-
IGCC系统是一个多设备集成的能源转换利用系统,其结构如图1所示。系统主要由空气分离系统、煤气化及煤气净化系统、燃气轮机系统、余热锅炉驱动的蒸汽轮机系统四个常规部分组成。IGCC工艺流程可简单描述为:首先,在空分系统中进行空气分离,产生氮气和氧气。然后,气化炉中水煤浆或干粉与气化介质(蒸汽、氧或空气)发生气化反应,生成煤气(以CO、H2为主要成分)。随后,煤气进入净化系统,经过净化装置获得洁净的煤气。理论上,提高气化炉中氧气浓度能够提高煤气化速率,实践中可通过改变空分功率或增设氧气储罐等方法实现[6],但由此会带来CO2排放量增加。
在增设碳捕集的需求下,学者对原有的IGCC系统进行了优化。例如,Descamps等[7]在基础IGCC系统气化流程的下游添加了转换装置,将净化后的燃料气送入了该转换装置(主要为在水蒸气的作用下将含碳气体更高比例地转化为CO2),进而实现燃烧前碳捕集,同时将转化过程所释放的能量以水/水蒸汽为载体送入余热锅炉。
除了对IGCC系统结构进行优化之外,改变IGCC发电系统的燃料也能够实现CO2减排效果。IGCC发电系统的常规燃料主要包含块煤、焦炭、干煤粉等,见表1。为了实现CO2减排和固废处置,还可以采用掺烧碎木、树皮、城市可燃垃圾等。在煤与生物质共气化的过程中,提高生物质的比例可以提高煤的反应活性,且由于碳中性的生物质加入,能够实现降低发电过程中的CO2排放[8]。
表 1 IGCC固体燃料多样性
Table 1. IGCC solid fuel diversity
燃料种类 燃料应用 烟煤 NA Abaimov等[9]以烟煤为燃料,
进行大功率综合气化
联合循环的气化炉研制,
提出的气化炉结构
不仅可以提高
合成气中氢气含量,
还可以提高燃气轮机效率。褐煤 A Giuffrida等[10]以褐煤为燃料,
基于质量和能量平衡,
对CO2与燃烧捕集进行了讨论。木屑 Hairong Wang等[11]以木屑为燃料,
利用生物质气化技术
设计了燃气-蒸汽联合循环,
分析了气化反应器的参数、
能量转化过程的热工性能等。焦炭 Okeke I J等[12]以焦炭为燃料,
利用Aspen Plus v10中模拟了一种
新型焦炭发电装置,将其
与以往的发电装置进行对比,
可有效降低温室气体排放
和改善化石燃料耗竭情况。固体废弃物 Subramanyam V等[13]以固体废弃物为燃料,
利用等离子体气化技术,
将生活垃圾转化为电能,
有效改善资源浪费和环境污染问题。 -
数值模拟在IGCC系统的理论研究中发挥了重要作用,常见的仿真工具包括Aspen Plus、Ebsilon、Thermoflow-GTPRO等软件,各软件的应用特点见表2。各个软件对IGCC系统建模的侧重性各有不同。Aspen具有较为完备的物性参数数据库,比较擅长对系统的整体性能进行评估,同时可以反映气化过程的物质变化;但对于系统分组件的功率值测定却显得捉襟见肘。通过该软件可对整个煤气化过程进行分析,寻找最优操作点,提高整个过程的热效率,达到过程优化的目的。Ebslion软件可以通过建立稳态变工况模型来计算能量的传递情况,但无法实现机组的在线检测。通过该软件可计算得到机组变工况特性曲线和热电联产运行时的热电负荷特性等参数。GTPRO在系统搭建和全流程模拟方面具有更易于实现的特点,但其所建立的气化炉模型较为简单,模型的精确度不高。通过该软件可实现IGCC热力系统性能指标计算机优化分析。Matlab求解模型灵活实用,可以获得较为准确的数据,具有较高的精确度,同时可以在其他编程语言的环境下进行二次开发,但求解过程极其复杂繁琐。通过该软件综合考虑物料平衡和热量平衡,较为精准地模拟了气化炉内气化特性。
表 2 各软件在IGCC应用领域优缺点
Table 2. Advantages and disadvantages of each software in IGCC application field
软件 优点 缺点 参考文献 Aspen Plus 数据库建设庞大,物性参数完备,计算精确,可以进行IGCC的整体性能评估以及具有
解决资源冲突的能力。对于合并能源的IGCC系统难以测量能量值,收集各个组件的功率值过程复杂。 [19] Ebsilon 对IGCC发电系统更有针对性,建立变工况计算模型更方便优化,能够精确计算物质能量的传递,通过可以通过输入输出的平衡计算得到传质传热组件的参数,适用多种热工介质,
集成大量热力模型。不支持方向流过程和系统的建模,不能直接用于机组在线监测。 [20][21][22] Thermoflow-GTPRO 常用于IGCC系统热平衡计算,系统模型的建立和流程模拟易实现。 IGCC建模时,气化炉模型较简单,需要考虑平衡态输出,燃机模型没有运行特性曲线,仅通过修改压比,调整透平进气温度等进行修正,精确度不高,
空分仅能采用外压缩流程。[23] MATLAB 数值稳定性好,使用方便,在化工计算中得到广泛应用,最优化工具箱中提供的非线性方程组求解函数fsolve能够快速、准确地完成能量平衡方程组和能量平衡方程的求解。 该模型包含的方程多、未知量多,
求解计算过程较复杂。[24]
Research on the Trend of IGCC Power Generation System and Optimization Method Under the Background of Carbon Reduction
-
摘要:
目的 在“双碳”背景下,IGCC技术耦合低成本燃烧前CO2捕集技术具有较大的应用潜力。 方法 文章首先综述了近年来IGCC发电系统的研究现状以及开拓研究的重点方向,其次分别从燃料多样性、系统形式的优化设计以及系统仿真软件应用等三个方面评述了现有研究的特点以及相关优化建议,最后着重介绍了结合“双碳”背景下IGCC发电系统进行深度优化的潜在优势,进而对IGCC发电系统进行了展望,重点分析了多能耦合及储能技术的应用前景与数值模拟在IGCC系统优化方面的优势。 结果 结果表明:通过多能耦合系统、多联产系统等方式,新型IGCC发电系统在低碳领域发展潜力巨大。 结论 研究结果将对IGCC发电系统的进一步研究研究提供了参考。 Abstract:Introduction Under the background of "carbon peak and neutrality," IGCC power generation system with CO2 pre-combustion capture technology is of great application potential. Method In this paper, the research status of the IGCC power generation system in recent years and the key directions of further research were summarized, the characteristics of existing research and related optimization suggestions were reviewed from three aspects: diversity of fuel, optimization design of system form, and software application of system simulation. Finally, the potential advantages of deep optimization of IGCC power generation system under the background of "carbon peak and neutrality" were emphatically introduced, and then the prospect of IGCC power generation system was discussed, especially the application prospect of multi-energy coupling and energy storage technology. Result The results show that the novel IGCC power generation system combining multi-energy coupling and energy storage technology has great development potential in the future. Conclusion This work provides some guidance for further study on the subsequent theoretical research of IGCC power generation system. -
Key words:
- coal gasification combined cycle /
- fuel diversity /
- system diversity /
- simulation /
- technology outlook
-
表 1 IGCC固体燃料多样性
Tab. 1. IGCC solid fuel diversity
燃料种类 燃料应用 烟煤 NA Abaimov等[9]以烟煤为燃料,
进行大功率综合气化
联合循环的气化炉研制,
提出的气化炉结构
不仅可以提高
合成气中氢气含量,
还可以提高燃气轮机效率。褐煤 A Giuffrida等[10]以褐煤为燃料,
基于质量和能量平衡,
对CO2与燃烧捕集进行了讨论。木屑 Hairong Wang等[11]以木屑为燃料,
利用生物质气化技术
设计了燃气-蒸汽联合循环,
分析了气化反应器的参数、
能量转化过程的热工性能等。焦炭 Okeke I J等[12]以焦炭为燃料,
利用Aspen Plus v10中模拟了一种
新型焦炭发电装置,将其
与以往的发电装置进行对比,
可有效降低温室气体排放
和改善化石燃料耗竭情况。固体废弃物 Subramanyam V等[13]以固体废弃物为燃料,
利用等离子体气化技术,
将生活垃圾转化为电能,
有效改善资源浪费和环境污染问题。表 2 各软件在IGCC应用领域优缺点
Tab. 2. Advantages and disadvantages of each software in IGCC application field
软件 优点 缺点 参考文献 Aspen Plus 数据库建设庞大,物性参数完备,计算精确,可以进行IGCC的整体性能评估以及具有
解决资源冲突的能力。对于合并能源的IGCC系统难以测量能量值,收集各个组件的功率值过程复杂。 [19] Ebsilon 对IGCC发电系统更有针对性,建立变工况计算模型更方便优化,能够精确计算物质能量的传递,通过可以通过输入输出的平衡计算得到传质传热组件的参数,适用多种热工介质,
集成大量热力模型。不支持方向流过程和系统的建模,不能直接用于机组在线监测。 [20][21][22] Thermoflow-GTPRO 常用于IGCC系统热平衡计算,系统模型的建立和流程模拟易实现。 IGCC建模时,气化炉模型较简单,需要考虑平衡态输出,燃机模型没有运行特性曲线,仅通过修改压比,调整透平进气温度等进行修正,精确度不高,
空分仅能采用外压缩流程。[23] MATLAB 数值稳定性好,使用方便,在化工计算中得到广泛应用,最优化工具箱中提供的非线性方程组求解函数fsolve能够快速、准确地完成能量平衡方程组和能量平衡方程的求解。 该模型包含的方程多、未知量多,
求解计算过程较复杂。[24] -
