    图  2  模型散点图

    Fig.  2  Scatter plot of ARTM

    图  3  模型分位数图

    Fig.  3  Quantile plot of ARTM

    图  4  ARTM柱状分析图

    Fig.  4  Residual plot of ARTM

    表  1  BOOT程序采用的统计量

    Tab.  1.   Statistical quality indicators adopted by BOOT software

    统计量公式接受范围理想值
    平均偏差Bias=CO¯-CP¯n.a.0.0
    比例偏差FB=CO¯-CP¯0.5(CO¯+CP¯)-2~20.0
    几何平均偏差MG=exp (lnCO¯-lnCP¯)>0.01.0
    标准化均方误差NMSE=(CO-CP)2¯Co¯CP¯n.a.0.0
    几何方差VG=exp(lnCO-lnCp)2¯>0.01.0
    相关系数r=i=1N(Coi-Co¯)(Cpi-Cp¯)σoσp0~11.0
    比例方差FS=σCO-σCP0.5(σCP+σCP)-2~20.0
    比例α因子FAα=N(y-y0=(x-x0)αN×1000~100100
    下载: 导出CSV

    表  2  实验比对结果

    Tab.  2.   Results of the experiment

    模型Mean/[ngm-3·(gs-1)-1]Sigma/[ngm-3·(gs-1)-1]Bias/[ngm-3·(gs-1)-1]NMSECorFAC2FBFS
    观测值42.3039.9900.001.001.000.000.00
    ARTM50.0229.75-7.720.840.320.49-0.170.29
    AERMOD31.7725.5010.661.510.160.380.290.44
    CALPUFF40.5752.771.861.420.460.380.04-0.28
    下载: 导出CSV
  • [1] VVANDERBORGHTB, KRETZSCHMARJ G. A literature survey on tracer experiments for atmospheric dispersion study [C]// Nuclear Energy Research Center. International Technical Meeting on Air Pollution Modeling and its Application, Denmark ,1983. Denmark: Atmospheric Environment,1983:2395-2403.
    [2] STOHLA , HITTENBERGERM, WOTAWAG. Validation of the lagrangian particle dispersion model flexpart against large-scale tracer experiment data [J]. Atmospheric Environment.1998,32(24) 4245-4264.
    [3] BOWNEN E, LONDERGANR J. Overview, results, and conclusions for the EPRI plume model validation and development project: plains site [R/OL]. (1983-05-01)[2020-02-26]. https://www.osti.gov/biblio/6092793.
    [4] 邹敬, 曲静原, 曹建主. RODOS 系统中RIMPUFF模型的验证与比对 [J].核动力工程, 2005, 26(5): 475-479+501.

    ZOUJ, QUJ Y, CAOJ Z. Validation of RIMPUFF model in RODOS [J].Nuclear Power Engineering, 2005, 26(5): 475-479+501.
    [5] MOSCAS, GRAZIANIG, KLUGW, et al. A statistical methodology for the evaluation of long-range dispersion models: an application to the ETEX exercise [J]. Atmos Environ ,1998, 32(24): 4307–4324.
    [6] NAPPOC J, ESSAK. Modeling dispersion from near-surface tracer releases at cape canaveral , florida [J]. Atmos Environ ,2001,35(23): 3999–4010.
    [7] ICHIKAWAY, SADAK. An atmospheric dispersion model for the environmental impact assessment of thermal power plants in Japan – a method for evaluating topographical effects [J].Air Waste Manage Assoc, 2002,52(3):313–323.
    [8] OLESENH R. Datasets and Protocol for Model Validation [J].Environment and Pollutin,1995,5(4-6):693-701.
    [9] 刘爱华,蒯琳萍.放射性核素大气弥散模式研究综述 [J]. 气象与环境学报,2011,27(4):59-65.

    LIUA H,KUAIL P .A review on radionuclides atmospheric dispersion modes [J].Journal of Meteorology and Environment,2011,27(4):59-65.
    [10] 张玉珍,蒯琳萍,杨燕华.CALPUFF 模型在模拟核电站事故源项大气扩散中的应用 [J].电力与能源,2011,32(2):149-152.

