Processing math: 100%
  • 匿名盲审
  • 学术期刊非营利性
  • 全球免费开放获取全文
  • 最新科研成果提供绿色通道

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

适应新型电力系统的调峰火电机组空气预热器安全评估策略

王志敏 黄骞 柳冠青 周勇 张楠 李诚 李水清

王志敏,黄骞,柳冠青,等. 适应新型电力系统的调峰火电机组空气预热器安全评估策略[J]. 南方能源建设,2024,11(6):33-40. doi:  10.16516/j.ceec.2024.6.03
引用本文: 王志敏,黄骞,柳冠青,等. 适应新型电力系统的调峰火电机组空气预热器安全评估策略[J]. 南方能源建设,2024,11(6):33-40. doi:  10.16516/j.ceec.2024.6.03
WANG Zhimin, HUANG Qian, LIU Guanqing, et al. Flexibility-Oriented safety assessment strategy for air preheater in thermal power units adapting to the advanced power system [J]. Southern energy construction, 2024, 11(6): 33-40 doi:  10.16516/j.ceec.2024.6.03
Citation: WANG Zhimin, HUANG Qian, LIU Guanqing, et al. Flexibility-Oriented safety assessment strategy for air preheater in thermal power units adapting to the advanced power system [J]. Southern energy construction, 2024, 11(6): 33-40 doi:  10.16516/j.ceec.2024.6.03

适应新型电力系统的调峰火电机组空气预热器安全评估策略

DOI: 10.16516/j.ceec.2024.6.03
CSTR: 32391.14.j.ceec.2024.6.03
基金项目: 国家重点研发计划项目“亚临界煤电机组深度灵活调峰关键技术及工程示范”(2023YFB4102900)
详细信息
    作者简介:

    王志敏,1998-,女,硕士在读,主要从事低碳智能发电研究工作(e-mail)1091987882@qq.com

    黄骞,1991-,男,工学博士,主要从事固体燃料燃烧过程中的颗粒物与灰渣防控、动理学方程建模分析等课题的研究工作(e-mail)huangqian@mail.tsinghua.edu.cn

    通讯作者:

    黄骞,(e-mail)huangqian@mail.tsinghua.edu.cn

  • 中图分类号: TM611;TK01+8

Flexibility-Oriented Safety Assessment Strategy for Air Preheater in Thermal Power Units Adapting to the Advanced Power System

  • 摘要:   目的  “双碳”目标下新型电力系统建设要求存量火电转向调峰运行,因此火电机组灵活运行下的安全性成为提升电力系统整体稳定性不可或缺的一环。其中,空气预热器是影响火电机组宽负荷运行能力的关键辅机设备,针对其由烟温波动与过量喷氨诱发的堵塞与腐蚀问题,开发回转式空气预热器积灰堵塞实时评估及安全状态监测模型至关重要。  方法  依托中国中部地区某600 MW和350 MW机组宽负荷运行监测大数据,建立了一种基于阻力系数的不同时间尺度逼近的空预器堵塞评估模型;进一步,以空预器出口烟气温度及冷端工作温度为监测指标,统计其在机组多个负荷段的参数超限比例。  结果  结果表明,机组处于39%调峰负荷下监测温度约有20%的超限概率;独立计算两指标下的堵塞风险相较以联合分布计算会一定程度低估其折损率。此外,通过两台机组数据的验证,堵塞评估模型可实现量化机组在空预器吹灰周期内(短期)和中长期的堵塞状态演化趋势。  结论  所提评估策略可应用于SCR脱硝系统、磨煤机等其他火电机组设备及系统,可量化机组调峰运行安全风险,指导火电机组高效、稳定地配合新型电力系统调度。
  • “双碳”目标下,中国加快建设以可再生能源为主体的新型电力系统[1],高比例新能源的供给消纳使得存量火电机组转向调峰运行,以增强电网的平衡调节能力。同时,考虑到风光能源的随机性、波动性和间歇性,“碳中和”下中国(及各区域)能源结构中仍应保有一定的火电装机容量,以保障电力供应的可靠性[2-3]。这都要求火电的输出能力更加灵活,以使电网时刻满足负荷需求的同时,最大限度地容纳可再生能源[4]

    火电机组灵活运行下的安全性是保持新型电力系统可靠健壮不可或缺的一环。但实际中,机组低负荷、变负荷运行常面临煤耗增高、燃烧稳定性降低等问题[5-6]。由于锅炉调峰运行工况复杂,对脱硝系统喷氨精度要求更高,易造成喷氨过量与烟温波动,加剧下游空气预热器(简称空预器)的积灰堵塞与腐蚀,严重时可致机组停机:这也是火电机组为配合电力系统消纳新能源面临的一大关键安全制约因素[7-8]

    空预器是布设在锅炉尾部烟道的换热设备,利用烟气余热加热煤粉燃烧所需一、二次风,显著提升机组能效和低负荷运行下的煤粉着火与稳燃能力[9]。现代大型火电机组多采用三分仓回转式空预器结构,通过蓄热式波纹板将空气加热。但波纹板的流道狭窄,易被烟气中的飞灰颗粒物堵塞[10]。空预器内的积灰堵塞既降低其换热效率,影响机组整体运行效率,也会显著增大流道阻力,增加风机能耗,严重时会引发风机喘振、失速甚至导致机组停机[11]。这已成为当前火电调峰运行中的普遍棘手问题:据国内某发电集团对所属300 MW及600 MW机组的不完全统计,超过半数机组的空预器运行压差显著高于设计值。

    为清理空预器积灰,现代锅炉均配备空预器吹灰器对其冷、热端进行定期吹扫,但运行中的核心难点是确定合理的吹灰周期,既防止吹灰不足,也要避免因过于频繁的吹灰造成的高机组能耗与换热面损伤[12]。为确定合理的吹灰周期,需要在机组运行中基于各类实时监测数据准确研判空预器堵塞状态。当前机组运行主要依靠空预器烟气进(热端)、出(冷端)口压力值(主要是压差)来监测其流动阻力,但压差不仅受空预器堵塞状态影响,更与烟气流量密切相关,无法直接反应堵塞状态。一些研究者通过数据处理方式,建立了各工况下空预器的“标准状态”压差,依此来衡量实测压差所对应的堵塞程度[13]。该方案计算简便,但受压力测点数量的制约,实测压差变化可能出现较强的随机性。利用空预器积灰前后换热能力的差异来表征其堵塞状况是另一技术路线[14-15]。具体来说,通过空预器进出口参数计算实时传热系数,并将实际与理论传热系数的比值定义为清洁度因子,以该系数的变化在线监测空预器灰渣污垢累积情况。但该方法模型较为复杂,且传热系数建模过程中假设条件较多,尚缺乏大规模应用基础。此外,也有对空预器冷端进行可视化图像监测的设想,但缺乏实际应用[16]。亟待开发可靠且具有实用性的运行数据分析模型,准确评估空预器堵塞状态。