[1] SANCHEZ D L, KAMMEN D M. A commercialization strategy for carbon-negative energy [J]. Nature Energy, 2016, 1(1): 15002. DOI: 10.1038/nenergy.2015.2. [2] DEL POZO C A, CLOETE S, CLOETE J H, et al. The potential of chemical looping combustion using the gas switching concept to eliminate the energy penalty of CO2 capture [J]. International Journal of Greenhouse Gas Control, 2019, 83: 265-281. DOI: 10.1016/j.ijggc.2019.01.018. [3] AHMED U, ZAHID U, LEE Y. Process simulation and integration of IGCC systems for H2/syngas/electricity generation with control on CO2 emissions [J]. International Journal of Hydrogen Energy, 2019, 44(14): 7137-7148. DOI: 10.1016/j.ijhydene.2019.01.276. [4] 谢浩, 张忠孝, 李振忠, 等. IGCC常规岛系统优化设计研究 [J]. 洁净煤技术, 2011, 17(6): 30-35. DOI: 10.3969/j.issn.1006-6772.2011.06.010. XIE H, ZHANG Z X, LI Z Z, et al. Study on optimization design of conventional island system in IGCC [J]. Clean Coal Technology, 2011, 17(6): 30-35. DOI: 10.3969/j.issn.1006-6772.2011.06.010. [5] KAPETAKI Z, AHN H, BRANDANI S. Detailed process simulation of pre-combustion IGCC plants using coal-slurry and dry coal gasifiers [J]. Energy Procedia, 2013, 37: 2196-2203. DOI: 10.1016/j.egypro.2013.06.099. [6] CAI L L, WU X Y, ZHU X F, et al. High-performance oxygen transport membrane reactors integrated with IGCC for carbon capture [J]. Aiche Journal, 2020, 66(7): e164247. DOI: 10.1002/aic.16247. [7] DESCAMPS C, BOUALLOU C, KANNICHE M. Efficiency of an integrated gasification combined cycle (IGCC) power plant including CO2 removal [J]. Energy, 2008, 33(6): 874-881. DOI: 10.1016/j.energy.2007.07.013. [8] 毛健雄. 燃煤耦合生物质发电 [J]. 分布式能源, 2017, 2(5): 47-54. DOI: 10.16513/j.cnki.10-1427/tk.2017.05.008. MAO J X. Co-firing biomass with coal for power generation [J]. Distributed Energy, 2017, 2(5): 47-54. DOI: 10.16513/j.cnki.10-1427/tk.2017.05.008. [9] ABAIMOV N A, OSIPOV P V, RYZHKOV A F. Experimental and computational study and development of the bituminous coal entrained-flow air-blown gasifier for IGCC [J]. Journal of Physics:Conference series, 2016, 754(11): 112001. DOI: 10.1088/1742-6596/754/11/112001. [10] GIUFFRIDA A, MOIOLI S, ROMANO M C, et al. Lignite-fired air-blown IGCC systems with pre-combustion CO2 capture [J]. International Journal of Energy Research, 2016, 40(6): 831-845. DOI: 10.1002/er.3488. [11] WANG H R, YAN J B, YUAN Y. Thermal and environmental performance of IGCC system with wood dust as feed [J]. Journal of Chemical and Pharmaceutical Research, 2014, 6(6): 2769-2778. [12] OKEKE I J, ADAMS II T A. Systems Design of a petroleum coke IGCC power plant: technical, economic, and life cycle perspectives [J]. Computer Aided Chemical Engineering, 2019, 47: 163-168. DOI: 10.1016/B978-0-12-818597-1.50026-6. [13] SUBRAMANYAM V, GORODETSKY A. Integrated gasification combined cycle (IGCC) technologies [M]. Cambridge: Woodhead Publishing, 2017. [14] 周贤, 许世森, 史绍平, 等. 回收余热的热电联产IGCC电站研究 [J]. 