• 匿名盲审
  • 学术期刊非营利性
  • 全球免费开放获取全文
  • 最新科研成果提供绿色通道

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽光谱共轭小分子在太阳能海水淡化与热电发电中的应用

朱景帅 邱肖盼

朱景帅,邱肖盼. 宽光谱共轭小分子在太阳能海水淡化与热电发电中的应用[J]. 南方能源建设,2024,11(4):23-30. doi:  10.16516/j.ceec.2024.4.03
引用本文: 朱景帅,邱肖盼. 宽光谱共轭小分子在太阳能海水淡化与热电发电中的应用[J]. 南方能源建设,2024,11(4):23-30. doi:  10.16516/j.ceec.2024.4.03
ZHU Jingshuai, QIU Xiaopan. Application of wide spectrum conjugated small molecule for high efficiency solar-powered seawater desalination and power generation [J]. Southern energy construction, 2024, 11(4): 23-30 doi:  10.16516/j.ceec.2024.4.03
Citation: ZHU Jingshuai, QIU Xiaopan. Application of wide spectrum conjugated small molecule for high efficiency solar-powered seawater desalination and power generation [J]. Southern energy construction, 2024, 11(4): 23-30 doi:  10.16516/j.ceec.2024.4.03

宽光谱共轭小分子在太阳能海水淡化与热电发电中的应用

doi: 10.16516/j.ceec.2024.4.03
基金项目: 广东省基础与应用基础研究基金项目“中宽带隙电子受体的设计合成与水下光伏性能研究”(2022A1515111021)
详细信息
    作者简介:

    朱景帅,1991-,男,武汉大学有机化学博士,主要从事有机/聚合物功能材料合成、光伏器件表征、光热水电联产的研究工作(e-mail)zjs930060315@163.com

    邱肖盼,1991-,女,钢铁研究总院材料科学与工程专业博士,主要从事新型能源与环境材料的研究工作(e-mail)18515304506@163.com

    通讯作者:

    邱肖盼,(e-mail)18515304506@163.com

  • 中图分类号: TK519;P747

Application of Wide Spectrum Conjugated Small Molecule for High Efficiency Solar-Powered Seawater Desalination and Power Generation

  • 摘要:   目的  为解决太阳能海水淡化器件成本高、制备工艺复杂的难题,选择具有重量轻、成本低、合成及提纯工艺简单等优点的有机小分子光热材料作为太阳能吸收材料。  方法  利用1种有机共轭小分子Y6,与低成本的纤维素纸结合,制备了在350~1000 nm范围内宽光谱吸收的高光热转换性能的Janus结构水蒸发器。  结果  蒸发器的下表面具有高效的水粘附性,利于高速集水,而蒸发器的上表面具有拒水性,能够达到理想的自漂浮能力。并且每3.14 cm2的器件仅需0.5 mg光热材料就能实现超过70 ℃的温度,节约用料优势明显。  结论  在1.0 kW/m2太阳光辐照下,基于Y6的蒸发器的光热能量转换效率为64.4%,蒸发速率高达1.13 kg/(m2·h),明显高于对照的纤维素纸蒸发器。经过太阳能蒸发脱盐后,得到的纯化水的离子浓度相比于初始的模拟海水显著降低4~6个数量级。该蒸发器与热电器件集成,在1.0 kW/m2太阳光照射下,蒸发速率达到1.02 kg/(m2·h),同时还产生了55 mV的输出电压。研究结果表明,基于有机小分子Y6的太阳能蒸发器,在光热水净化和热电发电协同作用方面具有良好的应用前景。
  • 图  1  装置制备流程图

