• 匿名盲审
  • 学术期刊非营利性
  • 全球免费开放获取全文
  • 最新科研成果提供绿色通道

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线圈放置方式对脉冲涡流检测的影响分析

朱琪 王勤 韩扬 章雅林

朱琪,王勤,韩扬,等. 线圈放置方式对脉冲涡流检测的影响分析[J]. 南方能源建设,2024,11(4):137-143. doi:  10.16516/j.ceec.2024.4.14
引用本文: 朱琪,王勤,韩扬,等. 线圈放置方式对脉冲涡流检测的影响分析[J]. 南方能源建设,2024,11(4):137-143. doi:  10.16516/j.ceec.2024.4.14
ZHU Qi, WANG Qin, HAN Yang, et al. Analysis of the influence of coil placement on pulsed eddy current detection [J]. Southern energy construction, 2024, 11(4): 137-143 doi:  10.16516/j.ceec.2024.4.14
Citation: ZHU Qi, WANG Qin, HAN Yang, et al. Analysis of the influence of coil placement on pulsed eddy current detection [J]. Southern energy construction, 2024, 11(4): 137-143 doi:  10.16516/j.ceec.2024.4.14

线圈放置方式对脉冲涡流检测的影响分析

doi: 10.16516/j.ceec.2024.4.14
基金项目: 中国能源建设股份有限公司科技项目“核电常规岛设备无损检测关键技术研究与应用”(CEEC2020-KJ02)
详细信息
    作者简介:

    朱琪,1990-,男,高级工程师,学士,主要从事无损检测技术研究和设备开发工作(e-mail)zq.zasidler@outlook.com

    王勤,1978-,男,高级工程师,学士,主要从事发电厂特种设备检验检测方法研究工作(e-mail)wangqin671@126.com

    韩扬,1989-,男,工程师,硕士,主要从事核电厂在役检查技术方法研究工作(e-mail)han.yang@cgnpc.com.cn

    章雅林,1978-,男,高级工程师,学士,主要从事金属材料焊接和无损检测试验研究工作(e-mail)32765053@qq.com

    通讯作者:

    朱琪,1990-,男,高级工程师,学士,主要从事无损检测技术研究和设备开发工作(e-mail)zq.zasidler@outlook.com

  • 中图分类号: TL4;TM62;O441.5

Analysis of the Influence of Coil Placement on Pulsed Eddy Current Detection

  • 摘要:   目的  核电厂汽水管线一般在管道外壁加装保温层,从而提高换热效率。目前对于铁磁性管道的检测手段主要为常规超声及超声导波,检测前需要将管道外壁保温层拆除,导致检测工期延长,人力成本增加,无法达到核电厂高质量发展的要求。核电厂脉冲涡流技术的应用可以省去保温层的拆装,实现不停机在线筛查。检测线圈的放置方式对缺陷的检出能力是脉冲涡流技术重要指标。  方法  文章利用ANSYS中的Maxwell模块进行管件建模及仿真,分别设计同轴式与垂直式检测线圈,保持提离距离、材料一致及其他条件一致下,模拟脉冲涡流对平底缺陷的检测能力。选取核电厂样管进行同轴式与垂直式脉冲涡流测试,将脉冲涡流(Pulsed Eddy Current Testing,PECT)测试结果与超声测厚进行复核,对比两种线圈放置方式对脉冲涡流检测的影响。  结果  研究表明:垂直式线圈相对于同轴式线圈对缺陷检出效果更佳。  结论  核电厂脉冲涡流技术的应用对脉冲涡流技术在核电领域实施具有重要意义。
  • 图  1  同轴式单线圈无缺陷管道仿真模型

    Fig.  1  Simulation model of coaxial single coil defect-free pipeline

    图  2  垂直式单线圈无缺陷管道仿真模型

    Fig.  2  Simulation model of vertical single coil defect-free pipeline

    图  3  激励电流波形

    Fig.  3  Excitation current waveform

    图  4  激网格剖分效果图

    Fig.  4  Grid generation effect

    图  5  同轴式线圈管道表面涡流分布图

    Fig.  5  Eddy current distribution diagram on the surface of coaxial coil pipeline

    图  6  垂直式线圈管道表面涡流分布图

    Fig.  6  Eddy current distribution diagram on the surface of vertical coil pipeline

    图  7  垂直式单线圈探头模式下带缺陷管道模型与缺陷位置示意图

    Fig.  7  Model of pipeline with defects and schematic diagram of defect location in vertical single coil probe mode

    图  8  同轴式单线圈探头模式下带缺陷管道模型与缺陷位置示意图

    Fig.  8  Model of pipeline with defects and schematic diagram of defect location in coaxial single coil probe mode