    除空预器积灰堵塞问题外,由机组调峰运行造成的烟温波动是限制机组可调最小负荷的另一关键问题,这可能导致空预器换热能力下降及冷端腐蚀等问题。针对空预器内的温度分布,已有一些数值模拟研究尝试分析空预器内空间温度分布特性[17-18],但该类方法计算量大,适用工况窄(通常局限于少数清洁状态),难以在实际中大规模应用。目前多数电厂的设备状态监测策略仍然是根据经验对关键运行数据设定上限和下限值,并根据需求提供超限实时报警。但对于调峰运行烟温波动导致的腐蚀、堵塞等问题,仍缺乏系统性的设备状态综合评估研究,特别是缺少对监测结果的统计分析。

    综上,空气预热器作为影响火电机组宽负荷运行能力的关键辅机设备,文章拟为其构建运行状态评估模型,以提升机组灵活运行安全性。通过空预器进出口压差、负荷等实测运行数据计算其各历史时刻实际阻力系数,进一步关注该阻力系数在不同吹灰周期、停炉冲洗周期等运行范围内的堵塞增长情况,从而构建起历史吹灰评价体系。拟以空预器为例构建一种设备调峰能力量化分析模型,以评估火电机组配合新型电力系统调度的能力。该模型以空预器出口烟气温度、空预器冷端温度等关键运行参数在各负荷区间内的概率密度分布为基础,监控并评估其在不同调峰工况下的运行状态。

    本研究依托中国中部地区某350 MW和某600 MW机组实时运行数据开展。如图1所示,两机组均用VN回转式三分仓空气预热器,且前端加装SCR脱硝装置。对于加装SCR脱硝系统且未采取水旁路改造和烟气旁路改造的锅炉风烟系统,由烟气温度降低引起的空气预热器运行稳定性问题是制约火电机组承担调峰任务的关键因素之一[19]

    图  1  空气预热器工作示意图
    Fig.  1  Schematic diagram of air preheater operation

    SCR系统往烟气中喷入氨(NH3)还原氮氧化物(NOx)。当机组处于低负荷或变负荷运行时,测得的烟气NOx浓度可能存在时滞、准确性差等问题[20-21];此外,SCR催化剂在异常烟气温度下可能活性降低,因此实际运行中倾向采用充分喷氨以避免尾气NOx超标的调节策略。当NH3注入量超过NOx脱除所需时,多余的NH3、SO3和H2O会形成硫酸氢铵(ABS),其性质为中酸性,黏度较高。

    ABS在空预器中下游沉积与黏附是空预器堵塞的关键诱因[22]。其高黏特性会加速烟气中飞灰颗粒物的沉积,使得原定吹灰周期难以满足实际运行需求,还会影响后续除尘设备效率。因此,为降低由空预器堵塞造成的风机电耗增大、空气-烟气热量交换不充分等问题,定期评估空预器在短时吹灰周期及长期堵塞情况演化,对调整空预器运行具有重要意义。除堵塞外,冷端温度和烟气出口温度过低会增加ABS沉积概率,若低于烟气的酸露点温度,将进一步加剧金属表面的腐蚀。

    可见,为优化和维护新型电力系统,必须着眼于其中各关键组件在运行中的灵活性[23],尽可能避免超负荷调峰带来的风险。

    针对机组直接监测数据无法准确反映空预器内部堵塞情况的现状,本节首先基于流体力学基本原理,结合机组负荷及空预器进出口压差等实测数据,构建了空预器实时阻力系数计算方法;进一步针对该计算结果随机误差较大的问题,引入近期内历史数据进行拟合修正,以获得基于不同运行周期的堵塞演化模型。

    空预器阻力系数是反映其内部堵塞状态的无量纲参数,其计算公式如式(1)所示[16]

    K=2Δp¯ρf(Qv/Aph)2 1

    式中:

    Δp ——空预器进出口压力差(Pa);

    ˉρf ——流经空预器的烟气的平均密度(kg/m3);

    Qv ——流经空预器的烟气的体积流量(折算至烟气平均温度状态下,m3/s);

    Aph ——空预器烟气侧的流通截面积(m2)。

    在实际应用中,烟气压差主要依靠空预器进出口处布置的压力测点的实测数据计算得到;由于烟气的温度和压力波动范围通常较小,烟气平均密度通常视为定值;而烟气流量则是该计算方法的主要难点。电厂SIS系统(厂级信息监控系统)的烟气流量通常是标准状态下(0 ℃,101.325 kPa)、干基(即不含水蒸气)的测量数据,使得该参数参与计算时存在严重滞后;此外,由于难以保证烟道截面内的流速均匀,测量数据可能存在较大随机误差。一种改进方案是引入机组负荷W和过量空气系数α代替式(1)中的烟气流量,获得“修正”的阻力系数如式(2)所示。

    K=Δp/(Wα)2 2

    图2所示,空预器压差与负荷存在明显的线性相关性(Pearson相关系数0.92,R2为0.84),无法直接反映其内部堵塞状态。而如图3所示,由式(2)所得的阻力系数在机组满负荷运行段相对稳定,可一定程度反映空预器阻力变化。

    图  2  负荷-压差关系图
    Fig.  2  Relationship between the load and the pressure difference
    图  3  负荷-修正阻力系数关系图
    Fig.  3  Relationship between the load and the ‘corrected’ resistance coefficient

    机组实际运行中,空预器的阻力系数应只与其内部结构及实时堵塞状态相关:即阻力系数K应在锅炉变负荷过程中保持相对稳定。但图3所示阻力系数即使在堵塞未发生明显变化的时段内,也可能存在大幅波动。这可能由压力传感器的测量系统误差和随机误差导致,也可能是因为测点在截面上的布置位置单一,使得逐时刻计算结果不具有代表性。

    为解决该问题,提出引入多项式K(t; k1, k2ki)的方式对阻力系数K进行拟合与修正:

    Δp=K(t;k1,k2ki)[W(t)α(t)]2+b 3

    式中:

    W(t) ——机组负荷(MW);

    α(t) ——过量空气系数;

    kib ——拟合参数。

    其中K的具体拟合形式需依据不同规律变化期(例如:吹灰、停炉冲洗)进行选取,以获取适用于不同时间尺度的堵塞因子演化模型。

    经测试,短期内(即通常小于单个吹灰周期),采取二次多项式对阻力系数变化趋势进行拟合可取得较好效果:

    K=k1t2+k2t+k3 4
    Δp(t)=(k1t2+k2t+k3)W(t)2+b 5

    式中:

    k1k2k3 ——待定系数。

    图4(a)展示了机组A(600 MW)在一次持续约48 h的吹灰周期内的阻力系数拟合效果(R2 = 0.9168)。可见,在该时间区间内如图5(a),阻力系数呈缓慢上升趋势,与工程实际相符。且如图4(a)所示,利用此拟合多项式计算得到的压差拟合曲线可在消除实际压差的波动的同时,较好地吻合其变化趋势,证明了该拟合结果的可靠性。取机组B(350 MW)一次持续约14 h的吹灰周期数据进行类似拟合验证,得到了如图4(b)及图5(b)所示的拟合效果(R2 = 0.8158),验证了该拟合模型在不同容量机组的适用性。