    Fig.  1  Scheme of device preparation

    图  2  材料表征

    Fig.  2  Characterization of materials

    图  3  器件性能

    Fig.  3  Performance of the devices

    图  4  海水淡化能力

    Fig.  4  Desalination ability

    图  5  水电联产性能

    Fig.  5  Performance of co-generate electricity and freshwater

  • [1] ELIMELECH M, PHILLIP W A. The future of seawater desalination: energy, technology, and the environment [J]. Science, 2011, 333(6043): 712-717. DOI:  10.1126/science.1200488.
    [2] SCHIERMEIER Q. Water: purification with a pinch of salt [J]. Nature, 2008, 452(7185): 260-261. DOI:  10.1038/452260a.
    [3] RODELL M, FAMIGLIETTI J S, WIESE D N, et al. Emerging trends in global freshwater availability [J]. Nature, 2018, 557(7707): 651-659. DOI:  10.1038/s41586-018-0123-1.
    [4] BEH E S, BENEDICT M A, DESAI D, et al. A redox-shuttled electrochemical method for energy-efficient separation of salt from water [J]. ACS sustainable chemistry & engineering, 2019, 7(15): 13411-13417. DOI:  10.1021/acssuschemeng.9b02720.
    [5] KHAWAJI A D, KUTUBKHANAH I K, WIE J M. Advances in seawater desalination technologies [J]. Desalination, 2008, 221(1/3): 47-69. DOI:  10.1016/j.desal.2007.01.067.
    [6] ZHAO F, GUO Y H, ZHOU X Y, et al. Materials for solar-powered water evaporation [J]. Nature reviews materials, 2020, 5(5): 388-401. DOI:  10.1038/s41578-020-0182-4.
    [7] CHEN C J, KUANG Y D, HU L B. Challenges and opportunities for solar evaporation [J]. Joule, 2019, 3(3): 683-718. DOI:  10.1016/j.joule.2018.12.023.
    [8] GAO M M, ZHU L L, PEH C K, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production [J]. Energy & environmental science, 2019, 12(3): 841-864. DOI:  10.1039/C8EE01146J.
    [9] DAO V D, VU N H, YUN S N. Recent advances and challenges for solar-driven water evaporation system toward applications [J]. Nano energy, 2020, 68: 104324. DOI:  10.1016/j.nanoen.2019.104324.
    [10] 邱肖盼,席玉林,朱景帅. 全光谱碳基陶瓷纤维及其在海水淡化中的应用 [J]. 南方能源建设, 2024, 11(2): 198-207. DOI:  10.16516/j.ceec.2024.2.20.