    图  9  缺陷对于感应电压信号的影响

    Fig.  9  The effect of defects on induced voltage signals

    图  10  不同线圈放置方式下某时刻涡流分布示意图

    Fig.  10  Eddy current distribution at a given time under different coil placement modes

    表  1  管道尺寸及电磁参数

    Tab.  1.   Pipe dimensions and electromagnetic parameters

    管道参数 长度/mm 壁厚/mm 外直径/mm 相对磁导率 电导率/(S·m−1)
    取值 368 13 180 150 4×106
    下载: 导出CSV

    表  2  线圈参数

    Tab.  2.   Coil parameters mm

    线圈参数 匝数/个 内直径 外直径 提离高度 线圈高度
    检测线圈 900 36 38 60 15
    激励线圈 300 40 42 60 15
    下载: 导出CSV

    表  3  保温层为150 mm下脉冲涡流与超声波测厚对比

    Tab.  3.   Comparison of pulse eddy current and ultrasonic thickness measurement at 150 mm insulation layer mm 

    相对壁厚 均值 超声测厚 误差
    A0 100.8 99.7 99.3 99.9 100.8 99.9 100
    A1 87.8 88.7 88.8 86.5 90.9 88.5 90.1 1.6
    注:A0−标定点;A1−标检测点。
    下载: 导出CSV

    表  4  保温层为100 mm下脉冲涡流与超声波测厚对比

    Tab.  4.   Comparison of pulse eddy current and ultrasonic thickness measurement at 100 mm insulation layer mm 

    相对壁厚/% 均值 超声测厚 误差
    A0 99.2 100.8 99.8 99.5 99.6 100 100
    A1 91.2 90.7 88.7 92.6 87.8 90.1 90.1 0
    注:A0−标标定点;A1−标检测点。
    下载: 导出CSV

    表  5  保温层为150 mm下脉冲涡流与超声波测厚对比

    Tab.  5.   Comparison of pulse eddy current and ultrasonic thickness measurement at 150 mm insulation layer mm 

    相对壁厚/% 均值 超声测厚 误差
    A0 99.3 98 98.8 99.8 98.7 98.8 100
    A1 77.6 76.3 77.4 75.9 76.7 76.5 73.2 4.2
    注:A0−标定点;A1−检测点。
    下载: 导出CSV
  • [1] 余兆虎, 付跃文, 江礼凡, 等. 小径管脉冲远场涡流检测研究 [J]. 机械工程学报, 2021, 57(6): 10-18. DOI:  10.3901/JME.2021.06.010.

    YU Z H, FU Y W, JIANG L F, et al. Study on inspection for small diameter tubes using pulsed remote field eddy current method [J]. Journal of mechanical engineering, 2021, 57(6): 10-18. DOI:  10.3901/JME.2021.06.010.
    [2] 曹月秋,曹晓宁,蒋晓红,等. 核电站电磁驱动型稳压器喷淋阀设计综述 [J]. 南方能源建设, 2022, 9(1): 71-75. DOI:  10.16516/j.gedi.issn2095-8676.2022.01.011.

    CAO Y Q, CAO X N, JIANG X H, et al. Review on design of solenoid pressurizer spray valve for nuclear power plants [J]. Southern energy construction, 2022, 9(1): 71-75. DOI:  10.16516/j.gedi.issn2095-8676.2022.01.011.
    [3] LI K Y, QIU P C, WANG P, et al. Estimation method of mechanical properties of ferromagnetic materials based on pulsed eddy current [J]. Russian journal of nondestructive testing, 2021, 57(2): 170-179. DOI:  10.1134/S1061830921020066.
    [4] YU Z H, FU Y W, JIANG L F, et al. Detection of circumferential cracks in heat exchanger tubes using pulsed eddy current testing [J]. NDT & E international, 2021, 121: 102444. DOI:  10.1016/j.ndteint.2021.102444.
    [5] ZHANG X, PENG J P, DU L Q, et al. Detection of fatigue microcrack using eddy current pulsed thermography [J]. Journal of sensors, 2021, 2021: 6647939. DOI:  10.1155/2021/6647939.
    [6] XIE F Q, WU X H, ZHANG H Y, et al. Research on pulsed eddy current automatic detection technology for weld defects of pressure vessel cylinder [J]. Measurement, 2021, 176: 109081. DOI:  10.1016/j.measurement.2021.109081.
    [7] YANG H C, TAI C C. The interaction of pulsed eddy current with metal surface crack for various coils [J]. AIP conference proceedings, 2002, 615(1): 409-414. DOI:  10.1063/1.1472827.
    [8] DOLABDJIAN C P, PEREZ L, DE HAAN V O, et al. Performance of magnetic pulsed-eddy-current system using high dynamic and high linearity improved giant MagnetoResistance magnetometer [J]. IEEE sensors journal, 2006, 6(6): 1511-1517. DOI:  10.1109/JSEN.2006.883095.
    [9] TIAN G Y, GAO Y L, LI K J, et al. Eddy current pulsed thermography with different excitation configurations for metallic material and defect characterization [J]. Sensors, 2016, 16(6): 843. DOI:  10.3390/s16060843.
    [10] TUMANSKI S. Induction coil sensors: a review [J]. Measurement science and technology, 2007, 18(3): R31-R46. DOI:  10.1088/0957-0233/18/3/R01.
    [11] 陈兴乐, 雷银照. 铁磁平板脉冲涡流场感应电压时域近似式 [J]. 电工技术学报, 2015, 30(10): 14-19. DOI:  10.3969/j.issn.1000-6753.2015.10.003.