    ZHANGY Z,KUAIL P,YANGY H.Application of CALPUFF model to simulate atmospheric diffusion of accident source item on nuclear power station [J].Power and Energy,2011,32(2):149-152.
    [11] 刘爱华,胡伟,沈海波.对复杂地形和低风条件下放射性核素大气扩散模拟对比研究 [J].四川环境,2017,36(增刊1):153-158.

    LIUA H,HUW,SHENH B.Comparison study of radionuclide dispersion modeling in regions of complex topography and low wind condition [J].Sichuan Environment,2017, 36(Supp.1):153-158.
    [12] 侯连娇,陈凌,程卫亚,等.AERMOD与CALPUFF模型在某核基地环境影响评价中的应用 [J].科技创新与应用,2017(16): 176.

    HOUL J,CHENL,CHENGW Y,et al.Application of AERMOD and CALPUFF model in environmental impact assessment of a nuclear base [J].Technology Innovation and Application,2017(16):176.
    [13] 蔺洪涛, 纪运哲, 刘新建.Calpuff模式在核电厂事故对水体影响分析中的应用 [J].南方能源建设,2015, 2(4):57-61.

    LINH T,JIY Z,LIUX J.Impact analysis of nuclear power plant accidents on reservoir using calpuff model [J].Southern Energy Construction,2015, 2(4):57-61.
    [14] 姚仁太,徐向军,郝宏伟,等.远东地区核风险厂址释放的气载放射性污染物长距离迁移的模拟 [J].辐射防护,2005,25(4):193-205.

    YAOR T,XUX J,HAOH W,et al.Simulations of long-range transport of airborne radioactive pollutants released from nuclear risk sites in the Far East [J].Radiation Protection,2005,25(4):193-205.
    [15] CHANGJ C, HANNAS R.Air quality model performance evaluation [J].Meteorology and Atmospheric Physics ,2004,87(1-3):167-196.
    [16] 胡二邦,陈家宜.核电厂大气扩散及其环境影响评价[M].北京:原子能出版社,1999:299.

    HUE B,CHENJ Y.Nuclear power plant atmospheric diffusion and environmental impact assessment [M].Beijing: Atomic Energy Press,1999:299.
    [17] 邹敬,曲静原,曹建主.大气扩散模型的验证与比对的工具和方法 [J].辐射防护通讯,2004,25(5):15-20.