    QIU X P, XI Y L, ZHU J S. Full-spectrum carbon-based ceramic fibers and their application in seawater desalination [J]. Southern energy construction, 2024, 11(2): 198-207. DOI:  10.16516/j.ceec.2024.2.20.
    [11] SONG Y, XU N, LIU G L, et al. High-yield solar-driven atmospheric water harvesting of metal-organic-framework-derived nanoporous carbon with fast-diffusion water channels [J]. Nature nanotechnology, 2022, 17(8): 857-863. DOI:  10.1038/s41565-022-01135-y.
    [12] LI C X, CAO S J, LUTZKI J, et al. A covalent organic framework/graphene dual-region hydrogel for enhanced solar-driven water generation [J]. Journal of the American chemical society, 2022, 144(7): 3083-3090. DOI:  10.1021/jacs.1c11689.
    [13] YAN X L, LYU S Z, XU X Q, et al. Superhydrophilic 2D covalent organic frameworks as broadband absorbers for efficient solar steam generation [J]. Angewandte chemie international edition, 2022, 61(19): e202201900. DOI: 10.1002/anie.20220 1900.
    [14] SHEN M H, ZHAO X P, HAN L, et al. Developing flexible quinacridone-derivatives-based photothermal evaporaters for solar steam and thermoelectric power generation [J]. Chemistry a European journal, 2022, 28(20): e202104137. DOI:  10.1002/chem.202104137.
    [15] CHEN G Y, SUN J M, PENG Q, et al. Biradical-featured stable organic-small-molecule photothermal materials for highly efficient solar-driven water evaporation [J]. Advanced materials, 2020, 32(29): 1908537. DOI:  10.1002/adma.201908537.
    [16] HAN X, WANG Z Y, SHEN M H, et al. A highly efficient organic solar energy-absorbing material based on phthalocyanine derivative for integrated water evaporation and thermoelectric power generation application [J]. Journal of materials chemistry A, 2021, 9(43): 24452-24459. DOI:  10.1039/D1TA07519E.
    [17] LIU X C, HE B, ANDERSON C L, et al. Para-azaquinodimethane: a compact quinodimethane variant as an ambient stable building block for high-performance low band gap polymers [J]. Journal of the American chemical society, 2017, 139(24): 8355-8363. DOI:  10.1021/jacs.7b04031.
    [18] GUO B, SHENG Z H, HU D H, et al. Molecular engineering of conjugated polymers for biocompatible organic nanoparticles with highly efficient photoacoustic and photothermal performance in cancer theranostics [J]. ACS nano, 2017, 11(10): 10124-10134. DOI:  10.1021/acsnano.7b04685.
    [19] LI Y D, LI L, WU Y, et al. A review on the origin of synthetic metal radical: singlet open-shell radical ground state? [J]. The journal of physical chemistry C, 2017, 121(15): 8579-8588. DOI:  10.1021/acs.jpcc.6b12936.
    [20] CUI Y Y, LIU J, LI Z Q, et al. Donor-acceptor-type organic-small-molecule-based solar-energy-absorbing material for highly efficient water evaporation and thermoelectric power generation [J]. Advanced functional materials, 2021, 31(49): 2106247. DOI:  10.1002/adfm.202106247.
    [21] LIU J, CUI Y Y, PAN Y Y, et al. Donor-acceptor molecule based high-performance photothermal organic material for efficient water purification and electricity generation [J]. Angewandte chemie international edition, 2022, 61(14): e202117087. DOI:  10.1002/anie.202117087.
    [22] YAN C Q, BARLOW S, WANG Z H, et al. Non-fullerene acceptors for organic solar cells [J]. Nature reviews materials, 2018, 3: 18003. DOI:  10.1038/natrevmats.2018.3.
    [23] WANG J Y, ZHAN X W. Fused-ring electron acceptors for photovoltaics and beyond [J]. Accounts of chemical research, 2021, 54(1): 132-143. DOI:  10.1021/acs.accounts.0c00575.
    [24] LIN Y Z, WANG J Y, ZHANG Z G, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells [J]. Advanced materials, 2015, 27(7): 1170-1174. DOI: 10.1002/adma. 201404317.