    CHEN X L, LEI Y Z. Time-domain approximate expressions for voltage induced by pulsed eddy current field of ferromagnetic plate [J]. Transactions of China electrotechnical society, 2015, 30(10): 14-19. DOI:  10.3969/j.issn.1000-6753.2015.10.003.
    [12] 陈兴乐, 雷银照. 平板导体脉冲涡流场时域解与测厚特征量的提取 [J]. 电工技术学报, 2013, 28(6): 1-8. DOI:  10.3969/j.issn.1000-6753.2013.06.001.

    CHEN X L, LEI Y Z. Time-domain analytic expressions for pulsed eddy current field of conductive plate and characteristic quantity for thickness measurement [J]. Transactions of China electrotechnical society, 2013, 28(6): 1-8. DOI:  10.3969/j.issn.1000-6753.2013.06.001.
    [13] 陈兴乐, 雷银照. 金属管道外侧脉冲磁场激励的线圈电压解析式 [J]. 中国电机工程学报, 2012, 32(6): 176-182. DOI:  10.13334/j.0258-8013.pcsee.2012.06.024.

    CHEN X L, LEI Y Z. Analytical expressions of induced coil voltages generated by pulsed eddy currents for metal pipe testing [J]. Proceedings of the CSEE, 2012, 32(6): 176-182. DOI:  10.13334/j.0258-8013.pcsee.2012.06.024.
    [14] 陈兴乐, 雷银照. 导电导磁管道外任意放置线圈激励下脉冲涡流场时域解析解 [J]. 物理学报, 2014, 63(24): 240301. DOI:  10.7498/aps.63.240301.

    CHEN X L, LEI Y Z. Analytical solutions to pulsed eddy current field excited by a differently oriented probe coil outside a conducting ferromagnetic pipe [J]. Acta physica sinica, 2014, 63(24): 240301. DOI:  10.7498/aps.63.240301.
    [15] XIE S J, CHEN Z M, TAKAGI T, et al. Efficient numerical solver for simulation of pulsed eddy-current testing signals [J]. IEEE transactions on magnetics, 2011, 47(11): 4582-4591. DOI:  10.1109/TMAG.2011.2151872.
    [16] THEODOULIDIS T, WANG H T, TIAN G Y. Extension of a model for eddy current inspection of cracks to pulsed excitations [J]. NDT & E international, 2012, 47: 144-149. DOI:  10.1016/j.ndteint.2012.01.005.
    [17] 燕芳, 丁东阳. 基于ANSOFT的脉冲涡流测厚系统仿真 [J]. 计算机产品与流通, 2017(9): 240.

    YAN F, DING D Y. Simulation of pulse eddy current thickness measurement system based on ANSOFT [J]. Journal of computer products and circulation, 2017(9): 240.
    [18] SKARLATOS A, THEODOULIDIS T. Calculation of the eddy-current flow around a cylindrical through-hole in a finite-thickness plate [J]. IEEE transactions on magnetics, 2015, 51(9): 6201507. DOI:  10.1109/TMAG.2015.2426676.
    [19] 张玉华, 孙慧贤, 罗飞路, 等. 基于三维磁场测量的脉冲涡流检测探头的设计 [J]. 机械工程学报, 2009, 45(8): 249-254. DOI:  10.3901/JME.2009.08.249.

    ZHANG Y H, SUN H X, LUO F L, et al. Design of a novel pulsed eddy current testing probe based on 3D magnetic field measurement [J]. Journal of mechanical engineering, 2009, 45(8): 249-254. DOI:  10.3901/JME.2009.08.249.
    [20] 邓宏伟. 核电厂二回路管道应对流动加速腐蚀机理研究 [J]. 南方能源建设, 2015, 2(1): 51-54, 61. DOI:  10.16516/j.gedi.issn2095-8676.2015.01.010.