    ZOUJ,QUJ Y,CAOJ Z.Methodologies for comparison of atmospheric dispersion models[J].Radiation Protection Bulletin,2004,25(5):15-20.
  • [1] 曾小超, 史沁鹏, 洪剑锋, 姜健宁, 曹君慈, 刘伟民.  竖井式重力储能系统模型构建及功率优化 . 南方能源建设, 2024, 11(6): 1-11. doi: 10.16516/j.ceec.2024-319
    [2] 刘璐瑶, 陈志刚, 沈欣炜, 吴劲松, 廖霄.  基于EMD-MLP组合模型的用电负荷日前预测 . 南方能源建设, 2024, 11(1): 143-156. doi: 10.16516/j.ceec.2024.1.15
    [3] 马彬, 肖俊阳, 吴新, 罗金阁, 宋佳刚, 徐展鹏.  配电网施工人力机械资源科学调配模型与方法 . 南方能源建设, 2024, 11(S1): 36-46. doi: 10.16516/j.ceec.2024.S1.07
    [4] 赵智尧, 廖毅, 李行义.  变电工程项目图结构数据模型研究 . 南方能源建设, 2024, 11(S1): 111-114. doi: 10.16516/j.ceec.2024.S1.17
    [5] 李胜, 葛文澎, 吴嘉诚, 曲春明, 孙睿.  风力机组尾流模型适用性评价 . 南方能源建设, 2024, 11(1): 42-53. doi: 10.16516/j.ceec.2024.1.05
    [6] 林刚, 戴宁怡.  电动汽车直流充电站的低阶RLC阻抗电路模型 . 南方能源建设, 2023, 10(5): 80-86. doi: 10.16516/j.gedi.issn2095-8676.2023.05.011
    [7] 蔡彦枫, 徐初琪, 汤东升, 王晴勤.  基于多尾流模型的大型海上风电场扩容试验研究 . 南方能源建设, 2023, 10(4): 138-147. doi: 10.16516/j.gedi.issn2095-8676.2023.04.014
    [8] 何知纯, 谢敏, 黄莹, 李弋升, 张世平.  基于连续隐马尔可夫模型的风水火联合低碳检修优化 . 南方能源建设, 2023, 10(4): 43-56. doi: 10.16516/j.gedi.issn2095-8676.2023.04.005
    [9] 仲锋祥, 何忠意, 朱佩宁, 周亚东.  最优组合预测模型在预压处理地基沉降中的应用研究 . 南方能源建设, 2019, 6(S1): 140-146. doi: 10.16516/j.gedi.issn2095-8676.2019.S1.027
    [10] 贾斌, 周倩.  脱硫废水引入自平衡渣水系统的物理模型研究 . 南方能源建设, 2018, 5(3): 106-110. doi: 10.16516/j.gedi.issn2095-8676.2018.03.017
    [11] 兰立刚, 马睿, 吴广生.  基于机理模型的汽温控制系统优化及应用 . 南方能源建设, 2017, 4(2): 73-76. doi: 10.16516/j.gedi.issn2095-8676.2017.02.012
    [12] 吴亚雄, 谢敏.  基于BP神经网络灰色回归组合模型的年最大负荷预测 . 南方能源建设, 2017, 4(2): 46-50,57. doi: 10.16516/j.gedi.issn2095-8676.2017.02.007
    [13] 徐飞, 侯恩振, 孙浩, 张磊.  多表集抄项目造价模型研究与实践 . 南方能源建设, 2017, 4(S1): 143-149. doi: 10.16516/j.gedi.issn2095-8676.2017.S1.027
    [14] 聂卫平, 郑文棠.  基于地质和监测资料的地下洞室数值仿真模型概化分析 . 南方能源建设, 2016, 3(4): 96-101. doi: 10.16516/j.gedi.issn2095-8676.2016.04.020
    [15] 王秀菊.  水电工程数值模型快速查错方法研究 . 南方能源建设, 2016, 3(4): 92-95. doi: 10.16516/j.gedi.issn2095-8676.2016.04.019
    [16] 刘立威, 马兆荣, 刘东华.  基于损伤塑性模型的核电站超大型冷却塔损伤分析 . 南方能源建设, 2015, 2(S1): 105-107. doi: 10.16516/j.gedi.issn2095-8676.2015.S1.023
    [17] 张灿亨, 王鑫, 郑文棠.  基于水动力学模型的暴雨浅层滑坡风险分析 . 南方能源建设, 2015, 2(S1): 198-202. doi: 10.16516/j.gedi.issn2095-8676.2015.S1.044
    [18] 胡服全, 杨培勇, 朱翊洲, 高文军, 何铮.  基于实测数据的电缆桥架有限元模型修正 . 南方能源建设, 2015, 2(4): 88-92. doi: 10.16516/j.gedi.issn2095-8676.2015.04.015
    [19] 陈晖.  基于投入产出模型的区域间能源流分析方法研究 . 南方能源建设, 2015, 2(1): 26-31. doi: 10.16516/j.gedi.issn2095-8676.2015.01.005
    [20] 乔弘, 李瀚, 王天堃.  火电厂飞灰含碳量多模型融合软测量方法 . 南方能源建设, 2015, 2(S1): 10-14. doi: 10.16516/j.gedi.issn2095-8676.2015.S1.003
  • 加载中
图(4) / 表 (2)
计量
  • 文章访问数:  493
  • HTML全文浏览量:  98
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-26
  • 修回日期:  2020-08-06
  • 刊出日期:  2020-12-25

核事故应急大气扩散模型ARTM验证与评价

doi: 10.16516/j.gedi.issn2095-8676.2020.04.013
    基金项目:

    国家电投集团核应急技术支持中心建设项目 FJ619007

    作者简介: 宁莎莎(通信作者)1987-,女,天津人,国家电投集团电站运营技术(北京) 有限公司工程师,上海交通大学硕士,主要从事核电厂安全及应急研究(e-mail) ningshasha@spic.com.cn