    [25] LU B, ZHANG Z C, JIN D N, et al. A-DA'D-A fused-ring small molecule-based nanoparticles for combined photothermal and photodynamic therapy of cancer [J]. Chemical communications, 2021, 57(90): 12020-12023. DOI:  10.1039/D1CC04629B.
    [26] CHENG P, LI G, ZHAN X W, et al. Next-generation organic photovoltaics based on non-fullerene acceptors [J]. Nature photonics, 2018, 12(3): 131-142. DOI: 10.1038/s41566-018-01 04-9.
    [27] HU Y Y, WANG J Y, YAN C Q, et al. The multifaceted potential applications of organic photovoltaics [J]. Nature reviews materials, 2022, 7(11): 836-838. DOI: 10.1038/s41578-022-00 497-y.
    [28] YUAN J, ZHANG Y Q, ZHOU L Y, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core [J]. Joule, 2019, 3(4): 1140-1151. DOI:  10.1016/j.joule.2019.01.004.
    [29] WANG Y F, PRICE M B, BOBBA R S, et al. Quasi-homojunction organic nonfullerene photovoltaics featuring fundamentals distinct from bulk heterojunctions [J]. Advanced materials, 2022, 34(50): 2206717. DOI: 10.1002/adma.202206 717.
  • [1] 王明, 孟丹, 许沛华, 许杨, 陈正洪, 贾蓓西.  中国气象局风能太阳能预报系统(CMA-WSP)在风资源短期预报中的检验评估 . 南方能源建设, 2024, 11(1): 73-84. doi: 10.16516/j.ceec.2024.1.08
    [2] 孙朋杰, 何飞, 陈正洪, 孟丹.  考虑地形影响的太阳能资源精细化评估及技术可开发量计算 . 南方能源建设, 2024, 11(1): 10-18. doi: 10.16516/j.ceec.2024.1.02
    [3] 邱肖盼, 席玉林, 朱景帅.  全光谱碳基陶瓷纤维及其在海水淡化中的应用 . 南方能源建设, 2024, 11(2): 198-207. doi: 10.16516/j.ceec.2024.2.20
    [4] 朱军辉.  海水抽水蓄能与海上光伏一体化发电技术及经济性分析 . 南方能源建设, 2023, 10(2): 11-17. doi: 10.16516/j.gedi.issn2095-8676.2023.02.002
    [5] 牛朝露, 李泽浩, 司马文霞, 孙魄韬, 袁涛, 杨鸣, 方正, 刘奇昌, 金云帆.  用于储能电站热失控预警的热敏涂层材料研究 . 南方能源建设, 2023, 10(5): 106-115. doi: 10.16516/j.gedi.issn2095-8676.2023.05.014
    [6] 伍明军.  某2×1 000 MW燃煤电厂淡水获取方案探讨 . 南方能源建设, 2023, 10(S1): 94-97. doi: 10.16516/j.gedi.issn2095-8676.2023.S1.015
    [7] 姚若军, 高啸天.  氢能产业链及氢能发电利用技术现状及展望 . 南方能源建设, 2021, 8(4): 9-15. doi: 10.16516/j.gedi.issn2095-8676.2021.04.002
    [8] 仇韬, 邬峰, 孟晓伟, 王伟.  熔盐塔式光热电站仿真机设计与开发 . 南方能源建设, 2021, 8(1): 31-36. doi: 10.16516/j.gedi.issn2095-8676.2021.01.004
    [9] 肖建群, 李鹏.  海水淡化能量回收装置系统设计 . 南方能源建设, 2021, 8(S1): 75-79. doi: 10.16516/j.gedi.issn2095-8676.2021.S1.012
    [10] 李心, 许粲羚, 纪培栋, 肖刚, 章涵, 金建祥.  塔式光热电站集热场设计综述及经济性研究 . 南方能源建设, 2020, 7(2): 51-59. doi: 10.16516/j.gedi.issn2095-8676.2020.02.008
    [11] 陈建生, 梁颖宗, 罗向龙, 邓成刚, 梁展鹏.  塔式太阳能-超临界CO2发电系统集成与优化 . 南方能源建设, 2020, 7(1): 1-7. doi: 10.16516/j.gedi.issn2095-8676.2020.01.001
    [12] 李红星, 何邵华, 杜吉克, 易自砚.  《塔式太阳能光热发电站设计标准》结构设计内容解析 . 南方能源建设, 2020, 7(2): 65-69. doi: 10.16516/j.gedi.issn2095-8676.2020.02.010
    [13] 许继刚, 李心, 仇韬, 汪毅, 赵晓辉.  国标《塔式太阳能光热发电站设计标准》关键共性技术 . 南方能源建设, 2020, 7(2): 46-50. doi: 10.16516/j.gedi.issn2095-8676.2020.02.007
    [14] 彭兢, 石涛.  塔式太阳能光热发电站定日镜场道路设计 . 南方能源建设, 2020, 7(2): 70-74. doi: 10.16516/j.gedi.issn2095-8676.2020.02.011
    [15] 仇韬, 许粲羚, 王伟.  塔式太阳能光热电站控制系统研究 . 南方能源建设, 2020, 7(2): 60-64. doi: 10.16516/j.gedi.issn2095-8676.2020.02.009
    [16] 张开军.  太阳能光热电站有关消防设计问题的探讨 . 南方能源建设, 2020, 7(2): 75-80. doi: 10.16516/j.gedi.issn2095-8676.2020.02.012
    [17] 楚攀, 白凤武, 黄长华, 陈澜.  槽式太阳能直接蒸汽发生系统的热力特性研究 . 南方能源建设, 2019, 6(1): 86-91. doi: 10.16516/j.gedi.issn2095-8676.2019.01.015
    [18] 毛启静, 白永军, 张玮, 张伶俐, 潘耘峰, 曹炟军.  太阳能热发电厂厂用电率计算方法分析 . 南方能源建设, 2017, 4(4): 29-33. doi: 10.16516/j.gedi.issn2095-8676.2017.04.006
    [19] 陈永根, 吴阿峰, 李伟科, 郭祚刚, 梁培婷.  一种新型太阳能冷热联产系统的设计 . 南方能源建设, 2015, 2(2): 76-79. doi: 10.16516/j.gedi.issn2095-8676.2015.02.014
    [20] 王俊, 席芳.  万山海岛地区太阳能资源变化特征分析及评估 . 南方能源建设, 2015, 2(S1): 193-197. doi: 10.16516/j.gedi.issn2095-8676.2015.S1.043
  • 加载中
图(5)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  287
  • PDF下载量:  266
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-03
  • 录用日期:  2023-07-19
  • 修回日期:  2023-07-17
  • 网络出版日期:  2024-02-01
  • 刊出日期:  2024-07-31