    DENG H W. Research on flow accelerated corrosion discussion for secondary loop piping of nuclear power plant [J]. Energy construction, 2015, 2(1): 51-54, 61. DOI:  10.16516/j.gedi.issn2095-8676.2015.01.010.
    [21] TIAN G Y, SOPHIAN A. Reduction of lift-off effects for pulsed eddy current NDT [J]. NDT & E international, 2005, 38(4): 319-324. DOI:  10.1016/j.ndteint.2004.09.007.
    [22] 林燕, 杨道宏, 施海云. 快堆核电蒸汽管道疏水系统的设计研究 [J]. 南方能源建设, 2021, 8(3): 84-88. DOI:  10.16516/j.gedi.issn2095-8676.2021.03.012.

    LIN Y, YANG D H, SHI H Y. Design research on steam drain system of fast reactor nuclear power plants [J]. Southern energy construction, 2021, 8(3): 84-88. DOI:  10.16516/j.gedi.issn2095-8676.2021.03.012.
    [23] 李航, 席琛. 核电机组常规岛主蒸汽管道汽锤计算工况讨论及应用 [J]. 南方能源建设, 2016, 3(增刊1): 51-54. DOI:  10.16516/j.gedi.issn2095-8676.2016.S1.012.

    LI H, XI C. Different conditions analysis on steam hammer calculation of main steam system in nuclear power plants conventional island [J]. Southern energy construction, 2016, 3(Suppl.1): 51-54. DOI:  10.16516/j.gedi.issn2095-8676.2016.S1.012.
  • [1] 马彬, 肖俊阳, 吴新, 罗金阁, 宋佳刚, 徐展鹏.  配电网施工人力机械资源科学调配模型与方法 . 南方能源建设, 2024, 11(S1): 36-46. doi: 10.16516/j.ceec.2024.S1.07
    [2] 刘璐瑶, 陈志刚, 沈欣炜, 吴劲松, 廖霄.  基于EMD-MLP组合模型的用电负荷日前预测 . 南方能源建设, 2024, 11(1): 143-156. doi: 10.16516/j.ceec.2024.1.15
    [3] 李胜, 葛文澎, 吴嘉诚, 曲春明, 孙睿.  风力机组尾流模型适用性评价 . 南方能源建设, 2024, 11(1): 42-53. doi: 10.16516/j.ceec.2024.1.05
    [4] 韩扬, 朱琪, 陈永安, 徐宁.  脉冲涡流检测在核电厂管道的应用 . 南方能源建设, 2024, 11(4): 118-126. doi: 10.16516/j.ceec.2024.4.12
    [5] 何知纯, 谢敏, 黄莹, 李弋升, 张世平.  基于连续隐马尔可夫模型的风水火联合低碳检修优化 . 南方能源建设, 2023, 10(4): 43-56. doi: 10.16516/j.gedi.issn2095-8676.2023.04.005
    [6] 林刚, 戴宁怡.  电动汽车直流充电站的低阶RLC阻抗电路模型 . 南方能源建设, 2023, 10(5): 80-86. doi: 10.16516/j.gedi.issn2095-8676.2023.05.011
    [7] 蔡彦枫, 徐初琪, 汤东升, 王晴勤.  基于多尾流模型的大型海上风电场扩容试验研究 . 南方能源建设, 2023, 10(4): 138-147. doi: 10.16516/j.gedi.issn2095-8676.2023.04.014
    [8] 蔡更新.  不同工况下区域天然气管道水力测算分析与建议 . 南方能源建设, 2023, 10(6): 132-137. doi: 10.16516/j.gedi.issn2095-8676.2023.06.015
    [9] 程维杰, 张仕鹏, 刘一鸣.  基于ATP仿真模型自动运行的架空输电线路防雷性能评估方法 . 南方能源建设, 2021, 8(S1): 33-38. doi: 10.16516/j.gedi.issn2095-8676.2021.S1.005
    [10] 宁莎莎, 李璟涛, 张怀宇.  核事故应急大气扩散模型ARTM验证与评价 . 南方能源建设, 2020, 7(4): 87-92. doi: 10.16516/j.gedi.issn2095-8676.2020.04.013
    [11] 贾斌, 周倩.  脱硫废水引入自平衡渣水系统的物理模型研究 . 南方能源建设, 2018, 5(3): 106-110. doi: 10.16516/j.gedi.issn2095-8676.2018.03.017
    [12] 吴亚雄, 谢敏.  基于BP神经网络灰色回归组合模型的年最大负荷预测 . 南方能源建设, 2017, 4(2): 46-50,57. doi: 10.16516/j.gedi.issn2095-8676.2017.02.007
    [13] 徐飞, 侯恩振, 孙浩, 张磊.  多表集抄项目造价模型研究与实践 . 南方能源建设, 2017, 4(S1): 143-149. doi: 10.16516/j.gedi.issn2095-8676.2017.S1.027
    [14] 聂卫平, 郑文棠.  基于地质和监测资料的地下洞室数值仿真模型概化分析 . 南方能源建设, 2016, 3(4): 96-101. doi: 10.16516/j.gedi.issn2095-8676.2016.04.020
    [15] 刘立威, 马兆荣, 刘东华.  基于损伤塑性模型的核电站超大型冷却塔损伤分析 . 南方能源建设, 2015, 2(S1): 105-107. doi: 10.16516/j.gedi.issn2095-8676.2015.S1.023
    [16] 胡服全, 杨培勇, 朱翊洲, 高文军, 何铮.  基于实测数据的电缆桥架有限元模型修正 . 南方能源建设, 2015, 2(4): 88-92. doi: 10.16516/j.gedi.issn2095-8676.2015.04.015
    [17] 陈晖.  基于投入产出模型的区域间能源流分析方法研究 . 南方能源建设, 2015, 2(1): 26-31. doi: 10.16516/j.gedi.issn2095-8676.2015.01.005
    [18] 张灿亨, 王鑫, 郑文棠.  基于水动力学模型的暴雨浅层滑坡风险分析 . 南方能源建设, 2015, 2(S1): 198-202. doi: 10.16516/j.gedi.issn2095-8676.2015.S1.044
    [19] 乔弘, 李瀚, 王天堃.  火电厂飞灰含碳量多模型融合软测量方法 . 南方能源建设, 2015, 2(S1): 10-14. doi: 10.16516/j.gedi.issn2095-8676.2015.S1.003
    [20] 吴冬文, 曾晗, 吴花.  电力设备载流连接板温升研究 . 南方能源建设, 2015, 2(S1): 71-75. doi: 10.16516/j.gedi.issn2095-8676.2015.S1.015
  • 加载中
图(10) / 表 (5)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  66
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-06
  • 修回日期:  2023-09-08
  • 网络出版日期:  2024-07-12
  • 刊出日期:  2024-07-31