    李璟涛1974-,男,天津人,国家电投集团电站运营技术(北京)有限公司总经理,高级工程师,主要从事核电厂安全及应急研究(e-mail)lijingtao@spic.com.cn

    张怀宇1971-,男,内蒙古通辽人,国家电投集团电站运营技术(北京)有限公司副总经理,教授级高级工程师,主要从事电厂安健环体系研究及设计(e-mail)zhanghuaiyu@spic.com.cn

  • 中图分类号: TL4

摘要:   目的  针对国内外普遍关注的核事故应急决策支持与事故后果评价的问题,围绕目前验证、评价大气扩散模型的两个主要困难。  方法  应用目前国际上应用广泛的KINCAID示踪实验数据集和MVK模型验证评价方法,验证了评价放射性核素大气扩散模型ARTM(Atmospheric Radionuclide Transport Model)。  结果  统计结果表明:ARTM的模拟结果基本上是可信赖的,3 km内的预测有低估的趋势,5 km外的预测有高估的趋势。  结论  ARTM模型总体上可以应用于核电厂事故后果评价。

English Abstract

宁莎莎,李璟涛,张怀宇.核事故应急大气扩散模型ARTM验证与评价[J].南方能源建设,2020,07(04):87-92. doi:  10.16516/j.gedi.issn2095-8676.2020.04.013
引用本文: 宁莎莎,李璟涛,张怀宇.核事故应急大气扩散模型ARTM验证与评价[J].南方能源建设,2020,07(04):87-92. doi:  10.16516/j.gedi.issn2095-8676.2020.04.013
NING Shasha,LI Jingtao,ZHANG Huaiyu.Evaluation of Nuclear Accident Atmospheric Radionuclide Transport Model ARTM[J].Southern Energy Construction,2020,07(04):87-92. doi:  10.16516/j.gedi.issn2095-8676.2020.04.013
Citation: NING Shasha,LI Jingtao,ZHANG Huaiyu.Evaluation of Nuclear Accident Atmospheric Radionuclide Transport Model ARTM[J].Southern Energy Construction,2020,07(04):87-92. doi:  10.16516/j.gedi.issn2095-8676.2020.04.013
  • 新冠肺炎疫情目前在全世界传播,疫情应对中的应急工作备受关注。核事故由于后果的严重性,对于应急工作中事故情况的分析掌握有更高的要求,为了在事故应急情况下为决策者提供及时、准确的技术支持,需要对核应急决策支持与事故后果评价系统的各个模块的准确性进行验证,其中大气扩散模型的验证比对是其中非常重要的方面。目前验证评价大气扩散模型主要的两个困难是:(1)难以获得合适的实验数据集;(2)难以选择适宜的模型验证方法。本文针对以上两个问题,应用目前国际上应用广泛的KINCAID示踪实验数据集和MVK(Model Validation Kit)模型验证评价方法,对放射性核素大气扩散模型ARTM(Atmospheric Radionuclide Transport Model)进行了验证评价。

    • 早期的示踪实验主要有三种类型:(1)大气示踪剂可行性研究实验;(2)定性大气扩散实验;(3)大气扩散参数确定实验,B.Vanderborght等在1983年对这些实验进行了详细的综述1,令人遗憾的是大量的实验都缺乏定量描述,而此后的示踪实验在吸取前人经验的基础上对实验条件和实验结果进行了相对详细的定量描述,使大气扩散模型的统计验证成为可能。按照实验规模,大气扩散实验分为大尺度大气示踪实验(200 km以上)和中小尺度(200 km以下)大气示踪实验。

      大尺度扩散实验(200 km以上)由于其经费昂贵、实验设计和协调的复杂性而很少开展。现在能够应用于验证大尺度扩散模型的示踪实验数据集还不多,其中受到广泛关注的数据集有:CAPTEX、ANATEX、ETEX2

      相对于大尺度示踪实验而言,中小尺度的示踪实验数据集数量就比较多了。Kincaid野外实验是EPRI烟羽模型验证与开发项目的一个重要试验3,于1980年至1981年在美国伊利诺斯州Kincaid电厂进行,该核电厂的地理坐标为西经89.49°,北纬39.59°。海拔约180 m,周围是平坦的农场和少量湖泊,地表粗糙度约10 cm。示踪气体实验持续约350 h,示踪气体采用SF6,实验期间SF6从高187 m,直径9 m的电厂烟囱释放,监测器分别布置在距源0.5至50 km范围内的12条弧线上。数据集中包括了171 h,1 284组弧线-小时数据,每组数据都设置有质量指数表示数值的可信任程度。