宽光谱共轭小分子在太阳能海水淡化与热电发电中的应用

doi: 10.16516/j.ceec.2024.4.03
    基金项目:  广东省基础与应用基础研究基金项目“中宽带隙电子受体的设计合成与水下光伏性能研究”(2022A1515111021)
    作者简介:

    朱景帅,1991-,男,武汉大学有机化学博士,主要从事有机/聚合物功能材料合成、光伏器件表征、光热水电联产的研究工作(e-mail)zjs930060315@163.com

    邱肖盼,1991-,女,钢铁研究总院材料科学与工程专业博士,主要从事新型能源与环境材料的研究工作(e-mail)18515304506@163.com

    通讯作者: 邱肖盼,(e-mail)18515304506@163.com
  • 中图分类号: TK519;P747

摘要:   目的  为解决太阳能海水淡化器件成本高、制备工艺复杂的难题,选择具有重量轻、成本低、合成及提纯工艺简单等优点的有机小分子光热材料作为太阳能吸收材料。  方法  利用1种有机共轭小分子Y6,与低成本的纤维素纸结合,制备了在350~1000 nm范围内宽光谱吸收的高光热转换性能的Janus结构水蒸发器。  结果  蒸发器的下表面具有高效的水粘附性,利于高速集水,而蒸发器的上表面具有拒水性,能够达到理想的自漂浮能力。并且每3.14 cm2的器件仅需0.5 mg光热材料就能实现超过70 ℃的温度,节约用料优势明显。  结论  在1.0 kW/m2太阳光辐照下,基于Y6的蒸发器的光热能量转换效率为64.4%,蒸发速率高达1.13 kg/(m2·h),明显高于对照的纤维素纸蒸发器。经过太阳能蒸发脱盐后,得到的纯化水的离子浓度相比于初始的模拟海水显著降低4~6个数量级。该蒸发器与热电器件集成,在1.0 kW/m2太阳光照射下,蒸发速率达到1.02 kg/(m2·h),同时还产生了55 mV的输出电压。研究结果表明,基于有机小分子Y6的太阳能蒸发器,在光热水净化和热电发电协同作用方面具有良好的应用前景。

English Abstract

朱景帅,邱肖盼. 宽光谱共轭小分子在太阳能海水淡化与热电发电中的应用[J]. 南方能源建设,2024,11(4):23-30. doi:  10.16516/j.ceec.2024.4.03
引用本文: 朱景帅,邱肖盼. 宽光谱共轭小分子在太阳能海水淡化与热电发电中的应用[J]. 南方能源建设,2024,11(4):23-30. doi:  10.16516/j.ceec.2024.4.03
ZHU Jingshuai, QIU Xiaopan. Application of wide spectrum conjugated small molecule for high efficiency solar-powered seawater desalination and power generation [J]. Southern energy construction, 2024, 11(4): 23-30 doi:  10.16516/j.ceec.2024.4.03
Citation: ZHU Jingshuai, QIU Xiaopan. Application of wide spectrum conjugated small molecule for high efficiency solar-powered seawater desalination and power generation [J]. Southern energy construction, 2024, 11(4): 23-30 doi:  10.16516/j.ceec.2024.4.03
    • 随着世界人口的快速增长和经济的不断发展,清洁水资源的短缺已经成为生活中日益严重的问题[1-3]。为了解决这一危机,人们研究了从盐水甚至污水中提供新鲜清洁水的先进技术,如多效蒸馏、电渗析和反渗透等[4-5],但是这些技术都面临着能耗高、二次污染严重的问题[6-8]。而太阳能驱动的界面蒸发是一种环境友好、可持续、经济有效的获得淡水资源的技术,在海水淡化、杀菌和淡水生产中广泛应用[9-11]。研究人员利用金属氧化物、金属纳米颗粒等光热转换材料,结合太阳能界面加热技术有效地提高水蒸发速率()及蒸发过程中的光热能量转换效率(η),推动了太阳能海水淡化的发展,然而,这些材料大多数价格昂贵、加工过程复杂,还不利于实际应用[12-13]

      有机半导体光热材料通过非辐射跃迁将光能转换为热能,实现了太阳能驱动水纯化,因其在质量轻、成本低、来源广泛和结构可调等方面的独特优势而受到越来越多的关注[14-16],特别是含有供体(D)、受体(A)单元共面骨架的小分子共轭材料,可以通过有效的电子离域形成π-π堆积,产生红移的吸收,拓宽其吸收光谱,根据能隙定律,小的能隙促进非辐射衰变进而产生热量,从而获得优异的光热性能[17-19]。例如,研究人员通过合成新的D-A型共轭分子CR-TPE-T[20]和GDPA-QCN[21],并建立界面加热蒸发系统,实现了一个标准太阳光照射下超过1.0 kg/(m2·h)。而A-D-A型稠环共轭小分子同样受到研究人员们的广泛关注,相比于D-A型共轭分子,新增的A单元,进一步促进分子内电荷转移,增强了光吸收[22-24]。并且A-D-A型小分子中含有大量易旋转的脂肪族侧链,促进了分子的非辐射衰变进而增强光热转换能力[25-27]。因此,A-D-A型共轭分子是潜在优秀的光热界面蒸发材料。然而,到目前为止,基于A-D-A型共轭分子在太阳能光热界面蒸发领域的研究还非常少。

