-
由于海上风电通常靠近能源消耗中心且风资源情况优于陆上风电,风电的利用开发正逐渐从陆地转向海洋,正呈现加速发展的态势[1]。但由于近海空间资源有限,海上风电的发展也必然像过去油气工业那样,不断地从浅近海走向深远海。相应的,海上风机支撑结构形式也伴随水深变化,从固定式支撑结构到漂浮式支撑结构演变[2],如图1所示。
图 1 海上风机基础结构随水深演变[2]
Figure 1. Offshore wind turbines foundation changes with water depth
1972年,美国马萨诸塞大学安默斯特分校的Heronemus教授[3]首次提出了海上漂浮式风机的技术概念,但限于当时的技术水平和高昂的建设成本,相关技术并未引起广泛关注。按现有的技术条件,当水深超过60 m之后,漂浮式海上风机将比固定
式海上风机更具有工程经济性,并随着水深增加而愈加凸显其经济优势[4]。因此,海上漂浮式风机极大地拓展了海上风电的应用范围,并且具有诸多的优势[5],例如:机位部署更加灵活、可在岸上完成整体组装、海上施工安装更加方便、可完全拆解与迁移、可搭载更大功率的风电机组等。
近年来随着海上风机的单机功率大型化和海上风场走向深远海,漂浮式风机技术正成为热点研究方向之一,不断涌现出新形式,大体可按照其静稳性原理将之划分为以下四种类型及其综合形式[6]:
立柱式(Spar):该类型平台的重心设计远低于浮心。当平台发生倾斜时,重心和浮心之间形成回复力偶可抵抗平台的倾斜运动。另外较小的水线面设计,可减小平台垂荡运动,但较大的平台吃水设计导致工作水深有特定要求,通常大于100 m。
半潜式(Semi):该类型平台在风机倾斜时,可通过分布式的浮筒结构产生较大的水线面变化,进而产生抵抗平台倾斜运动的回复力矩。适用水深通常大于40 m,平台的各方向运动适中,但对低频波浪二阶力较为敏感。其适用水深范围较广,可采用湿拖法运输,部署灵活,技术较为成熟。
张力腿式(TLP):该类型平台通过垂向下的系泊张力平衡浮体向上的超额浮力,类似“上下绷紧”的结构。因此,具有较好的平台垂向运动性能,但是其安装过程较为复杂,且张力腱结构造价较高,目前国内缺乏相关的制造和施工安装经验。适用水深通常大于40 m,对高频波浪二阶力敏感。
驳船式(Barge):该类型平台类似于船型,利用平台浮力抵消重力,适应水深通常大于30 m,垂向运动固有频率在一阶波浪频率范围内,故波频响应较为敏感,设计时需要进行平台运动频率优化。结构形式简单,容易制造,稳性较好,可采用湿拖法整体运输,部署灵活且成本较低。
四种风机类型如图2所示。
图 2 四种基本的浮式风机类型[7]
Figure 2. Four types of floating wind turbines
这些概念设计大多以欧洲、美国和日本等沿海发达国家为主。目前国内的海上漂浮式风电的实尺度样机测试和浮式风场建设仍然处于空白阶段。但近些年来,随着我国海上风电行业的快速发展,漂浮式风机技术工程化在我国得到了空前的重视。2016年6月,国家发改委、国家能源局、工信部联合印发《中国制造2025—能源装备实施方案》,提出“重点发展海上漂浮式风力发电机组及各种基础结构”。2016年12月,国家海洋局发布《海洋可再生能源发展“十三五”规划》,要求实施海洋能科技创新发展,明确提出研发深海浮式风电机组,掌握远距离水深的大型海上风电场设计、建设以及运维等关键技术,推进深海风电发展。2018年,广东省海洋渔业厅的海洋专项资金支持了“浮式海上风电平台全耦合动态分析及其装置研发”项目。2018年,国家工业和信息化部的高技术船舶课题对“海上浮式风电装备研制”项目进行了科研立项。
本文首先介绍了浮式风机的基本类型,接着分别介绍其稳性校核技术、系泊与动态海缆技术、水动力特性研究现状、气动力特性研究现状、一体化计算研究现状、模型试验研究现状、建造与安装技术、工程挑战与案例,最后对浮式风电市场与拓展运用做了相关展望,以期梳理漂浮式风电关键技术现状,为相关技术研发和工程项目提供参考。
A Review of the Key Technologies for Floating Offshore Wind Turbines
-
摘要:
[目的] 海上漂浮式风机由于不受水深限制且便于运输安装等诸多优点,近年来在欧美日等发达国家得以快速发展。文章针对海上漂浮式风机关键技术和工程案例进行综述分析,以向国内相关研究和工程项目提供技术参考。 [方法] 首先介绍了海上漂浮式风机发展背景及基本类型,再进一步,分别介绍其稳性校核技术、系泊与动态海缆技术、水动力特性、气动力特性、一体化计算、模型试验研究、建造与安装技术、工程挑战与案例,最后对浮式风电市场与拓展运用做了相关总结。 [结果] 通过对海上漂浮式风机各关键技术进行梳理分析,理清了其技术研究现状与未来发展方向。 [结论] 文章综述了海上漂浮式风机各关键技术现状及相关工程运用案例,现阶段海上漂浮式风机依然面临不少技术挑战和行业发展困境,解决之道需从相关政策激励,技术攻关以及产业链的培育等,以多途径的方式降低浮式风电的工程造价成本,促进浮式风电产业进一步发展壮大。 Abstract:[Introduction] Floating offshore wind turbines technology is developing rapidly in Europe, America and Japan, and other developed countries, because of its advantages, such as non-restriction of water depth, easy installation, maintenance, transport, etc.This paper reviews the key technologies and engineering cases of floating offshore wind turbines, in order to provide references for research works and projects in this field. [Method] This paper introduced the background of floating wind turbines technology,and then provided detailed introduction on its key technologies, for instance, stability checking, mooring sysytem, dynamic cable,hydrodynamics, aerodynamics, integral calculation, model basin tests, manufacture, installation, engineering challenges and cases.Finally, the paper summarized potential market and applications of floating wind turbines technologies. [Result] The paper summarizes the state of art of the key technologies and future development of floating wind turbines. [Conclusion] This review presents the key technologies and engineering cases of floating wind turbines. There are quite a few technology challenges and problems which worried industry. Hence, the solution to reduce project cost and to facilitated the growth of the industry is multipath, for instance, the more active policy support, making technological breakthrough, and cultivation of the industrial chain. -