线圈放置方式对脉冲涡流检测的影响分析

doi: 10.16516/j.ceec.2024.4.14
    基金项目:  中国能源建设股份有限公司科技项目“核电常规岛设备无损检测关键技术研究与应用”(CEEC2020-KJ02)
    作者简介:

    朱琪,1990-,男,高级工程师,学士,主要从事无损检测技术研究和设备开发工作(e-mail)zq.zasidler@outlook.com

    王勤,1978-,男,高级工程师,学士,主要从事发电厂特种设备检验检测方法研究工作(e-mail)wangqin671@126.com

    韩扬,1989-,男,工程师,硕士,主要从事核电厂在役检查技术方法研究工作(e-mail)han.yang@cgnpc.com.cn

    章雅林,1978-,男,高级工程师,学士,主要从事金属材料焊接和无损检测试验研究工作(e-mail)32765053@qq.com

    通讯作者: 朱琪,1990-,男,高级工程师,学士,主要从事无损检测技术研究和设备开发工作(e-mail)zq.zasidler@outlook.com
  • 中图分类号: TL4;TM62;O441.5

摘要:   目的  核电厂汽水管线一般在管道外壁加装保温层,从而提高换热效率。目前对于铁磁性管道的检测手段主要为常规超声及超声导波,检测前需要将管道外壁保温层拆除,导致检测工期延长,人力成本增加,无法达到核电厂高质量发展的要求。核电厂脉冲涡流技术的应用可以省去保温层的拆装,实现不停机在线筛查。检测线圈的放置方式对缺陷的检出能力是脉冲涡流技术重要指标。  方法  文章利用ANSYS中的Maxwell模块进行管件建模及仿真,分别设计同轴式与垂直式检测线圈,保持提离距离、材料一致及其他条件一致下,模拟脉冲涡流对平底缺陷的检测能力。选取核电厂样管进行同轴式与垂直式脉冲涡流测试,将脉冲涡流(Pulsed Eddy Current Testing,PECT)测试结果与超声测厚进行复核,对比两种线圈放置方式对脉冲涡流检测的影响。  结果  研究表明:垂直式线圈相对于同轴式线圈对缺陷检出效果更佳。  结论  核电厂脉冲涡流技术的应用对脉冲涡流技术在核电领域实施具有重要意义。