    图  4  拟合压差
    Fig.  4  Fitted pressure difference
    图  5  空预器短期阻力系数演化
    Fig.  5  Short-term evolution of resistance coefficients of air preheaters

    对于机组更长时间跨度内的堵塞状态演化趋势,简单的二次函数形式通常无法满足压差拟合需求。为处理周期性短期吹灰对空预器长期积灰状态的演化影响,在二次多项式拟合的基础上进一步引入包含吹灰周期T的拟合函数形式:

    K=k1t2+k2t+k3|sin(πTt)|+k4t+k5 6

    式中:

    k1k5 ——待定系数;

    T ——吹灰周期。

    图6(a)所示,该拟合多项式下的(350 MW)机组B空预器中长期阻力系数变化规律与实际堵塞状态变化规律相符,且拟合压差可较好地反映实际压差的变化趋势,见图6(b)。此外,图6(a)所示拟合曲线呈现出一定的周期波动趋势,反映了短期的、周期性的吹灰对空预器长期堵塞演化的影响。

    图  6  350 MW机组空预器长期阻力系数演化和拟合压差
    Fig.  6  Long-term evolution of resistance coefficient of the air preheater for the 350 MW unit and fitted pressure difference

    为获取空预器处于不同调峰状态下吹灰周期内的堵塞增长情况,本节所提的短期空预期阻力系数演化模型通常设置吹灰周期T作为模型数据拟合周期。由此,火电机组可依据周期T内的压差涨幅的变化,为未来机组运行策略调整提供参考依据。此外,本节所提的中长期堵塞规律演化模型是一种对包含多个吹灰周期的空预器长期堵塞状态评估,可显示展示机组在经历长时间灵活变负荷运行后的空预器安全状态,增强火电机组灵活运行能力。

    在新型电力系统中,火电机组各设备及系统为应对新能源出力及电力峰值需求不匹配的问题,常处于非设计工况条件下运行。这大幅增加了火电机组,乃至整个电力系统的不确定性及风险[24-25]。仍以空气预热器为例,其作为锅炉尾部烟道的低温受热面,除由积灰堵塞引起的压力波动外,工作温度范围是另一影响其安全状态的关键点。特别地,空预器过低的工作烟气出口温度和冷端温度不仅加剧空预器的冷端腐蚀程度,还间接影响积灰速率。

    为评估空预器历史工作状态,探究其在不同调峰工况下的运行情况。本节调取机组B(350 MW)6个月内的全部历史数据,按其历史调峰情况将机组历史数据分为100%-负荷,91%-负荷,71%-负荷,51%-负荷,39%-负荷五组。进一步,在各负荷段内,统计空预器出口烟气温度和冷端工作温度各自的概率密度分布及联合概率密度分布。图7显示了机组处于满负荷及最低稳负荷运行工况下,空预器出口烟气温度和冷端温度的概率分布。可见,机组低负荷运行下空预器典型温度分布较为分散,且整体温度偏低,更易出现温度失控而超出许用值的情况。

    图  7  基于出口烟气温度和冷端温度的350 MW机组空预器状态评估
    Fig.  7  Condition assessment of the air preheater for the 350 MW unit based on the flue gas temperature at the outlet and the cold end temperature

    基于电厂空预器温限规范(出口烟气温度在113 ℃~160 ℃之间;冷端温度不低于148 ℃),计算空预器在上述指标下的非正常工作时间占比,并将在不同典型负荷段下的超温限概率作为其折损率,以评价空预器的历史运行情况。如图8所示,在51%-负荷以及39%-负荷两个负荷段内,由于烟气温度难以控制,有20%~30%的时间空预器都处于非正常工作区间内,这将极大程度加剧其冷端腐蚀及堵塞问题。此外,独立计算两指标下的堵塞风险相较以联合分布计算会一定程度低估其折损率,这是由于两变量间具有较强的线性相关导致的。

    图  8  350 MW机组不同运行负荷下空预器温度参数超限概率
    Fig.  8  Probability for the air preheater temperature exceeding the limit for the 350 MW unit at various loads

    本节以空气预热器为例,阐述了所提辅机设备调峰能力评价策略的构建方法。在具体应用中,该策略不仅可拓展至火电机组磨煤机、SCR脱硝系统等设备,还可用于评价光伏逆变器等新能源发电设备在不同工况条件下的运行安全性。需要注意的是,该策略实现拓展应用首先需分析各设备运行特点以确定建模指标;其次应检查所选取变量之间的相关性,以确定是否需要计算联合概率密度分布。

    为保障新型电力系统的安全与稳定,文章以空气预热器为研究范例,开展了基于600 MW及350 MW火电机组实际调峰运行大数据的火电机组灵活运行安全状态评估研究:

    1)探究了以阻力系数变化表征空气预热器堵塞状态变化的实际应用可行性。提出了基于二次多项式的短期阻力系数拟合模型,可有效反映空预器吹灰周期内的堵塞增长趋势,为机组灵活运行策略调整提供参考依据。

    2)提出了在拟合多项式中加入周期性函数项的方法对空预器中长期的堵塞状态进行评估。该拟合模型可在体现周期性吹灰影响的基础上,反映机组在长时间灵活变负荷运行后的整体堵塞趋势演化。

    3)提出了一种适用于火电及新能源机组的设备调峰能力评价策略,可用于量化新型电力系统建设中的安全风险。同时以空预器为例展示了模型具体效果:机组满负荷运行下空预器基本处于安全温度区间内工作,而在39%-满负荷下监测温度约有20%的超限概率。

  • 图  1  空气预热器工作示意图

    Fig.  1  Schematic diagram of air preheater operation

    图  2  负荷-压差关系图

    Fig.  2  Relationship between the load and the pressure difference

    图  3  负荷-修正阻力系数关系图

    Fig.  3  Relationship between the load and the ‘corrected’ resistance coefficient

    图  4  拟合压差

    Fig.  4  Fitted pressure difference

    图  5  空预器短期阻力系数演化

    Fig.  5  Short-term evolution of resistance coefficients of air preheaters

    图  6  350 MW机组空预器长期阻力系数演化和拟合压差

    Fig.  6  Long-term evolution of resistance coefficient of the air preheater for the 350 MW unit and fitted pressure difference

    图  7  基于出口烟气温度和冷端温度的350 MW机组空预器状态评估

    Fig.  7  Condition assessment of the air preheater for the 350 MW unit based on the flue gas temperature at the outlet and the cold end temperature

    图  8  350 MW机组不同运行负荷下空预器温度参数超限概率

    Fig.  8  Probability for the air preheater temperature exceeding the limit for the 350 MW unit at various loads

  • [1] 王放放, 杨鹏威, 赵光金, 等. 新型电力系统下火电机组灵活性运行技术发展及挑战 [J]. 发电技术, 2024, 45(2): 189-198. DOI:  10.12096/j.2096-4528.pgt.23079.