图 1 海上风机基础结构随水深演变[2]
Fig. 1 Offshore wind turbines foundation changes with water depth
图 2 四种基本的浮式风机类型[7]
Fig. 2 Four types of floating wind turbines
图 5 常见系泊形式[18]
Fig. 5 Common types of mooring lines systems
图 6 锚固装置常见形式[19]
Fig. 6 Common types of anchors
图 7 浮式风机动态海缆连接形式[24]
Fig. 7 Dynamic cable of floating wind turbines
图 8 日本“福岛前进”项目的电力传输系统[24]
Fig. 8 Power transmission system in FF project
图 9 浮式风机受力运动[35]
Fig. 9 Motion of a floating wind turbine driven by environmental loads
图 10 FAST程序流程[42]
Fig. 10 0 Program flow of FAST software
图 12 实时混合模型试验[53]
Fig. 12 Real-time hybrid model testing
图 13 浮式风机建造、安装及运输[54]
Fig. 13 Manufacture, installation, and transport for a floating wind turbine
图 14 浮式风电场成本结构[55]
Fig. 14 Cost structure of a floating wind turbine farm
图 15 浮式风电场各项成本降低潜力[55]
Fig. 15 CAPEX breakdown by component for different deployment scales
图 16 挪威Hywind样机项目[62]
Fig. 16 Hywind demo project in Norway
图 17 葡萄牙WindFloat样机项目[63]
Fig. 17 WindFloatdemo project in Portugal
图 18 日本福岛试验项目[64]
Fig. 18 Floating wind turbines demo project in Fukushima, Japan
图 19 DampingPool样机项目[65]
Fig. 19 DampingPool demo project in France
-
[1] European Wind Energy Association(EWEA). The economics of wind energy [M]. Brussels,Belgium:EWEA,2015. [2] CRUZ J,MAIREAD A. Floating offshore wind energy:the next generation of wind energy [M]. Berlin:Springer,2016. [3] HERONEMUS W E. Pollution-free energy from offshore winds [C]//Marine Technology Society. 8th Annual Conference and Exposition,Washington D.C.,United States,Sep. 11-13,1972. Washington D.C.:Marine Technology Society,1972. [4] HENDERSON A R,WITCHER D. Floating offshore wind energy—a review of the current status and an assessment of the prospects [J].Wind Engineering,2010,34(1):1-16. [5] MUSIAL W D,BUTTERFIELD C P,BOONE A. Feasibility of floating platform systems for wind turbines [C]//ASME. 23rd ASME Wind Energy Symposium Proceedings,Reno,Nevada,Jan.,2004. New York:ASME,2004. NREL/CP-500-34874. [6] WAYMAN E N,SCLAVOUNOS P D,BUTTERFIELD S,et al.Coupled dynamic modeling of floating wind turbine systems:Preprint [J]. Wear,2006(302):1583-1591. [7] WANG C M,UTSUNOMIYA T,WEE S C,et al. Research on floating wind turbines:a literature survey [J]. The IES Journal Part A:Civil & Structural Engineering,2010,3(4):267-277. [8] 盛振邦,刘应中. 船舶原理(上册) [M]. 上海:上海交通大学出版社,2003:50-51. [9] American Bureau of Shipping. Rules for building and classing mobile offshore drilling units [S]. Houston,Texas,USA:ABO Shipping Publishing,2008. [10] International Maritime Organization. International Code on Intact Stability:IMO IB874E-2009 [S]. London,UK:IMO Publishing,2008. [11] COLLU M,MAGGI A,GUALENI P,et al. Stability Requirements for Floating Offshore Wind Turbine(FOWT) during Assembly and Temporary Phases:Overview and Application [J]. Ocean Engineering,2014(84):164-175. [12] 唐友刚,张素侠,张若瑜, 等. 深海系泊系统动力特性研究进展 [J]. 海洋工程,2008,26(1):120-126. TANG Y G,ZHANG S X,ZHANG R Y,et al. Advance of study on dynamic characters of mooring systems in deep water [J].The Ocean Engineering,2008,26(1):120-126. [13] 童波,杨建民,李欣. 