中国电机工程学报, 2014, 34(增刊1): 100-104. DOI: 10.13334/j.0258-8013.pcsee.2014.S.014. ZHOU X, XU S S, SHI S P, et al. Study on heat and power cogeneration IGCC plant with waste heat recovery [J]. Proceedings of the CSEE, 2014, 34(Supp. 1): 100-104. DOI: 10.13334/j.0258-8013.pcsee.2014.S.014. [15] 李召召, 代正华, 林慧丽, 等. IGCC–甲醇多联产系统节能分析 [J]. 中国电机工程学报, 2012, 32(20): 1-7. DOI: 10.13334/j.0258-8013.pcsee.2012.20.001. LI Z Z, DAI Z H, LIN H L, et al. Analysis of energy saving of IGCC-methanol polygeneration systems [J]. Proceedings of the CSEE, 2012, 32(20): 1-7. DOI: 10.13334/j.0258-8013.pcsee.2012.20.001. [16] 袁铁江, 胡克林, 关宇航, 等. 风电–氢储能与煤化工多能耦合系统及其氢储能子系统的EMR建模 [J]. 高电压技术, 2015, 41(7): 2156-2164. DOI: 10.13336/j.1003-6520.hve.2015.07.006. YUAN T J, HU K L, GUAN Y H, et al. Modeling on hydrogen producing progress in EMR based wind power-hydrogen energy storage and coal chemical pluripotent coupling system [J]. High Voltage Engineering, 2015, 41(7): 2156-2164. DOI: 10.13336/j.1003-6520.hve.2015.07.006. [17] TAPAN D, MATT F. Technical-Coal Gasification Technologies Subtopic d: Hybrid Integrated Concepts for IGCC (with CCS) and Non-Biomass Renewable Energy (e. g. Solar, Wind) [R]. Lancaster: Advanced Cooling Technologies, Inc., 2014. [18] 杨承, 王旭升, 张驰, 等. 太阳能与压缩空气耦合储能的燃气轮机CCHP系统特性 [J]. 中国电机工程学报, 2017, 37(18): 5350-5358. DOI: 10.13334/J.0258-8013.PCSEE.161374. YANG C, WANG X S, ZHANG C, et al. Performances of gas turbine-based CCHP system combined with solar and compressed air energy storage [J]. Proceedings of the CSEE, 2017, 37(18): 5350-5358. DOI: 10.13334/J.0258-8013.PCSEE.161374. [19] UMAR M, MOORE S V, MEREDITH J S, et al. Aspen-based performance and energy modeling frameworks [J]. Journal of Parallel and Distributed Computing, 2018, 120: 222-236. DOI: 10.1016/j.jpdc.2017.11.005. [20] CHI J L, LI K Y, ZHANG S J, et al. Process simulation and integration of IGCC systems with novel mixed ionic and electronic conducting membrane-based water gas shift membrane reactors for CO2 capture [J]. International Journal of Hydrogen Energy, 2020, 45(27): 13884-13898. DOI: 10.1016/j.ijhydene.2020.03.138. [21] SCHWEIGER G, HEIMRATH R, FALAY B, et al. District energy systems: Modelling paradigms and general-purpose tools [J]. Energy, 2018, 164: 1326-1340. DOI: 10.1016/j.energy.2018.08.193. [22] 马泉. 基于Ebsilon的NGCC机组热力系统性能监测与优化分析 [D]. 南京: 东南大学, 2018. MA Q. Performance monitoring and optimization analysis of NGCC unit thermodynamic system based on Ebsilon [D]. Nanjing: Southeast University, 2018. [23] 陈洪溪, 朱志劼. 带CO2捕捉的IGCC系统热力性能研究 [J]. 发电设备, 2010, 24(6): 405-408. DOI: 10.3969/j.issn.1671-086X.2010.06.004. CHEN H X, ZHU Z J. Study on the IGCC system using CO2 capture technology [J]. Power Equipment, 2010, 24(6): 405-408. DOI: 10.3969/j.issn.1671-086X.2010.06.004. [24] 张琨, 李寒旭. 