English Abstract

朱琪,王勤,韩扬,等. 线圈放置方式对脉冲涡流检测的影响分析[J]. 南方能源建设,2024,11(4):137-143. doi:  10.16516/j.ceec.2024.4.14
引用本文: 朱琪,王勤,韩扬,等. 线圈放置方式对脉冲涡流检测的影响分析[J]. 南方能源建设,2024,11(4):137-143. doi:  10.16516/j.ceec.2024.4.14
ZHU Qi, WANG Qin, HAN Yang, et al. Analysis of the influence of coil placement on pulsed eddy current detection [J]. Southern energy construction, 2024, 11(4): 137-143 doi:  10.16516/j.ceec.2024.4.14
Citation: ZHU Qi, WANG Qin, HAN Yang, et al. Analysis of the influence of coil placement on pulsed eddy current detection [J]. Southern energy construction, 2024, 11(4): 137-143 doi:  10.16516/j.ceec.2024.4.14
    • 核电厂的承压设备管道在服役期间,会产生各种腐蚀、孔状缺陷,如遇高温高压,还会产生危险性极大的裂纹[1-2]。现阶段在检测此类腐蚀减薄缺陷时需要先拆除包覆层,不仅增加了管道检测的难度,还导致人力成本增加,经济效益减少。因此,需要1种新型无损检测手段来解决当前存在的问题。脉冲涡流法,可用于带包覆层铁磁管道壁厚的在役检测[3-5]。以脉冲电流激励代替正弦电流激励,在管壁内感应出脉冲涡流,通过检测此脉冲涡流电磁场的衰减过程,来评估管道壁厚的腐蚀程度[6]。磁导率、提离距离、检测线圈等因素均会影响脉冲涡流的检测精度。对于核电厂应用实施,线圈放置方式是影响现场检测质量的主要因素,线圈放置方向主要取决于线圈轴线相对于管道轴线的方向。研究线圈的放置方式对脉冲涡流的影响具有重要意义。

      国内外学者均对PECT技术进行了研究,Yang等[7]对线圈本身参数影响进行了实验及研究,实验验证了线圈本身阻抗以及尺寸参数的选择对脉冲涡流检测信号有较明显的影响,结果表明线圈高度和直径与检测信号的分辨率成负相关关系,即线圈高度和直径的减小可以有利于提高探头的检测能力。Dolabdjian等[8]对巨磁阻元件制作的传感器进行了改进,通过增加磁反馈电路使得巨磁阻元件的线性范围得以提高,与最常用的线圈传感器相比,经过改进后的传感器尺寸更小,空间分辨率更高。Tian等[9]对脉冲涡流热成像技术进行了相应的研究,研究发现此技术在通入不同的激励电流时可以检测出不同类型的缺陷,相较于脉冲涡流检测,脉冲涡流热成像对于裂纹缺陷的检出效果更佳,但依然存在无法对缺陷定量检测的问题,在实际应用过程中也会受到提离等相关因素的影响。Tumanski等[10]提出感应线圈通常测量的变量是磁感应强度的变化率,因此其对于高频信号的变化检测灵敏度较为敏感,而且线圈的制作成本和工艺最为经济便捷,是作为接收元件的首选。陈兴乐等[11-14]在此基础上分别以铁磁材料制作的平板和管道作为研究对象展开了研究。解社娟等[15]对有限元求解方法进行了改进,在有限元方法中加入插值的思想,减少了计算时间,取得了较为理想的结果。Tian等[16]对带有长条裂纹的检测模型进行求解,对模型进行仿真得到构件中的裂纹对每个谐波激励下的涡流响应,然后对其进行傅里叶叠加,将其整合成脉冲激励下涡流场的瞬态响应。燕芳等[17]利用Ansoft有限元分析了检测线圈上的电压随被测体厚度的变化规律,找出被测物体厚度与感应电压信号和过零信号特征值之间的对应关系。Anastassios Skarlatos和T.P. Theodoulidis[18]建立了带圆柱孔缺陷的非铁磁平板涡流检测模型,使用TREE法利用多个边界条件对模型进行了求解,使用有限元仿真及实验数据两种方法对解析解进行了验证,各结果间误差很小。张玉华等[19-20]利用有限元法建立了三维瞬态涡流问题的计算模型,对切向放置在平板导体上方的矩形线圈进行研究,结果表明激励线圈的尺寸变化会对导体内部的感应涡流流动模式产生影响。Tian等[21-23]人针对如何抑制提离效应的影响研究了1种新的脉冲涡流信号处理方法。

      上述学者针对脉冲涡流的线圈尺寸、信号处理及仿真建模进行了研究,对脉冲涡流的发展具有一定意义,但对于线圈放置方式的研究存在不足,线圈放置方式不同,得到的检测结果也存在差异,本文针对线圈放置方式对脉冲涡流检测的影响,进行了详细研究,采用ANSYS中的Maxwell模块进行管件建模,将长直管进行网格划分,设计同轴式与垂直式检测线圈,保持其他条件一致的情况下对比不同放置形式检测线圈对同一管道的检测结果。

    • 为增加仿真结果的可信度,模型选用与实际实验所用管道相同的参数进行搭建。其中,铁磁金属管道的尺寸和电磁参数如表1所示。

      表 1  管道尺寸及电磁参数

      Table 1.  Pipe dimensions and electromagnetic parameters

      管道参数 长度/mm 壁厚/mm 外直径/mm 相对磁导率 电导率/(S·m−1)
      取值 368 13 180 150 4×106

      在Maxwell中分别建立同轴式、垂直式单线圈无缺陷管道仿真模型,如图1图2所示。求解域尺寸为500 mm×300 mm×400 mm(长×宽×高),将模型完全包裹其中,由于包覆层多为不导电不导磁的绝缘物质构成,因此求解域内选择使用空气填充管道外部空间。线圈采用圆柱线圈的形式,由于核电厂在役管道包覆层厚度一般为60 mm,为了模拟测试结果更真实,建立提离高度为60 mm的脉冲涡流无损检测模型。其中,将提离高度定义为线圈探头边缘与管道外壁之间的最短距离。