深水半潜平台悬链线式系泊系统耦合动力分析 [J]. 中国海洋平台,2008,23(6):1-7. TONG B,YANG J M,LI X. Coupled dynamic analysis of catenary mooring system for the deepwater semi-submerged platform [J].China Offshore Platform,2008,23(6):1-7. [14] 陈鹏,马骏,杨青松. 深水半潜平台张紧式系泊系统耦合动力响应研究 [J]. 大连海事大学学报,2013,39(1):65-69. CHEN P,MA J,YANG Q S. Coupled-dynamic response investigation of taut-wire mooring systems for deepwater semi-subermersible platform [J]. Journal of Dalian Maritime University,2013,39(1): 65-69. [15] 赵君龙. 深水张力腿平台系泊系统耦合动力分析 [D]. 哈尔滨:哈尔滨工程大学,2012. [16] TENG Y,TAN J H,KIM J,et al. Tension leg platform design with consideration of tendon springing and ringing [C]//Anon.Offshore Technology Conference Asia,Kuala Lumpur,Malaysia. Mar. 22-25,2016. [17] CHAN CHOW M N. Mooring system design for a floating wind farm in very deep water-European Wind Energy Master Thesis [D].Norway:Norwegian University of Science and Technology,2019. [18] PEREYRA B T. Design of a counter weight suspension system for the Tetraspar floating offshore wind turbine [D]. Norway:Norwegian University of Science and Technology,2018. [19] 邓慧静. 海上浮式风机平台稳性及锚泊系统性能研究 [D]. 哈尔滨:哈尔滨工程大学, 2012. [20] PHILIPPE M,BABARIT A,FERRANT P. Modes of response of an offshore wind turbine with directional wind and waves [J].Renewable Energy,2013,49(1):151-155. [21] KARIMIRAD,M. Modeling aspects of a floating wind turbine for coupled wave–wind-induced dynamic analyses [J]. Renewable Energy,2013(53):299-305. [22] YILMAZ O,INCECIK A. Extreme motion response analysis of moored semi-submersibles [J]. Ocean Engineering,1996,23(6):497-517. [23] 宋宪仓,王树青,杜君峰. 二阶差频力对半潜式平台系泊锚链疲劳损伤影响 [C]//中国海洋工程学会工程分会. 第十七届中国海洋(岸)工程学术讨论会论文集(上),南宁,2015-11-13. 北京:CNKI,2015:292-297. [24] TANINOKI R,ABE K,SUKEGAWA T,et al. Dynamic cable system for floating offshore wind power generation [J]. SEI Technical review,2017,84:53. [25] ZHANG L,ZOU J,HUANG E W. Mathieu instability evaluation for DDCV/SPAR and TLP tendon design [C]//Anon. Proceedings of the 11th Offshore Symposium,Society of Naval Architect and Marine Engineering (SNAME),Houston. 2002. [S.l.]:SNAME,41-49. [26] YONG-PYO H,DONG-YEON L,YONG-HO C,et al. An experimental study on the extreme motion responses of a spar platform in the heave resonant waves [C]//Anon. The Fifteenth International Offshore and Polar Engineering Conference. [S.l.]:International Society of Offshore and Polar Engineers,2005. [27] DUAN F,HU Z,WANG J. Investigation of the VIMs of a spartype FOWT using a model test method [J]. Journal of Renewable and Sus-tainable Energy,2016,8(6):063301. [28] COULLING A J,GOUPEE A J,ROBERTSON A N,et al.Importance of second-order difference-frequency wave-diffraction forces in the validation of a fast semi-submersible floating wind turbine model [C]//American Society of Mechanical Engineers Digital Collection. 32nd International Conference on Ocean,Offshore and Arctic En-gineering. New York:ASME,2013. [29] GUEYDON S,DUARTE T,JONKMAN J. Comparison of second-order loads on a semisubmersible floating wind turbine [C]//American Society of Mechanical Engineers Digital Collection. 