干煤粉气流床气化过程数学模型的建立及求解 [J]. 广东化工, 2012, 39(4): 277-278, 280. DOI: 10.3969/j.issn.1007-1865.2012.04.149. ZHANG K, LI H X. Development and solution of mathematical model for entrained-flow pulverized coal gasification process [J]. Guangdong Chemical Industry, 2012, 39(4): 277-278, 280. DOI: 10.3969/j.issn.1007-1865.2012.04.149. [25] AHMED U, KIM C, ZAHID U, et al. Integration of IGCC and methane reforming process for power generation with CO2 capture [J]. Chemical Engineering and Processing: Process Intensification, 2017, 111: 14-24. DOI: 10.1016/j.cep.2016.10.020. [26] HAN L, DENG G Y, LI Z, et al. Integration optimisation of elevated pressure air separation unit with gas turbine in an IGCC power plant [J]. Applied Thermal Engineering, 2017, 110: 1525-1532. DOI: 10.1016/j.applthermaleng.2016.09.059. [27] SHI B, WU E, WU W, et al. Multi-objective optimization and exergoeconomic assessment of a new chemical-looping air separation system [J]. Energy Conversion and Management, 2018, 157: 575-586. DOI: 10.1016/j.enconman.2017.12.030. [28] SHI B, WEN F, WU W. Performance evaluation of air-blown IGCC polygeneration plants using chemical looping hydrogen generation and methanol synthesis loop [J]. Energy, 2020, 200: 117564. DOI: 10.1016/j.energy.2020.117564. [29] SHI B, XU W, WU E, et al. Novel design of integrated gasification combined cycle (IGCC) power plants with CO2 capture [J]. Journal of Cleaner Production, 2018, 195: 176-186. DOI: 10.1016/j.jclepro.2018.05.152. [30] DEL POZO C A, CLOETE S, CLOETE J H, et al. The oxygen production pre-combustion (OPPC) IGCC plant for efficient power production with CO2 capture [J]. Energy Conversion and Management, 2019, 201: 112109. DOI: 10.1016/j.enconman.2019.112109. [31] YOON S Y, CHOI B S, AHN J H, et al. Improvement of integrated gasification combined cycle performance using nitrogen from the air separation unit as turbine coolant [J]. Applied Thermal Engineering, 2019, 151: 163-175. DOI: 10.1016/j.applthermaleng.2019.01.110. [32] DEL POZO C A, CLOETE S, CHIESA P, et al. Integration of gas switching combustion and membrane reactors for exceeding 50% efficiency in flexible IGCC plants with near-zero CO2 emissions [J]. Energy Conversion and Management:X, 2020, 7: 100050. doi: 10.1016/j.ecmx.2020.100050 [33] SHAIKH A R, WANG Q H, FENG Y, et al. Thermodynamic analysis of 350 MWe coal power plant based on calcium looping gasification with combined cycle [J]. International Journal of Greenhouse Gas Control, 2021, 110: 103439. DOI: 10.1016/j.ijggc.2021.103439.