    WANG F F, YANG P W, ZHAO G J, et al. Development and challenge of flexible operation technology of thermal power units under new power system [J]. Power Generation Technology, 2024, 45(2): 189-198. DOI:  10.12096/j.2096-4528.pgt.23079.
    [2] 张少强, 陈露, 刘子易, 等. 大型燃煤锅炉深度调峰关键问题探讨 [J]. 南方能源建设, 2022, 9(3): 16-28. DOI:  10.16516/j.gedi.issn2095-8676.2022.03.003.

    ZHANG S Q, CHEN L, LIU Z Y, et al. Discussion on key problems of depth peak adjustment for large coal-fired boilers [J]. Southern energy construction, 2022, 9(3): 16-28. DOI:  10.16516/j.gedi.issn2095-8676.2022.03.003.
    [3] 张全斌, 周琼芳. 基于“双碳”目标的中国火力发电技术发展路径研究 [J]. 发电技术, 2023, 44(2): 143-154. DOI:  10.12096/j.2096-4528.pgt.22092.

    ZHANG Q B, ZHOU Q F. Research on the Development path of China's thermal power generation technology based on the goal of "carbon peak and carbon neutralization" [J]. Power Generation Technology, 2023, 44(2): 143-154. DOI:  10.12096/j.2096-4528.pgt.22092.
    [4] 潘尔生, 田雪沁, 徐彤, 等. 火电灵活性改造的现状、关键问题与发展前景 [J]. 电力建设, 2020, 41(9): 58-68. DOI:  10.12204/j.issn.1000-7229.2020.09.007.

    PAN E S, TIAN X Q, XU T, et al. Status, critical problems and prospects of flexibility retrofit of thermal power in China [J]. Electric power construction, 2020, 41(9): 58-68. DOI:  10.12204/j.issn.1000-7229.2020.09.007.
    [5] 王志敏, 黄骞, 王可轩, 等. 宽负荷下供热机组煤耗实时寻优分析 [J]. 中国电机工程学报, 2023, 43(4): 1347-1358. DOI:  10.13334/j.0258-8013.pcsee.222277.

    WANG Z M, HUANG Q, WANG K X, et al. Real-time optimization analysis of coal consumption of co-generation units under varied loads [J]. Proceedings of the CSEE, 2023, 43(4): 1347-1358. DOI:  10.13334/j.0258-8013.pcsee.222277.
    [6] GU Y J, XU J, CHEN D C, et al. Overall review of peak shaving for coal-fired power units in China [J]. Renewable and sustainable energy reviews, 2016, 54: 723-731. DOI:  10.1016/j.rser.2015.10.052.
    [7] 张志强, 宋国升, 陈崇明, 等. 某电厂600 MW机组SCR脱硝过程氨逃逸原因分析 [J]. 电力建设, 2012, 33(6): 67-70. DOI:  10.3969/j.issn.1000-7229.2012.06.017.

    ZHANG Z Q, SONG G S, CHEN C M, et al. Cause analysis of ammonia escape in SCR flue gas denitrification process for 600 MW units [J]. Electric power construction, 2012, 33(6): 67-70. DOI:  10.3969/j.issn.1000-7229.2012.06.017.
    [8] ALOBAID F, MERTENS N, STARKLOFF R, et al. Progress in dynamic simulation of thermal power plants [J]. Progress in energy and combustion science, 2017, 59: 79-162. DOI:  10.1016/j.pecs.2016.11.001.
    [9] 王春昌, 马剑民, 张宇博, 等. 1 000 MW机组锅炉空气预热器旁路余热利用系统节能效果分析 [J]. 热力发电, 2019, 48(11): 56-61. DOI:  10.19666/j.rlfd.201904144.

    WANG C C, MA J M, ZHANG Y B, et al. Study on energy-saving effect of bypass waste heat utilization system of air preheater in a 1000 MW unit boiler [J]. Thermal power generation, 2019, 48(11): 56-61. DOI:  10.19666/j.rlfd.201904144.
    [10] 黄风良, 孙志坚, 李鹏程, 等. 带扰流孔波纹板的传热和阻力特性 [J]. 浙江大学学报(工学版), 2015, 49(7): 1242-1248. DOI:  10.3785/j.issn.1008-973X.2015.07.006.

    HUANG F L, SUN Z J, LI P C, et al. Heat transfer and resistance characteristics of corrugated plate with spoiler holes [J]. Journal of Zhejiang University (engineering science), 2015, 49(7): 1242-1248. DOI:  10.3785/j.issn.1008-973X.2015.07.006.
    [11] 宋晓通. 600 MW燃煤机组空预器堵塞治理对风机运行的影响 [J]. 能源科技, 2023, 21(1): 52-55.

    SONG X T. Effect of air preheater choking control on fan operation of 600 MW coal-fired unit [J]. Energy science and technology, 2023, 21(1): 52-55.
    [12] 高荣泽, 王利民, 孙浩家, 等. 回转式空气预热器积灰分层监测方法研究 [J]. 动力工程学报, 2023, 43(6): 677-685. DOI:  10.19805/j.cnki.jcspe.2023.06.003.

    GAO R Z, WANG L M, SUN H J, et al. Study on layered fouling monitoring method of rotary air preheater [J]. Journal of Chinese society of power engineering, 2023, 43(6): 677-685. DOI:  10.19805/j.cnki.jcspe.2023.06.003.
    [13] 张晓安. 锅炉吹灰优化中清洁因子的计算研究 [D]. 保定: 华北电力大学, 2013.

    ZHANG X A. Calculation of clean factor for power station boiler blowing optimization [D]. Baoding: North China Electric Power University, 2013.
    [14] 王建国, 徐志明, 杨善让. 空气预热器积灰在线监测模型 [J]. 中国电机工程学报, 2000, 20(7): 37-39. DOI:  10.3321/j.issn:0258-8013.2000.07.009.

    WANG J G, XU Z M, YANG S R. On-line monitoring model of ash deposits on air preheater [J]. Proceedings of the CSEE, 2000, 20(7): 37-39. DOI:  10.3321/j.issn:0258-8013.2000.07.009.
    [15] SHI Y H, WEN J, CUI F S, et al. An optimization study on soot-blowing of air preheaters in coal-fired power plant boilers [J]. Energies, 2019, 12(5): 958. DOI:  10.3390/en12050958.
    [16] 李诚. 深度调峰下燃煤机组低碳运行与氮氧化物协同优化脱除 [D]. 北京: 清华大学, 2021.

    LI C. Low-carbon operation and synergistic optimization of nitrogen oxide removal of coal-fired power plants under deep peak regulation [D]. Beijing: Tsinghua University, 2021.
    [17] BU Y F, WANG L M, CHEN X, et al. Numerical analysis of ABS deposition and corrosion on a rotary air preheater [J]. Applied thermal engineering, 2018, 131: 669-677. DOI:  10.1016/j.applthermaleng.2017.11.082.
    [18] MENASHA J, DUNN-RANKIN D, MUZIO L, et al. Ammonium bisulfate formation temperature in a bench-scale single-channel air preheater [J]. Fuel, 2011, 90(7): 2445-2453. DOI:  10.1016/j.fuel.2011.03.006.
    [19] 徐民. 超超临界锅炉宽负荷脱硝改造方案对比分析 [J]. 发电设备, 2022, 36(6): 433-436. DOI:  10.19806/j.cnki.fdsb.2022.06.012.