33rd International Conference on Ocean, Offshore and Arctic Engineering. San Francisco,California,8 June 2014. New York: ASME,2014. [30] MATHA D. Model development and loads analysis of an offshore wind turbine on a tension leg platform with a comparison to other floating turbine concepts:April 2009[R]. USA:National Renewable Energy Lab. (NREL),Golden,Co.,2010. [31] BAE Y H,KIM M H. Rotor-floater-tether coupled dynamics including second-order sum-frequency wave loads for a mono- column- TLP-type FOWT (floating offshore wind turbine) [J].Ocean Engineering,2013(61):109-122. [32] RHO J B,CHOI H S,SHIN H S,et al. Heave and pitch motions of a spar platform with damping plate [C]//International Society of Off-shore and Polar Engineers. The 12th International Offshore and Polar Engineering Conference,2002. [33] TRAN T T,KIM D H. The aerodynamic interference effects of a floating offshore wind turbine experiencing platform pitching and yawing motions [J]. Journal of Mechanical Science and Technology,2015,29(2):549-561. [34] FARRUGIA R,SANT T,MICALLEF D. A study on the aerodynamics of a floating wind turbine rotor [J]. Renewable energy,2016,86:770-784. [35] BORISADE F. Qualification of innovative floating substructures for 10 MW wind turbines and water depths greater than 50 m [R].European Union:D7.4:State-of-the-Art FOWT Design Practice and Guidelines,2016. [36] DUAN F,HU Z,NIEDZWECKI J M. Model test investigation of a spar floating wind turbine [J]. Marine Structures,2016(49):76-96. [37] KARIMIRAD M,MOAN T. Effect of aerodynamic and hydrodynamic damping on dynamic response of spar type floating wind tur-bine [C]//Anon. Proceeding of European Wind Energy Conference, Poland,Warsaw,2010. [38] LARSENT J,HANSON T D. A method to avoid negative damped low frequent tower vibrations for a floating,pitch controlled wind turbine[J]. Journal of Physics:Conference Series. IOP Publishing,2007,75(1):012073. [39] CHEN J H,HU Z Q,LIU G L,WAN D C. Study on rigid-flexible coupling effects of floating offshore wind turbines [J]. China Ocean Engineering,2019,33(1):1-13. [40] WITHEE J E. Fully coupled dynamic analysis of a floating wind turbine system [R]. Cambridge:Massachusetts Inst. of Tech Cam-bridge,2004. [41] MATHA D,SCHLIPF M,CORDLE A,et al. Challenges in simulation of aerodynamics,hydrodynamics,and mooring-line dynamics of floating offshore wind turbines [R]. USA:National Renewable Energy Lab.(NREL),2011. [42] JONKMAN J M,BUHLJR M L. FAST user’s guide [R]. USA:National Renewable Energy Laboratory (NREL),2005.NREL/EL-500-38230. [43] CHEN J H,HU Z Q,LIU G L,et al. Coupled aero-hydro-servo- elastic methods for floating wind turbines [J]. Renewable Energy,2019(130):139-153. [44] CORDLE A,JONKMAN J. State of the art in floating wind turbine design tools [R]. USA:National Renewable Energy Lab. (NREL),2011. [45] JONKMAN J,MUSIAL W. Offshore code comparison collaboration(OC3) for IEA Wind Task 23 offshore wind technology and deployment [R]. USA:National Renewable Energy Lab. (NREL),2010. [46] ROBERTSON A,JONKMAN J,MUSIAL W,et al. Offshore code comparison collaboration,continuation:Phase II results of a floating semisubmersible wind system[R]. USA:National Renewable Energy Lab. (NREL),2013. NREL/CP-5000-60600. [47] ROBERTSON A N,WENDT F,JONKMAN J M,et al. OC5 project phase II:validation of global loads of the DeepCwind floating sem-isubmersible wind turbine [J]. Energy Procedia,2017(137):38-57. [48] FOWLER M J,KIMBALL R W,THOMAS D A,et al. Design and testing of scale model wind turbines for use in wind/wave basin model tests of floating offshore wind turbines [C]//ASME.32nd International Conference on Ocean,Offshore and Arctic Engineering. American Society of Mechanical Engineers,Nantes,France,Jun. 9-14,2013. V008T09A004-V008T09A004. [49] CERMELLI C,AUBAULT A,RODDIER D,et al. Qualification of a semi-submersible floating foundation for multi-megawatt tur-bines [C]//Anon. Offshore Technology Conference. 