      图  1  同轴式单线圈无缺陷管道仿真模型

      Figure 1.  Simulation model of coaxial single coil defect-free pipeline

      图  2  垂直式单线圈无缺陷管道仿真模型

      Figure 2.  Simulation model of vertical single coil defect-free pipeline

      为方便区分,激励线圈外观选择用绿色表示,检测线圈颜色选为红色。激励和检测线圈的参数如表2所示。

      表 2  线圈参数

      Table 2.  Coil parameters mm

      线圈参数 匝数/个 内直径 外直径 提离高度 线圈高度
      检测线圈 900 36 38 60 15
      激励线圈 300 40 42 60 15

      由文献[12]可知,若铁磁材料的相对磁导率远大于1时,其涡流扩散时间常量为:

      $$ {\tau _{\text{d}}}{\text{ = }}\dfrac{{\mu \sigma {d^2}}}{{{{\text{π }}^2}}} $$ (1)

      根据式(1)计算可得,仿真模型中的涡流扩散时间常量为4.89 ms。在实际检测中,通常采用脉冲电流下降沿结束后的一段时间为研究对象,因此激励电流关断时刻为脉冲电流上升沿产生的涡流衰减到接近于0的时刻。由于脉冲涡流衰减规律为呈指数衰减,在4倍时间常数之后涡流幅值衰减为峰值的1.8%,可忽略其影响,脉冲持续时间取整后选为20 ms。脉冲激励电流选用梯形波,其中电流峰值取为1.5 A,上升沿和下降沿的持续时间均为2 ms,峰值持续时间为20 ms,波形如图3所示。

      图  3  激励电流波形

      Figure 3.  Excitation current waveform

      设置好激励电流后对模型进行网格剖分,网格剖分越精细所得结果可信度越高,但相应的仿真时间也会成倍增加。为在保证仿真结果可信度的基础上加快仿真速度,本文将仿真模型分为两部分,由于涡流主要分布于线圈探头正下方管道,因此对这部分管道进行精密剖分,设置其网格最大边长为4 mm,其余部分管道剖分单元最大长度为10 mm,网格剖分效果如图4所示。

      图  4  激网格剖分效果图

      Figure 4.  Grid generation effect

    • 设置仿真步长为0.025 ms,通过ANSYS仿真得到实验结果。取仿真时间为26 ms时刻的模型作为研究对象,画出管道表面涡流分布图,如图5图6所示。

      图  5  同轴式线圈管道表面涡流分布图

      Figure 5.  Eddy current distribution diagram on the surface of coaxial coil pipeline

      图  6  垂直式线圈管道表面涡流分布图

      Figure 6.  Eddy current distribution diagram on the surface of vertical coil pipeline

      图5图6可以看出,同轴式线圈涡流峰值分布形状大致是1个半径大于激励线圈半径的圆环,在检测时当缺陷位于涡流峰值处,即位于激励线圈边缘正下方时刻,检测线圈接收到的缺陷信号的变化最为明显。垂直式线圈在管道中产生的涡流峰值集中于线圈正下方并沿管道轴向呈椭圆形分布,相较于同轴式单线圈探头,这种线圈放置方式下可以有效抑制管道中涡流沿周向扩散,即涡流在周向方向的集中效果较为明显。根据以上信息,建立带缺陷管道模型,分别验证每种线圈放置方式下减薄缺陷的检测效果,缺陷的规格为直径32 mm,深度为5 mm的平底孔,位于激励线圈的正下方,带缺陷管道模型以及缺陷位置如图7图8所示。

      图  7  垂直式单线圈探头模式下带缺陷管道模型与缺陷位置示意图

      Figure 7.  Model of pipeline with defects and schematic diagram of defect location in vertical single coil probe mode

      图  8  同轴式单线圈探头模式下带缺陷管道模型与缺陷位置示意图

      Figure 8.  Model of pipeline with defects and schematic diagram of defect location in coaxial single coil probe mode

      对带缺陷模型进行仿真后,将垂直式线圈无缺陷管道模型的感应电压与带缺陷管道模型的感应电压进行对比,对比结果如图9所示。

      图  9  缺陷对于感应电压信号的影响

      Figure 9.  The effect of defects on induced voltage signals

      设置相同的边界条件,对比不同放置方式的单线圈探头对相同规格样管的脉冲涡流仿真结果,当激励线圈和检测线圈分别采用线圈轴线沿管道径向法线方向(即同轴式单线圈探头的放置方式)、线圈轴线与管道轴线平行以及线圈轴线沿管道圆周方向这3种不同的放置方式时,在11 ms时刻管道内3种放置方式的涡流分布如图10所示。