    XU M. Comparison and analysis on wide-load denitration retrofit schemes for an ultra-supercritical boiler [J]. Power equipment, 2022, 36(6): 433-436. DOI:  10.19806/j.cnki.fdsb.2022.06.012.
    [20] VAN DER LANS R P, GLARBORG P, DAM-JOHANSEN K. Influence of process parameters on nitrogen oxide formation in pulverized coal burners [J]. Progress in energy and combustion science, 1997, 23(4): 349-377. DOI:  10.1016/S0360-1285(97)00012-9.
    [21] SMREKAR J, POTOČNIK P, SENEGAČNIK A. Multi-step-ahead prediction of NO x emissions for a coal-based boiler [J]. Applied energy, 2013, 106: 89-99. DOI:  10.1016/j.apenergy.2012.10.056.
    [22] CHENG T, LUO L Y, YANG L J, et al. Formation and emission characteristics of ammonium sulfate aerosols in flue gas downstream of selective catalytic reduction [J]. Energy & fuels, 2019, 33(8): 7861-7868. DOI:  10.1021/acs.energyfuels.9b01436.
    [23] 张少强, 孙晨阳, 余落杭, 等. 燃煤发电机组灵活性改造的研究进展综述 [J]. 南方能源建设, 2023, 10(2): 48-54. DOI:  10.16516/j.gedi.issn2095-8676.2023.02.007.

    ZHANG S Q, SUN C Y, YU L H, et al. Research progress on flexibility modification of coal-fired generating units [J]. Southern energy construction, 2023, 10(2): 48-54. DOI:  10.16516/j.gedi.issn2095-8676.2023.02.007.
    [24] 郭宬昊, 谢子硕, 王金星, 等. 新能源系统中双储能耦合燃煤机组的应用策略研究 [J]. 南方能源建设, 2022, 9(3): 62-71. DOI:  10.16516/j.gedi.issn2095-8676.2022.03.007.

    GUO C H, XIE Z S, WANG J X, et al. Research on operation strategy of the application of dual energy storage coupled with coal-fired units in new energy power system [J]. Southern energy construction, 2022, 9(3): 62-71. DOI:  10.16516/j.gedi.issn2095-8676.2022.03.007.
    [25] 窦文雷, 张娜, 胡旌伟, 等. 寒地新能源与灵活供热煤电改造协同规划模型 [J]. 电力建设, 2024, 45(9): 13-25. DOI:  10.12204/j.issn.1000-7229.2024.09.002.

    DOU W L, ZHANG N, HU J W, et al. Cooperative planning model for renewable energy and flexible coal-fired chp in cold regions [J]. Electric power construction, 2024, 45(9): 13-25. DOI:  10.12204/j.issn.1000-7229.2024.09.002.
  • [1] 许婷, 侯景峥, 祝玉章, 刘成伟, 朱治德, 刘禹初.  燃煤机组耦合非补燃型压缩空气储能技术的深度调峰系统应用与经济性研究 . 南方能源建设, 2025, 12(): 1-7. doi: 10.16516/j.ceec.2024-364
    [2] 宋民航, 杨宏燕.  基于智能控制的燃煤锅炉灵活调峰技术 . 南方能源建设, 2024, 11(6): 1-17. doi: 10.16516/j.ceec.2024.6.01
    [3] 张少强, 孙晨阳, 余落杭, 樊小梅, 潘杜娟, 魏书洲, 周兴.  燃煤发电机组灵活性改造的研究进展综述 . 南方能源建设, 2023, 10(2): 48-54. doi: 10.16516/j.gedi.issn2095-8676.2023.02.007
    [4] 李波, 刘鑫屏.  基于最优权重融合的火电机组智能燃烧优化方案评价 . 南方能源建设, 2022, 9(3): 94-101. doi: 10.16516/j.gedi.issn2095-8676.2022.03.011
    [5] 张赢, 张国罡, 邹健.  南方地区大型二次循环燃气-蒸汽联合循环调峰机组满足用水定额设计思路探讨 . 南方能源建设, 2022, 9(S1): 43-49. doi: 10.16516/j.gedi.issn2095-8676.2022.S1.007
    [6] 赵浩腾, 宋民航, 王金星.  抽凝机组耦合热电转换辅助调峰系统参数设计 . 南方能源建设, 2022, 9(3): 72-79. doi: 10.16516/j.gedi.issn2095-8676.2022.03.008
    [7] 孙浩程, 宋民航, 郭璞维, 张长永, 王金星.  辅助火电机组调峰系统的储热参数设计研究 . 南方能源建设, 2022, 9(3): 9-15. doi: 10.16516/j.gedi.issn2095-8676.2022.03.002
    [8] 袁春峰, 刘锴慧, 张帆, 杨浩, 孙晨阳, 魏书洲, 王金星.  火电机组一次调频技术研究进展综述 . 南方能源建设, 2022, 9(3): 1-8. doi: 10.16516/j.gedi.issn2095-8676.2022.03.001
    [9] 魏厚俊, 谢研, 孙亚坤, 韩玉鑫, 宋民航.  燃煤机组调峰过程中污染物排放特性及控制技术 . 南方能源建设, 2022, 9(3): 50-61. doi: 10.16516/j.gedi.issn2095-8676.2022.03.006
    [10] 李峻, 祝培旺, 王辉, 仇晓龙.  基于高温熔盐储热的火电机组灵活性改造技术及其应用前景分析 . 南方能源建设, 2021, 8(3): 63-70. doi: 10.16516/j.gedi.issn2095-8676.2021.03.009
    [11] 印佳敏, 郑赟, 杨劲.  储能火电联合调频的容量优化配置研究 . 南方能源建设, 2020, 7(4): 11-17. doi: 10.16516/j.gedi.issn2095-8676.2020.04.002
    [12] 罗聪, 刘鑫屏.  深度调峰工况下锅炉过量空气系数对炉内温度影响的分析 . 南方能源建设, 2019, 6(3): 81-86. doi: 10.16516/j.gedi.issn2095-8676.2019.03.014
    [13] 吴家凯, 黄涛.  FCB功能火电机组辅机选型技术研究 . 南方能源建设, 2018, 5(1): 59-62. doi: 10.16516/j.gedi.issn2095-8676.2018.01.009
    [14] 刘海喆, 田亮.  主汽压力控制品质与燃料量变化约束关系定量分析 . 南方能源建设, 2018, 5(3): 48-55. doi: 10.16516/j.gedi.issn2095-8676.2018.03.007
    [15] 王丙乾, 董剑敏, 关前锋.  基于调峰能力分析的电网弃风评估方法及风电弃风影响因素研究 . 南方能源建设, 2018, 5(2): 71-76. doi: 10.16516/j.gedi.issn2095-8676.2018.02.010
    [16] 傅喻帅, 夏牡丹.  火电机组湿法脱硫系统自动化水平提升的策略与应用 . 南方能源建设, 2018, 5(S1): 25-28. doi: 10.16516/j.gedi.issn2095-8676.2018.S1.005
    [17] 王伟, 徐婧, 赵翔, 袁晓江, 李振新.  中国煤电机组调峰运行现状分析 . 南方能源建设, 2017, 4(1): 18-24. doi: 10.16516/j.gedi.issn2095-8676.2017.01.003
    [18] 曾勇, 曾颖.  燃气热电联产机组选型、调峰能力及电价机制分析 . 南方能源建设, 2015, 2(1): 66-70. doi: 10.16516/j.gedi.issn2095-8676.2015.01.013
    [19] 曾勇, 曾颖.  热电联产机组的电力调峰运行模式研究 . 南方能源建设, 2015, 2(3): 51-56. doi: 10.16516/j.gedi.issn2095-8676.2015.03.010
    [20] 欧卫海, 王立地.  火力发电厂机组APS监控关键技术研究 . 南方能源建设, 2015, 2(S1): 19-25. doi: 10.16516/j.gedi.issn2095-8676.2015.S1.005
  • 加载中
图(8)
计量
  • 文章访问数:  1849
  • HTML全文浏览量:  856
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-18
  • 录用日期:  2024-03-01
  • 修回日期:  2024-02-05
  • 网络出版日期:  2024-06-20
  • 刊出日期:  2024-11-30