      丹麦国家环境研究所(NERI)开发的模型验证比对工具MVK中Kincaid数据集是包含数据最全面、应用最广泛的数据集,此外还有Indianapolis、Copenhagen、Lillestrøm三个大气扩散实验数据集。放射性核素的大气扩散可借助常规的实踪实验进行验证,如Ka-Hing Yau等应用Kincaid数据集验证了AUSTAL2000和CALPUFF扩散模型,EPA将该数据集应用于CALPUFF和其他大气扩散模型的验证,Steven R. Hanna将其用于ISC3、ADMS和AERMOD模型的验证比对,邹敬等也应用此数据集验证比对了实时在线核事故决策支持系统系统中RIMPUFF模型的验证比对4

    • 目前国际上已经开展了一些关于空气质量模型一般评价方法的讨论,但是到目前为止还没有形成统一的评价方法和模型性能标准。应用统计评价方法分析验证模型中,MVK工具分析较为常用。

    • 丹麦国家环境研究所(NERI)基于Hanna5-7等的定量统计参数方法开发了模型验证工具MVK(Model Validation Kit)。该工具包包括Kincaid、Indianapolis、Copenhagen、Lillestrom四个大气扩散实验数据集,定量分析程序(BOOT)、残差分析程序(Residual Analysis)及二维绘图程序(Sigplot)等。实验观测值与模型预测值通过MVK定量统计分析、残差分析及定性图形分析的全面比对,可以有效的评价模型的准确性、适用性,揭示模型的错误与数据中的坏点。

    • 目前BOOT程序已经涵盖了ASTM(American Society for Testing and Materials)的模型评价方法,诊断模型预测值的采用的统计量除平均值(Mean)、标准偏差(Sigma)外,还包括平均偏差(Bias)、比例偏差(FB)、几何平均偏差(MG)、标准化均方误差(NMSE)、几何平均方差(VG)、相关系数(r)及比例方差(FS),这些参数的计算公式如表1所示:

      表 1  BOOT程序采用的统计量

      Table 1.  Statistical quality indicators adopted by BOOT software

      统计量公式接受范围理想值
      平均偏差Bias=CO¯-CP¯n.a.0.0
      比例偏差FB=CO¯-CP¯0.5(CO¯+CP¯)-2~20.0
      几何平均偏差MG=exp (lnCO¯-lnCP¯)>0.01.0
      标准化均方误差NMSE=(CO-CP)2¯Co¯CP¯n.a.0.0
      几何方差VG=exp(lnCO-lnCp)2¯>0.01.0
      相关系数r=i=1N(Coi-Co¯)(Cpi-Cp¯)σoσp0~11.0
      比例方差FS=σCO-σCP0.5(σCP+σCP)-2~20.0
      比例α因子FAα=N(y-y0=(x-x0)αN×1000~100100

      式中:CO为观测浓度;CP为模型预测浓度;σCo为实验观测浓度的标准差;σCp为模型预测浓度的标准差,单位均为μgm-3

      平均偏差Bias定义为预测平均值和观测平均值的差值,其数值可能是正数也可能是负数。当Bias为正数时,可能表示每一组数据的预测值均大于观测值,即模型具有高估的趋势,也可能表示预测值大于观测值数据对的偏差之和,大于预测值小于观测值数据对的偏差之和,因此Bias不具备表征模型高低估趋势的性能。其置信区间可以表示为:

      ci=±tα1N(N-1)i(Bi-B)2 ((1))

      式中:tα取决于t分布的自由度和置信区间的振幅。

      FB和MG都是反映系统误差的统计参数。其中FB更为常用,主要原因有2个:(1)FB是对称而有界的,可接受范围在-2(极端低估)到2(极端高估)之间;(2)FB是一个无量纲数,使用于涉及不同浓度量级比较的研究中比较方便。但对于大部分的空气污染物来说,其浓度接近于对数正态分布,因此个别的高观测浓度或预测浓度会对比例偏差FB产生显著的影响,而几何平均误差MG由于采用对数的处理方法,对很高的数值就不那么敏感了,但接近于0的浓度值会对MG影响显著。