      图  10  不同线圈放置方式下某时刻涡流分布示意图

      Figure 10.  Eddy current distribution at a given time under different coil placement modes

      虽然垂直式单激励线圈探头对缺陷的检测能力相较于同轴式探头有提高,但提高效果并不是十分明显。主要原因有两点:垂直式单激励线圈探头虽然在周向方向上对于涡流分布有较好的集中效果,但在轴向方向上对涡流有效区域的集中效果较差,与同轴式单激励线圈探头基本一致;垂直式单激励线圈探头的检测线圈与管道的耦合程度不如同轴式单线圈探头,所采集的感应电压信号幅值小于同轴式单线圈探头,因此检测能力并未有大幅提高。

    • 选取直径180 mm,12 mm厚的20#钢阶梯样管为检测对象,将保温层厚度设定为150 mm,铝皮厚度为0.5 mm,用垂直式线圈探头分别对A0、A1两处检测点进行检测,其中在A1位置处加工缺陷直径为32 mm的平底孔,深度为5 mm,将得到的壁厚检测结果与超声测厚结果记录到表3中。

      表 3  保温层为150 mm下脉冲涡流与超声波测厚对比

      Table 3.  Comparison of pulse eddy current and ultrasonic thickness measurement at 150 mm insulation layer mm 

      相对壁厚 均值 超声测厚 误差
      A0 100.8 99.7 99.3 99.9 100.8 99.9 100
      A1 87.8 88.7 88.8 86.5 90.9 88.5 90.1 1.6
      注:A0−标定点;A1−标检测点。

      将保温层厚度设定在100 mm,带0.5 mm铝皮,用探头对A0、A1两处检测点进行检测,得到的壁厚结果,如表4所示。

      表 4  保温层为100 mm下脉冲涡流与超声波测厚对比

      Table 4.  Comparison of pulse eddy current and ultrasonic thickness measurement at 100 mm insulation layer mm 

      相对壁厚/% 均值 超声测厚 误差
      A0 99.2 100.8 99.8 99.5 99.6 100 100
      A1 91.2 90.7 88.7 92.6 87.8 90.1 90.1 0
      注:A0−标标定点;A1−标检测点。

      上述实验结果对比可知,相同条件下,当提离距离增大,脉冲涡流对加工缺陷的检测分辨率降低,且随着提离距离增加,脉冲涡流所测数据与超声测厚数据存在较大误差,实验结果与仿真结果基本一致。

      选取直径180 mm,12 mm厚的20#钢阶梯样管为检测对象,将保温层厚度设定为150 mm,铝皮厚度为0.5 mm,采用同轴式线圈探头分别对A0、A1两处检测点进行检测,其中在A1位置处加工缺陷直径为32 mm的平底孔,深度为5 mm,将得到的壁厚检测结果与超声测厚结果记录到表5中。

      表 5  保温层为150 mm下脉冲涡流与超声波测厚对比

      Table 5.  Comparison of pulse eddy current and ultrasonic thickness measurement at 150 mm insulation layer mm 

      相对壁厚/% 均值 超声测厚 误差
      A0 99.3 98 98.8 99.8 98.7 98.8 100
      A1 77.6 76.3 77.4 75.9 76.7 76.5 73.2 4.2
      注:A0−标定点;A1−检测点。

      保持其他条件不变,采用同轴式线圈探头所得结果与垂直式线圈探头相比,PECT检测数据及超声测厚数据均存在较大误差,这是由于同轴式线圈在管道产生的涡流环面积较大,无法进行有效聚焦,相对于垂直式线圈而言,无法对缺陷进行精准识别及检测,所得结论与ANSYS仿真结果相吻合。

    • 本文利用ANSYS中的Maxwell模块进行管件建模及仿真,分别设计同轴式、垂直式检测线圈并在保持其他条件一致情况下模拟脉冲涡流对平底缺陷的检测能力。验证了垂直式线圈的检测聚焦面积优于同轴式检测线圈,检测精度更高。同时选取核电厂样管进行垂直式、同轴式线圈脉冲涡流实验,将PECT测试结果与超声测厚数据进行复核,验证了模拟仿真结果的准确性。本文对脉冲涡流检测线圈的放置方式进行了系统研究,对两种放置方式的检测线圈进行模拟及验证,实际结果与模拟结果基本一致,为核电厂管道不同规格及工况条件下,检测线圈的选用提供了技术参考。

参考文献 (23)

目录

    /

    返回文章
    返回