适应新型电力系统的调峰火电机组空气预热器安全评估策略

DOI: 10.16516/j.ceec.2024.6.03
CSTR: 32391.14.j.ceec.2024.6.03
    基金项目:  国家重点研发计划项目“亚临界煤电机组深度灵活调峰关键技术及工程示范”(2023YFB4102900)
    作者简介:

    王志敏,1998-,女,硕士在读,主要从事低碳智能发电研究工作(e-mail)1091987882@qq.com

    黄骞,1991-,男,工学博士,主要从事固体燃料燃烧过程中的颗粒物与灰渣防控、动理学方程建模分析等课题的研究工作(e-mail)huangqian@mail.tsinghua.edu.cn

    通讯作者: 黄骞,(e-mail)huangqian@mail.tsinghua.edu.cn
  • 中图分类号: TM611;TK01+8

摘要:   目的  “双碳”目标下新型电力系统建设要求存量火电转向调峰运行,因此火电机组灵活运行下的安全性成为提升电力系统整体稳定性不可或缺的一环。其中,空气预热器是影响火电机组宽负荷运行能力的关键辅机设备,针对其由烟温波动与过量喷氨诱发的堵塞与腐蚀问题,开发回转式空气预热器积灰堵塞实时评估及安全状态监测模型至关重要。  方法  依托中国中部地区某600 MW和350 MW机组宽负荷运行监测大数据,建立了一种基于阻力系数的不同时间尺度逼近的空预器堵塞评估模型;进一步,以空预器出口烟气温度及冷端工作温度为监测指标,统计其在机组多个负荷段的参数超限比例。  结果  结果表明,机组处于39%调峰负荷下监测温度约有20%的超限概率;独立计算两指标下的堵塞风险相较以联合分布计算会一定程度低估其折损率。此外,通过两台机组数据的验证,堵塞评估模型可实现量化机组在空预器吹灰周期内(短期)和中长期的堵塞状态演化趋势。  结论  所提评估策略可应用于SCR脱硝系统、磨煤机等其他火电机组设备及系统,可量化机组调峰运行安全风险,指导火电机组高效、稳定地配合新型电力系统调度。

English Abstract

王志敏,黄骞,柳冠青,等. 适应新型电力系统的调峰火电机组空气预热器安全评估策略[J]. 南方能源建设,2024,11(6):33-40. doi:  10.16516/j.ceec.2024.6.03
引用本文: 王志敏,黄骞,柳冠青,等. 适应新型电力系统的调峰火电机组空气预热器安全评估策略[J]. 南方能源建设,2024,11(6):33-40. doi:  10.16516/j.ceec.2024.6.03
WANG Zhimin, HUANG Qian, LIU Guanqing, et al. Flexibility-Oriented safety assessment strategy for air preheater in thermal power units adapting to the advanced power system [J]. Southern energy construction, 2024, 11(6): 33-40 doi:  10.16516/j.ceec.2024.6.03
Citation: WANG Zhimin, HUANG Qian, LIU Guanqing, et al. Flexibility-Oriented safety assessment strategy for air preheater in thermal power units adapting to the advanced power system [J]. Southern energy construction, 2024, 11(6): 33-40 doi:  10.16516/j.ceec.2024.6.03
    • “双碳”目标下,中国加快建设以可再生能源为主体的新型电力系统[1],高比例新能源的供给消纳使得存量火电机组转向调峰运行,以增强电网的平衡调节能力。同时,考虑到风光能源的随机性、波动性和间歇性,“碳中和”下中国(及各区域)能源结构中仍应保有一定的火电装机容量,以保障电力供应的可靠性[2-3]。这都要求火电的输出能力更加灵活,以使电网时刻满足负荷需求的同时,最大限度地容纳可再生能源[4]

      火电机组灵活运行下的安全性是保持新型电力系统可靠健壮不可或缺的一环。但实际中,机组低负荷、变负荷运行常面临煤耗增高、燃烧稳定性降低等问题[5-6]。由于锅炉调峰运行工况复杂,对脱硝系统喷氨精度要求更高,易造成喷氨过量与烟温波动,加剧下游空气预热器(简称空预器)的积灰堵塞与腐蚀,严重时可致机组停机:这也是火电机组为配合电力系统消纳新能源面临的一大关键安全制约因素[7-8]

      空预器是布设在锅炉尾部烟道的换热设备,利用烟气余热加热煤粉燃烧所需一、二次风,显著提升机组能效和低负荷运行下的煤粉着火与稳燃能力[9]。现代大型火电机组多采用三分仓回转式空预器结构,通过蓄热式波纹板将空气加热。但波纹板的流道狭窄,易被烟气中的飞灰颗粒物堵塞[10]。空预器内的积灰堵塞既降低其换热效率,影响机组整体运行效率,也会显著增大流道阻力,增加风机能耗,严重时会引发风机喘振、失速甚至导致机组停机[11]。这已成为当前火电调峰运行中的普遍棘手问题:据国内某发电集团对所属300 MW及600 MW机组的不完全统计,超过半数机组的空预器运行压差显著高于设计值。