2010. [50] GOUPEE A J,KOO B J,KIMBALL R W,et al. Experimental comparison of three floating wind turbine concepts [J]. Journal of Offshore Mechanics and Arctic Engineering,2014,136(2):020906. [51] DUAN F,HU Z Q,NIEDZWECKI J M. Model test investigation of a spar floating wind turbine [J]. Marine Structures,2016(49):76-96. [52] CHEN J H,HU Z Q,WAN D C,et al. Comparisons of the dynamical characteristics of a semi-submersible floating offshore wind turbine based on two different blade concepts [J]. Ocean Engineering,2018(153):305-318. [53] SAUDER T,CHABAUD V,THYS M,et al. Real-time hybrid model testing of a braceless semi-submersible wind turbine:Part I—The hybrid approach [C]//ASME. 35th International Conference on Ocean,Offshore and Arctic Engineering. American Society of Mechanical Engineers Digital Collection,Busan,South Korea,Jun. 19-24,2016. [54] MACIEL J G. The Windfloat Project [R]. EDP:Lisbon,Portugal,2010. [55] JAMES R,ROS M C. Floating offshore wind:market and technology review [R]. London:Carbon Trust,2015. [56] SKAARE B,NIELSEN F G,HANSON T D,et al. Analysis of measurements and simulations from the hywind demo floating wind turbine [J]. Wind Energy,2015,18(6):1105-1122. [57] American Bureau of Shipping. Guide for building and classing floating offshore wind turbine installations:ABS Guideline#195 [S]. New York:American Bureau of Shipping,2013. [58] Bureau Veritas. Classification and Certification of Floating Offshore Wind Turbines:NI 572 DT R01 E [S]. France:BV Marine &Offshore Division,2015. [59] International Electro technical Commission. Wind energy generation systems-Part 3-2:design requirements for floating offshore wind turbines:IEC TS 61400-3-2 [S]. Geneva,Switzerland:IEC,2019. [60] DNV GL. Coupled analysis of floating wind turbines:DNVGL-RP-0286 [S]. Norway:DNV GL,2019. [61] DNV GL. Certification of floating wind turbines:DNVGL-SE-0422 [S]. Norway:DNV GL,2018. [62] STIESDAL H. Hywind:The world’s first floating MW-scale wind turbine [J]. Wind Directions,2009(31):52-53. [63] Principle Power Press Release. Principle power and edp sign MOA for phased offshore wind power project [EB/OL]. (2009-02-18)[2020-01-11]. http://www.principlepowerinc.com/news/press_EDP_MOA.html. [64] Fukushima Offshore Wind Consortium. Fukushima floating offshore wind farm demonstration 27 Project (Fukushima forward) [EB/OL].(2014-08-02)[2020-01-11]. http://www.fukushima-forward.jp/pdf/pamphlet3.pdf. [65] BEYER F,CHOISNET T,KRETSCHMER M,et al. Coupled MBS-CFD simulation of the IDEOL floating offshore wind turbine foundation compared to wave tank model test data [C]//ISOPE.25th International Ocean and Polar Engineering Conference,Kona,Big Island,HI,USA,Jun. 21-26,2015. Kona:ISOPE,2015. [66] WALSH C. Offshore wind in Europe–key trends and statistics 2019 [R]. Brussels:Wind Europe,Brussels,2020.