      在这项工作中,我们利用高度共轭平面骨架的A-D-A型稠环共轭小分子Y6[28-29]作为界面光热材料,与低成本、可再生的纤维素纸结合,用于太阳能海水淡化。负载Y6的纤维素纸在350~1 000 nm范围内有很强的吸收,在1 kW/m2太阳光下温度高达70.3 ℃。在定制的纤维素纸上表面喷洒少量的Y6后,制成了自漂浮式Janus结构光热蒸发器。亲水的底表面具有高的水附着力,有利于与水的充分接触;疏水的上表面使其具有自浮能力。此外,在1 kW/m2模拟太阳光辐照下,这个基于有机小分子材料的太阳能蒸发器的η分别达到1.13 kg/(m2·h)和64.4%。在海水淡化处理方面,经过Y6蒸发器收集的再生水的离子含量接近于零。为了充分利用水蒸发过程中的余热,避免过多的能量浪费,我们将负载Y6的纤维素纸附着在热电器件上,利用热电器件的塞贝克效应,制备光-热-电一体化器件,构建1个能够同时进行水分蒸发和热电发电的多功能装置,实现以太阳能作为唯一能源下,淡水资源和电能的同时收集。在Y6纤维素纸内部存在界面水分蒸发的情况下,该装置实现了1.02 kg/(m2·h)的,在1 kW/m2的太阳光下产生了高达55 mV的稳定电压,在3 kW/m2的太阳照射下稳定电压甚至可以达到155 mV。这种基于有机光热材料的水纯化与热电联合装置,将光热蒸发与热电发电技术连接,在室外太阳能脱盐和发电方面具有广阔的应用前景,如图1所示。

      图  1  装置制备流程图

      Figure 1.  Scheme of device preparation

    • 使用的化学试剂和溶剂都是从商业渠道购买,使用前并未经进一步纯化。纤维素纸购自Cytiva生命科学有限公司,氯仿购自Xilong科学股份有限公司,Y6购自Hyper光电科技有限公司。

      热重分析(TGA)和差示扫描量热分析(DSC)在TA Q600型仪器上测试,加热速率为10 K/min。用Angilent Cary 5000分光光度计记录紫外-可见(UV-Vis)吸收光谱。采用扫描电镜(JEOL JSM-6700F)对纤维素纸的形貌进行观察。采用接触角测量仪(Dataphysics-OCA20)记录样品的水接触角。

      采用红外热成像仪(FLIR-C5)和接触式温度计(UNI-T, UT325)记录样品的温度变化。利用CEL-HXF300型号的氙气光源(AM 1.5G光谱滤波器)进行了水蒸发和热电发电实验。发电选用商用热电片(TEC1-12706,长40 mm,宽40 mm,高3.6 mm)。输出电压由Keithley 2612系统源表测量和记录。采用电感耦合等离子体发射光谱(ICP-OES, PE Avio 200)测定蒸发前后的金属离子浓度。

    • 将Y6在低沸点溶剂氯仿中充分溶解后,喷洒在纤维素纸上并自然挥发除去残余溶剂。将基于纤维素纸的蒸发器放在1个装满模拟海水的小烧杯内。太阳光由带有AM 1.5G标准光谱滤光片的太阳模拟器产生,在特定的光强度下照射在样品上。用电子天平测量水的失重,通过接触式温度计记录整个过程的温度。

    • 光热水蒸发过程中太阳能的光热转换效率η计算公式如下[15]

      $$ \eta=\dot{m} h_{\mathrm{LV}} / q_i $$ (1)

      式中:

      ——蒸发速率[kg/(m2·h)],太阳光照下水的蒸发速率 = lightdark,在我们的工作中dark = 0.102 55 kg/(m2·h);

      qi ——功率密度(mW/cm2),为太阳光模拟器在水蒸发实验过程中的功率密度;

      hLV ——液-气相变总焓(kJ/kg),计算公式为:

      $$ h_{\mathrm{LV}}=C \Delta T+\Delta h $$ (2)