      NMSE是表征偏差的统计参量,对观测值与预测值的差值非常敏感,尤其峰值的偏差对NMSE的影响更大。一般来说,模型的评价与验证都是用模型预测值直接与实验观测值比对的,但是由于观测值的不确定性主要来自于大气的随机扰动,而模型预测值的不确定性主要来自于模型模拟的物理过程,两者来源不同,直接比较的方法有可能会得到误导性的结果,因此有的时候将系统误差和非系统(随机)误差分开考虑是必要的。总的NMSE可以表示为由系统误差引起的标准化均方误差NMSES与由非系统误差引起的标准化均方误差NMSEU之和。当非系统误差为0时,NMSE取到最小值NMSES

      NMSE=NMSES+NMSEU ((2))
      NMSES=4FB24-FB2 ((3))

      类似地,VG等于由系统误差引起的几何方差VGS与由非系统误差引起的几何方差VGU之和。

      VGS=exp lnCO¯-lnCP¯2=exp (lnMG2) ((4))

      相关系数r是目前模型评价中使用最广泛的统计量。r为1时,表示预测值与测量值正相关,即数据对(COCP)分布在斜率为正数的直线上;r为-1时,则直线的斜率为负数;r为0时,表示预测值和测量值之间没有线性关系。

      α因子表示满足1αCPCOα的数据所占的百分比(不包括(0,0)数据对)。α常取2和5。FAC对因为不受数据奇点的影响,是模型评价中最可靠的方法,可以作为消除极端值的工具和提高统计分析结果的方法。

    • MVK虽然在模型的验证与评价中得到了广泛的应用,但其应用仍具有一定的局限性,主要体现在以下几个方面:

      (1)数量有限,只考虑了4个实验数据集;(2)仅适用于短程扩散模型;(3)只能处理一些相对简单的情景,主要适用于在均匀地表环境下单个点源释放无反应性气体的情景;(4)没有明确的解决由观测浓度的随机特性所产生的问题,程序只是直接将弧最大浓度和烟羽中心线浓度进行比较;(5)数据集主要关注的是弧最大浓度,只有部分数据集包括可信的侧风向积分浓度8;(6)BOOT程序采用的统计量中并没有一个综合性的统计指标,验证人员只能根据统计结果得到模型在某一方面的统计评价,而没有总体的适用性评价。

    • 本文应用MVK工具,将ARTM模拟结果与AERMOD模型、CALPUFF模型及Kincaid数据集进行比对。AERMOD模型和CALPUFF模型是《环境影响评价技术导则大气环境》(HJ2.2—2008)推荐的大气扩散模型,已经广泛应用放射性核素大气扩散分析9-12,此外CALPUFF模型还能应用于核事故水体影响分析中13。Kincaid数据集根据数据质量将数据进行分类,本文采用质量指示数分别为2和3的552组数据进行比对验证,数据分布在3~40 km范围内,模拟区域地形平坦。

    • ARTM是以德国空气质量标准推荐的扩散模式AUSTAL2000扩散模型为基础来计算大气中放射性污染物的扩散的,该模型系统主要包括诊断风场模型、雾羽抬升模型、浓度计算模型和核素沉积模型。模型的基本原理是拉格朗日烟团粒子模式,即把每个污染质点当成有标志的质点,粒子的运行轨迹可用下式表述:

      X(t+Δt)=X(t)+V[X(t),t]Δt+V'[X(t),t]Δt ((5))

      式中:X为粒子的三维坐标分量;V为平均风速(u,v,w)V'为湍流脉动速度分量(u',v',w')t为时间序列;Δt为时间步长。

      通过释放大量粒子,计算粒子的轨迹,这些粒子描述气载污染物在大气中的迁移扩散。粒子在流场中按平均风输送,同时又用一系列随机位移来模拟湍流扩散,这样就表达了平流和湍流扩散两种作用,最后由这些粒子在空间和时间上的总体分布估算出污染物的分布14