      为清理空预器积灰,现代锅炉均配备空预器吹灰器对其冷、热端进行定期吹扫,但运行中的核心难点是确定合理的吹灰周期,既防止吹灰不足,也要避免因过于频繁的吹灰造成的高机组能耗与换热面损伤[12]。为确定合理的吹灰周期,需要在机组运行中基于各类实时监测数据准确研判空预器堵塞状态。当前机组运行主要依靠空预器烟气进(热端)、出(冷端)口压力值(主要是压差)来监测其流动阻力,但压差不仅受空预器堵塞状态影响,更与烟气流量密切相关,无法直接反应堵塞状态。一些研究者通过数据处理方式,建立了各工况下空预器的“标准状态”压差,依此来衡量实测压差所对应的堵塞程度[13]。该方案计算简便,但受压力测点数量的制约,实测压差变化可能出现较强的随机性。利用空预器积灰前后换热能力的差异来表征其堵塞状况是另一技术路线[14-15]。具体来说,通过空预器进出口参数计算实时传热系数,并将实际与理论传热系数的比值定义为清洁度因子,以该系数的变化在线监测空预器灰渣污垢累积情况。但该方法模型较为复杂,且传热系数建模过程中假设条件较多,尚缺乏大规模应用基础。此外,也有对空预器冷端进行可视化图像监测的设想,但缺乏实际应用[16]。亟待开发可靠且具有实用性的运行数据分析模型,准确评估空预器堵塞状态。

      除空预器积灰堵塞问题外,由机组调峰运行造成的烟温波动是限制机组可调最小负荷的另一关键问题,这可能导致空预器换热能力下降及冷端腐蚀等问题。针对空预器内的温度分布,已有一些数值模拟研究尝试分析空预器内空间温度分布特性[17-18],但该类方法计算量大,适用工况窄(通常局限于少数清洁状态),难以在实际中大规模应用。目前多数电厂的设备状态监测策略仍然是根据经验对关键运行数据设定上限和下限值,并根据需求提供超限实时报警。但对于调峰运行烟温波动导致的腐蚀、堵塞等问题,仍缺乏系统性的设备状态综合评估研究,特别是缺少对监测结果的统计分析。

      综上,空气预热器作为影响火电机组宽负荷运行能力的关键辅机设备,文章拟为其构建运行状态评估模型,以提升机组灵活运行安全性。通过空预器进出口压差、负荷等实测运行数据计算其各历史时刻实际阻力系数,进一步关注该阻力系数在不同吹灰周期、停炉冲洗周期等运行范围内的堵塞增长情况,从而构建起历史吹灰评价体系。拟以空预器为例构建一种设备调峰能力量化分析模型,以评估火电机组配合新型电力系统调度的能力。该模型以空预器出口烟气温度、空预器冷端温度等关键运行参数在各负荷区间内的概率密度分布为基础,监控并评估其在不同调峰工况下的运行状态。

    • 本研究依托中国中部地区某350 MW和某600 MW机组实时运行数据开展。如图1所示,两机组均用VN回转式三分仓空气预热器,且前端加装SCR脱硝装置。对于加装SCR脱硝系统且未采取水旁路改造和烟气旁路改造的锅炉风烟系统,由烟气温度降低引起的空气预热器运行稳定性问题是制约火电机组承担调峰任务的关键因素之一[19]

      图  1  空气预热器工作示意图

      Figure 1.  Schematic diagram of air preheater operation

      SCR系统往烟气中喷入氨(NH3)还原氮氧化物(NOx)。当机组处于低负荷或变负荷运行时,测得的烟气NOx浓度可能存在时滞、准确性差等问题[20-21];此外,SCR催化剂在异常烟气温度下可能活性降低,因此实际运行中倾向采用充分喷氨以避免尾气NOx超标的调节策略。当NH3注入量超过NOx脱除所需时,多余的NH3、SO3和H2O会形成硫酸氢铵(ABS),其性质为中酸性,黏度较高。

      ABS在空预器中下游沉积与黏附是空预器堵塞的关键诱因[22]。其高黏特性会加速烟气中飞灰颗粒物的沉积,使得原定吹灰周期难以满足实际运行需求,还会影响后续除尘设备效率。因此,为降低由空预器堵塞造成的风机电耗增大、空气-烟气热量交换不充分等问题,定期评估空预器在短时吹灰周期及长期堵塞情况演化,对调整空预器运行具有重要意义。除堵塞外,冷端温度和烟气出口温度过低会增加ABS沉积概率,若低于烟气的酸露点温度,将进一步加剧金属表面的腐蚀。

      可见,为优化和维护新型电力系统,必须着眼于其中各关键组件在运行中的灵活性[23],尽可能避免超负荷调峰带来的风险。

    • 针对机组直接监测数据无法准确反映空预器内部堵塞情况的现状,本节首先基于流体力学基本原理,结合机组负荷及空预器进出口压差等实测数据,构建了空预器实时阻力系数计算方法;进一步针对该计算结果随机误差较大的问题,引入近期内历史数据进行拟合修正,以获得基于不同运行周期的堵塞演化模型。

    • 空预器阻力系数是反映其内部堵塞状态的无量纲参数,其计算公式如式(1)所示[16]

      K=2Δp¯ρf(Qv/Aph)2 (1)

      式中:

      Δp ——空预器进出口压力差(Pa);

      ˉρf ——流经空预器的烟气的平均密度(kg/m3);

      Qv ——流经空预器的烟气的体积流量(折算至烟气平均温度状态下,m3/s);

      Aph ——空预器烟气侧的流通截面积(m2)。

      在实际应用中,烟气压差主要依靠空预器进出口处布置的压力测点的实测数据计算得到;由于烟气的温度和压力波动范围通常较小,烟气平均密度通常视为定值;而烟气流量则是该计算方法的主要难点。电厂SIS系统(厂级信息监控系统)的烟气流量通常是标准状态下(0 ℃,101.325 kPa)、干基(即不含水蒸气)的测量数据,使得该参数参与计算时存在严重滞后;此外,由于难以保证烟道截面内的流速均匀,测量数据可能存在较大随机误差。一种改进方案是引入机组负荷W和过量空气系数α代替式(1)中的烟气流量,获得“修正”的阻力系数如式(2)所示。

      K=Δp/(Wα)2 (2)

      图2所示,空预器压差与负荷存在明显的线性相关性(Pearson相关系数0.92,R2为0.84),无法直接反映其内部堵塞状态。而如图3所示,由式(2)所得的阻力系数在机组满负荷运行段相对稳定,可一定程度反映空预器阻力变化。

      图  2  负荷-压差关系图

      Figure 2.  Relationship between the load and the pressure difference

      图  3  负荷-修正阻力系数关系图

      Figure 3.  Relationship between the load and the ‘corrected’ resistance coefficient

    • 机组实际运行中,空预器的阻力系数应只与其内部结构及实时堵塞状态相关:即阻力系数K应在锅炉变负荷过程中保持相对稳定。但图3所示阻力系数即使在堵塞未发生明显变化的时段内,也可能存在大幅波动。这可能由压力传感器的测量系统误差和随机误差导致,也可能是因为测点在截面上的布置位置单一,使得逐时刻计算结果不具有代表性。