      式中:

      C ——水的比热容[4.18 J/(g·K)];

      ΔT ——水的升高温度(℃);

      Δh ——相对温度下的蒸发焓(kJ/kg)。根据研究报道,hLV约为2 256.4 kJ/kg。

      对于Y6蒸发器:

      $$ \begin{gathered} \dot{m}_{\text {light }}=1.130\;67 \mathrm{~kg} /\left(\mathrm{m}^2 \cdot \mathrm{h}\right) \\ \dot{m}_{\text {dark }}=0.102\;55 \mathrm{~kg} /\left(\mathrm{m}^2 \cdot \mathrm{h}\right) \\ \dot{m}=\dot{m}_{\text {light }}-\dot{m}_{\text {dark }}=1.028\;12 \mathrm{~kg} /\left(\mathrm{m}^2 \cdot \mathrm{h}\right) \\ h_{\mathrm{LV}} \approx 2\;256.4 \mathrm{~kJ} / \mathrm{kg}\\ q_{\mathrm{i}}=100 \mathrm{~mW} / \mathrm{cm}^2 \\ \eta = \frac{{\dot m{h_{{\rm{LV}}}}}}{{{q_{\mathrm{i}}}}} = 64.4\text{%} \end{gathered} $$
    • 将条状纤维素纸粘在热电器件的上表面,纤维素纸的两端与热电器件的下表面和水接触。将Y6纤维素纸粘在条状纤维素纸的上表面,用聚苯乙烯泡沫作为漂浮承载体。分别在1.0 kW/m2和3.0 kW/m2模拟太阳光照射下进行光热发电,用源表测量并记录电压。

    • 具有共轭结构的Y6分子如图2(a)所示,Y6分子含有卤素、烷基等多种疏水官能团。图2(b)显示了通过TGA和DSC得到的热数据,TGA测试表明,Y6具有317 ℃的高分解温度(Td,对应重量损失5%),通过DSC测量得到Y6的结晶温度(Tc)为291 ℃,稳定的热性能证明了Y6是合适的光热材料。如图2(c)所示,Y6溶液在650~800 nm区域表现出较强的吸收,通过比较Y6的溶液态和固态吸收光谱(在纤维素纸上)可以看出,在固态吸收光谱中出现了明显的红移和更宽的吸收,这是由于Y6分子具有高共轭刚性平面骨架而引起的强分子间π-π堆积所致[28]

      图  2  材料表征

      Figure 2.  Characterization of materials

      基于Y6的宽吸收光谱和优异的热稳定性,我们将Y6与纤维素纸结合,制备出界面加热和水蒸发的高效太阳能吸收器。该吸收器制备工艺简单,节省材料,成本低,具有大规模应用的潜力。由于纤维素纸优良的输水能力和良好的隔热性,因此作为界面水蒸发的漂浮载体。SEM照片显示,负载Y6纤维素纸的表面比空白纤维素纸更光滑,表明这个小分子材料可以很好地粘附在纸张表面(图2(d),5000X)。此外,SEM还可以看出,蒸发器具有合理的孔隙结构,这更有利于纤维素纸内部有效收集太阳光以及水分的输运蒸发(图2(d),100X)[20]

      在空气中,Y6纤维素纸的吸收范围为350~1 000 nm,这几乎覆盖了全部的可见区和部分近红外区太阳光,并且Y6纤维素纸的吸收明显高于空白纤维素纸(图2(c))。如图3(a),通过记录相同光照强度下纸张在10 min内的温度变化过程,证明Y6太阳能吸收器的光热转换性能。10 min内,干燥Y6纤维素纸的温度达到70.3 ℃,高于空白纸的温度(仅为36.2 ℃),此外,红外热成像照片显示Y6具有快速的加热过程和理想的平衡温度。并且,每3.14 cm2的纤维素纸,只需要0.5 mg的材料就可以达到最高温度(根据计算,1 m2蒸发器只需要1.6 g左右的Y6)。因此,Y6具有良好的光热转换能力且节约材料,在太阳能水蒸发领域具有广阔的应用前景。如图3(b)所示,在5次光开关循环周期后,温度可以保持在68 ℃以上,证明了蒸发器具有优异的光稳定性。