      图1所示,ARTM模型系统包括诊断风场模型、雾羽抬升模型、浓度计算模型和核素沉积模型。诊断风场模型结合地形和下垫面状况处理输入的气象数据,计算风场。浓度计算模型经过雾羽抬升模型的修正后输出每个网格的空气浓度。最后核素沉积模型输出每个网格的干、湿沉积浓度。

      图  1  ARTM模型系统框架

      Figure 1.  Simulation process of ARTM model

    • 实验的统计结果列于表2中,模型预测值与观测值越接近,则表示模型的预测性能越好。

      表 2  实验比对结果

      Table 2.  Results of the experiment

      模型Mean/[ngm-3·(gs-1)-1]Sigma/[ngm-3·(gs-1)-1]Bias/[ngm-3·(gs-1)-1]NMSECorFAC2FBFS
      观测值42.3039.9900.001.001.000.000.00
      ARTM50.0229.75-7.720.840.320.49-0.170.29
      AERMOD31.7725.5010.661.510.160.380.290.44
      CALPUFF40.5752.771.861.420.460.380.04-0.28

      表2中,ARTM模型的均值偏保守,其他两个模型均值偏小,这样的结果不仅与模型本身的属性有关,与实验条件也有很大关系,如ARTM因软件局限采用了平坦地形模拟,而AERMOD和CALPUFF均输入实际地形数据进行模拟,因此ARTM的预测结果在数值上会比实际地形略大。一般说来如果模型的统计结果满足-0.3<FB<0.3,0.7<MG<1.3,NMSE<1.5,VG<4,FAC2>0.5,则可以认为模型的模拟结果是有效的15,ARTM的统计结果基本达到了这个标准。相关系数Cor是在检验模式预测值有效性中广泛应用的统计量,描述了两组变量相对于各自的均值以统一比例增加或减少的程度16。ATRM模型的相关系数值略低,表明观测值与预测值相对于各自的均值变化的统一程度较差。此外ARTM模型比例方差数值上与理想值也是比较接近的。

      模型预测值和观测值的对应的散点分布图如图2所示。数据点在图中呈大致的椭圆形带状散布,但一部分点偏离较远,造成相关系数r值偏低。图3为模型分位数图,分位数图是将模型预测值与观测值分别从高到低排序,然后将对应的点打印在图上,这个图的意义在于能反映模型的预测趋势17。由图4柱状分析图可以看出,ARTM模型柱状图0 km~3 km距离段75%处约指向1.0,表明在该距离段有75%的数据的比值小于1.0。结合图1反映的预测趋势,说明ARTM模型在0 km~3 km距离段的预测有低估的趋势,在稍远处(5 km以外)ARTM模型的预测值有高估的趋势。

      图  2  模型散点图

      Figure 2.  Scatter plot of ARTM

      图  3  模型分位数图

      Figure 3.  Quantile plot of ARTM

      图  4  ARTM柱状分析图

      Figure 4.  Residual plot of ARTM

    • 在大气扩散模型的验证评价中,需要结合模型的特点选择适合的实验数据集和验证评价方法。目前国际上应用广泛的示踪实验数据集和模型验证评价方法中,模型验证工具MVK(Model Validation Kit)采用了比较完善的统计分析方法和实用的图形工具,是众多验证评价方法中较为规范和成熟的。应用MVK验证评价放射性核素大气扩散模型ARTM的统计结果表明:ARTM的模拟结果基本上是可信赖的,3 km内的预测有低估的趋势,5 km外的预测有高估的趋势。

      单一数据集只能代表有限的气象条件,对于模型验证评价应选取更多的数据集、综合采用多种验证评价方法做更广泛的比对。现有可靠性较高的数据集所能代表的源项、气象及地形条件仍十分有限,但现场扩散实验较为昂贵,为大气扩散模型适用范围和局限性的深入研究增加了困难,因此开展更多的高质量的示踪实验或者风洞实验用于模型验证比对也是十分必要的。

  • 宁莎莎,李璟涛,张怀宇.核事故应急大气扩散模型ARTM验证与评价[J].南方能源建设,2020,07(04):87-92.
  • 参考文献 (17)

    目录

      /

      返回文章
      返回