      为解决该问题,提出引入多项式K(t; k1, k2ki)的方式对阻力系数K进行拟合与修正:

      Δp=K(t;k1,k2ki)[W(t)α(t)]2+b (3)

      式中:

      W(t) ——机组负荷(MW);

      α(t) ——过量空气系数;

      kib ——拟合参数。

      其中K的具体拟合形式需依据不同规律变化期(例如:吹灰、停炉冲洗)进行选取,以获取适用于不同时间尺度的堵塞因子演化模型。

      经测试,短期内(即通常小于单个吹灰周期),采取二次多项式对阻力系数变化趋势进行拟合可取得较好效果:

      K=k1t2+k2t+k3 (4)
      Δp(t)=(k1t2+k2t+k3)W(t)2+b (5)

      式中:

      k1k2k3 ——待定系数。

      图4(a)展示了机组A(600 MW)在一次持续约48 h的吹灰周期内的阻力系数拟合效果(R2 = 0.9168)。可见,在该时间区间内如图5(a),阻力系数呈缓慢上升趋势,与工程实际相符。且如图4(a)所示,利用此拟合多项式计算得到的压差拟合曲线可在消除实际压差的波动的同时,较好地吻合其变化趋势,证明了该拟合结果的可靠性。取机组B(350 MW)一次持续约14 h的吹灰周期数据进行类似拟合验证,得到了如图4(b)及图5(b)所示的拟合效果(R2 = 0.8158),验证了该拟合模型在不同容量机组的适用性。

      图  4  拟合压差

      Figure 4.  Fitted pressure difference

      图  5  空预器短期阻力系数演化

      Figure 5.  Short-term evolution of resistance coefficients of air preheaters

      对于机组更长时间跨度内的堵塞状态演化趋势,简单的二次函数形式通常无法满足压差拟合需求。为处理周期性短期吹灰对空预器长期积灰状态的演化影响,在二次多项式拟合的基础上进一步引入包含吹灰周期T的拟合函数形式:

      K=k1t2+k2t+k3|sin(πTt)|+k4t+k5 (6)

      式中:

      k1k5 ——待定系数;

      T ——吹灰周期。

      图6(a)所示,该拟合多项式下的(350 MW)机组B空预器中长期阻力系数变化规律与实际堵塞状态变化规律相符,且拟合压差可较好地反映实际压差的变化趋势,见图6(b)。此外,图6(a)所示拟合曲线呈现出一定的周期波动趋势,反映了短期的、周期性的吹灰对空预器长期堵塞演化的影响。

      图  6  350 MW机组空预器长期阻力系数演化和拟合压差

      Figure 6.  Long-term evolution of resistance coefficient of the air preheater for the 350 MW unit and fitted pressure difference

      为获取空预器处于不同调峰状态下吹灰周期内的堵塞增长情况,本节所提的短期空预期阻力系数演化模型通常设置吹灰周期T作为模型数据拟合周期。由此,火电机组可依据周期T内的压差涨幅的变化,为未来机组运行策略调整提供参考依据。此外,本节所提的中长期堵塞规律演化模型是一种对包含多个吹灰周期的空预器长期堵塞状态评估,可显示展示机组在经历长时间灵活变负荷运行后的空预器安全状态,增强火电机组灵活运行能力。

    • 在新型电力系统中,火电机组各设备及系统为应对新能源出力及电力峰值需求不匹配的问题,常处于非设计工况条件下运行。这大幅增加了火电机组,乃至整个电力系统的不确定性及风险[24-25]。仍以空气预热器为例,其作为锅炉尾部烟道的低温受热面,除由积灰堵塞引起的压力波动外,工作温度范围是另一影响其安全状态的关键点。特别地,空预器过低的工作烟气出口温度和冷端温度不仅加剧空预器的冷端腐蚀程度,还间接影响积灰速率。

      为评估空预器历史工作状态,探究其在不同调峰工况下的运行情况。本节调取机组B(350 MW)6个月内的全部历史数据,按其历史调峰情况将机组历史数据分为100%-负荷,91%-负荷,71%-负荷,51%-负荷,39%-负荷五组。进一步,在各负荷段内,统计空预器出口烟气温度和冷端工作温度各自的概率密度分布及联合概率密度分布。图7显示了机组处于满负荷及最低稳负荷运行工况下,空预器出口烟气温度和冷端温度的概率分布。可见,机组低负荷运行下空预器典型温度分布较为分散,且整体温度偏低,更易出现温度失控而超出许用值的情况。

      图  7  基于出口烟气温度和冷端温度的350 MW机组空预器状态评估

      Figure 7.  Condition assessment of the air preheater for the 350 MW unit based on the flue gas temperature at the outlet and the cold end temperature

      基于电厂空预器温限规范(出口烟气温度在113 ℃~160 ℃之间;冷端温度不低于148 ℃),计算空预器在上述指标下的非正常工作时间占比,并将在不同典型负荷段下的超温限概率作为其折损率,以评价空预器的历史运行情况。如图8所示,在51%-负荷以及39%-负荷两个负荷段内,由于烟气温度难以控制,有20%~30%的时间空预器都处于非正常工作区间内,这将极大程度加剧其冷端腐蚀及堵塞问题。此外,独立计算两指标下的堵塞风险相较以联合分布计算会一定程度低估其折损率,这是由于两变量间具有较强的线性相关导致的。

      图  8  350 MW机组不同运行负荷下空预器温度参数超限概率

      Figure 8.  Probability for the air preheater temperature exceeding the limit for the 350 MW unit at various loads

      本节以空气预热器为例,阐述了所提辅机设备调峰能力评价策略的构建方法。在具体应用中,该策略不仅可拓展至火电机组磨煤机、SCR脱硝系统等设备,还可用于评价光伏逆变器等新能源发电设备在不同工况条件下的运行安全性。需要注意的是,该策略实现拓展应用首先需分析各设备运行特点以确定建模指标;其次应检查所选取变量之间的相关性,以确定是否需要计算联合概率密度分布。

    • 为保障新型电力系统的安全与稳定,文章以空气预热器为研究范例,开展了基于600 MW及350 MW火电机组实际调峰运行大数据的火电机组灵活运行安全状态评估研究:

      1)探究了以阻力系数变化表征空气预热器堵塞状态变化的实际应用可行性。提出了基于二次多项式的短期阻力系数拟合模型,可有效反映空预器吹灰周期内的堵塞增长趋势,为机组灵活运行策略调整提供参考依据。

      2)提出了在拟合多项式中加入周期性函数项的方法对空预器中长期的堵塞状态进行评估。该拟合模型可在体现周期性吹灰影响的基础上,反映机组在长时间灵活变负荷运行后的整体堵塞趋势演化。

      3)提出了一种适用于火电及新能源机组的设备调峰能力评价策略,可用于量化新型电力系统建设中的安全风险。同时以空预器为例展示了模型具体效果:机组满负荷运行下空预器基本处于安全温度区间内工作,而在39%-满负荷下监测温度约有20%的超限概率。

参考文献 (25)

目录

/

返回文章
返回