      图  3  器件性能

      Figure 3.  Performance of the devices

      图3(c)所示,Y6蒸发器的下表面呈现亲水性(水的接触角为0°),又由于Y6分子含有多种疏水官能团,因此Y6蒸发器的上表面呈现疏水性(水的接触角为121.8°)。亲水的底表面有利于水的粘附,形成水通道,疏水的上表面使蒸发器表现出自漂浮能力,相比于纤维素纸,负载Y6的蒸发器可以稳定漂浮在水面上(图3(d))。

      根据图4(a)所示的基本设计原理,在水中对Y6蒸发器的蒸发效果进行实验,将蒸发器放在1个装满盐水的小烧杯上组装测试装置。在模拟1个标准太阳光下,照射1 h的过程中,用红外热像仪记录温度变化,同时观察水的质量损失。如图4(b)所示,漂浮在水面上的Y6蒸发器表面温度为39.0 ℃,显著高于空白纤维素纸(30.7 ℃)和水(30.6 ℃)。根据实时记录的数据,绘制1 h内水的质量损失与时间的关系曲线,如图4(c)所示,经计算Y6蒸发器的η达到64.4%,高达1.13 kg/(m2·h),明显高于水(m = 0.55 kg/(m2·h))和空白纤维素纸(m = 0.68 kg/(m2·h))。

      图  4  海水淡化能力

      Figure 4.  Desalination ability

      接下来我们进一步研究了Y6蒸发器在实际应用中的模拟海水处理能力。采用Y6蒸发器的太阳能水净化系统收集脱盐后的冷凝水,通过ICP-OES评估收集的水的品质。在图4(d)中,模拟海水淡化后,4种主要离子(Na+、K+、Ca2+、Mg2+)的浓度明显下降了4~6个数量级。

      为了减少Y6纤维素纸蒸发器蒸发过程中产生余热的浪费,我们制备了光热蒸发水与余热利用相结合的协同系统装置,实现光热水电联产。图5(a)为装置的设计图,纤维素纸以其独特的纤维结构和亲水性,充当高效水泵用来输运水,在热电器件上形成水分蒸发层,在热电器件表面粘贴负载2.5 mg Y6的纤维素纸。当Y6纤维素纸在光下照射时,集成热电装置的上部温度高于下部,产生了温差(ΔT),这是发电的核心部分。

      图  5  水电联产性能

      Figure 5.  Performance of co-generate electricity and freshwater

      图5(b)所示,在1.0 kW/m2太阳辐照下,基于Y6蒸发器水电联产条件下的为1.03 kg/(m2·h),略低于单纯蒸发水。Y6纤维素纸的ΔT明显高于空白纤维素纸,当光强逐渐增大时,ΔT也逐渐增大(图5(b)),3.0 kW/m2太阳光强度下,ΔT达到15 ℃。图5(c)为太阳光强度变化下热电设备输出电压与时间的关系,与暗态下的Y6纤维素纸装置相比,可以明显地观察到随着光照强度的增加,输出电压也随之增加。如图5(d)所示,在1.0 kW/m2的太阳光下,输出电压为55 mV,而在3.0 kW/m2的太阳光照下,稳定电压达到155 mV。这证明了将Y6纤维素纸用于热电发电的可行性,从而为开发光热水蒸发与热电发电相结合的协同装置的搭建提供了基本框架。

    • 综上所述,文章将有机共轭小分子材料Y6,通过简单、可大面积制备的喷涂方法,与低成本的纤维素纸结合,成功制备了上表面疏水、下表面高效集水的自漂浮式太阳能蒸发器。基于Y6的蒸发器具有稳定的光热性能,在1 kW/m2太阳光照下,高达1.13 kg/(m2·h),η达到64.4%,并且蒸发所需光热材料仅为0.5 mg/3.14 cm2,节约材料方面优势明显,同时,Y6蒸发器在海水淡化方面效果优异。此外,我们设计了水蒸发与余热发电一体化的装置,在1 kW/m2太阳光下,值达到1.03 kg/(m2·h),并且同时产生55 mV的电压。后续我们将进行更多的优化,例如使用先进的封装技术来提高材料的耐用性,或者将光热材料负载在更定向的孔结构的载体上。将这种基于有机共轭小分子材料制备的蒸发器用于光热盐水淡化和热电发电等更广阔的工业领域。

    • 本研究曾得到广东省基础与应用基础研究基金项目“中宽带隙电子受体的设计合成与水下光伏性能研究”(2022A1515111021)的资助,谨此致谢。

参考文献 (29)

目录

    /

    返回文章
    返回