-
传热管在空气中与气水两相流中的固有频率是不同的。因此考虑动水附加质量[28],利用有限元软件分别计算了空泡份额在0.7、0.8、0.9、0.98四种工况下传热管束的固有频率。在传热管与管板连接处作固支边界条件,在与支撑板接触处作简支边界条件处理。抗振条与管束接触的部位,则采用接地弹簧来进行模拟[20]。其中:附加流体质量计算公式[28]为:
$$ {\mathrm{m}}_{\mathrm{A}}=\left(\frac{\rho \pi {D}^{2}}{4}\right)\frac{{\left({D}_{{\mathrm{e}}}/D\right)}^{2}+1}{{\left({D}_{{\mathrm{e}}}/D\right)}^{2}-1} $$ (1) 式中:
De ——管道的等效直径(mm)。
对于三角形排布的管束[29]而言。
$$ \frac{P}{D}=\frac{24.9}{17.8}=1.42 $$ (2) $$ \frac{{D}_{{\mathrm{e}}}}{D}=\left(0.96+0.5\frac{P}{D}\right)\frac{P}{D}=2.37 $$ (3) 式中:
P ——管束排布间距(mm);
D ——传热管外径(mm);
ρ ——空气-水两项流密度(kg/m3)。
通过对传热管的固有频率分析发现前两阶振动方向均为面外方向,如图3、图4所示为传热管典型一阶、二阶阵型图。由表1可知,随着弯管半径的增加,管束的1阶固有频率是逐渐减小的。同时随着空泡份额的增大,附加动水质量变小,因此,每根传热管的固有频率均随着空泡份额增大而增大。
表 1 传热管在两相流中的固有频率
Table 1. Natural frequency of tubes in two-phase flow
空泡份额 阶数 频率/Hz(传热管按照弯管半径由小到大排列) 管6-1 管5-1 管5-2 管6-4 管6-7 管5-7 0.7 1阶 44.197 44.087 43.891 43.508 43.322 43.130 2阶 50.181 49.865 49.712 49.510 49.332 49.187 0.8 1阶 44.932 44.844 44.643 44.217 43.509 43.284 2阶 51.016 50.759 50.413 50.150 49.903 48.955 0.9 1阶 45.706 45.577 45.301 45.052 44.877 44.511 2阶 51.894 50.964 50.534 50.210 49.920 49.330 0.98 1阶 46.521 46.254 45.920 45.750 45.510 45.119 2阶 52.819 52.579 52.113 51.904 51.723 51.249 -
在空泡份额为0.7,管间流速为5 m/s工况下,各个测点的脉动压力主频均一致为43.457 Hz,脉动压力功率谱密度值随着弯管半径的增大而减小,90°位置与45°位置处所受流体激振力基本一致,如下图5所示。表2中分别选取了管束内侧、中间和外侧的3组测点,内侧的脉动压力功率谱密度峰值是外侧的2.7倍,说明了流体激振力在流体出口处相比流体入口处有较大衰减。结合管束固有频率的分析,在空泡份额0.7,管间流速为5 m/s工况下,流体脉动压力频率与传热管束一阶固有频率相近,结构易发生共振。
图 5 空泡份额0.7,管间流速5 m/s时不同测点的脉动压力功率谱密度图
Figure 5. Power spectral density of fluctuating pressure at different measuring points with εg=0.7 and Vcros=5 m/s
表 2 空泡份额0.7,管间流速5 m/s下不同测点部位的脉动压力主频及对应功率谱密度值
Table 2. Main frequency of fluctuating pressure and power spectral density at different measuring points with εg=0.7 and Vcros=5 m/s
管束位置(按弯管
半径从大到小排列)4-1-90° 4-1-45° 5-3-90° 5-3-45° 5-6-90° 5-6-45° 脉动压力主频(Hz) 43.457 43.457 43.457 43.457 43.457 43.457 功率谱密度值(bar2/Hz) 0.048 0.050 0.037 0.036 0.018 0.015 -
图6显示了空泡份额0.7时,传热管4-1-90°所受到的脉动压力随管间流速的增大而增大,5 m/s时有明显的振动主频,与一阶管束固有频率相近,易发生共振。其他工况下均显示在10~100 Hz的宽频范围内分布。其他测点在不同管间流速下脉动压力分布规律与管4-1-90°相似。
-
如图7,在管间流速5 m/s时,管4-1-90°响位置处脉动压力功率谱密度峰值随空泡份额的变化是先增大后减小,在空泡份额为0.8时存在最大峰值。此时脉动压力频率与传热管束固有频率相近,结构易发生共振。
-
流体湍流中脉动变化的压力和速度场使管束振动。对湍流抖振频率计算,目前公认采用的计算公式为Owen得到的半经验公式[30]:
$$ {f}_{t}=\frac{{V}_{{\mathrm{cros}}}D}{LT}\left[3.05{\left(1-\frac{D}{T}\right)}^{2}+0.28\right] $$ (4) 式中:
L ——纵向传热管中心距(mm);
T ——横向传热管中心距(mm)。
但是其关键经验系数3.05仅是对气体试验数据(即空泡份额为1)拟合所得。当空泡份额为0.7、0.98时,采用该公式进行计算与试验值有差距,因此文章中通过调整经验系数值进行计算,与试验结果实现了较好的拟合。如表3和表4对空泡份额0.7和0.98的计算值及试验值进行了汇总,当经验系数为3.05时,计算值平均比试验值大4%,当调整经验系数后,计算值与试验值符合较好。说明在二次侧是两相流时,Owen公式中的经验系数不再适用,需要根据试验进行适当调整。
表 3 空泡份额0.7,湍流抖振频率计算值与试验值对比
Table 3. Comparison between the calculated value and the experimental value of turbulence vibration frequency at εg=0.7.
管间流速/(m/s) 试验值/Hz 计算值/Hz 经验系数=3.05 经验系数=2.8 5 43.457 44.822 43.017 6 45.410 47.511 45.598 7 49.316 52.441 50.330 8 59.248 61.854 59.363 9 64.453 67.232 64.525 10 68.359 71.266 68.397 11 93.750 98.608 94.637 12 98.632 102.193 98.079 13 99.450 103.986 99.799 表 4 空泡份额0.98,湍流抖振频率计算值与试验值对比
Table 4. Comparison between the calculated value and the experimental value of turbulence vibration frequency at εg=0.98.
管间流速/(m/s) 试验值/Hz 计算值/Hz 经验系数=3.05 经验系数=2.85 5 43.296 44.822 43.378 6 45.41 47.511 45.981 7 50.781 52.441 50.752 8 59.082 61.854 59.861 9 64.941 67.232 65.069 10 68.847 71.266 68.971 11 94.238 98.608 95.431 12 98.145 102.193 98.902 13 100.098 103.986 100.637 -
对加速度计信号进行处理,通过两次积分得到传热管的位移数据。如图8所示,管束在X方向的振动有效值随管间流速的变化呈现出先增大到一定峰值再降低随后又继续增大的特点。总体上,空泡份额越大,管束振动的有效值峰值越小。空泡份额0.7~0.98时,管束振动有效值峰值分别出现在6 m/s、10 m/s、10.2 m/s和11 m/s。随着空泡份额的增大,出现峰值所对应的管间流速也越来越大。对应上述对脉动压力的分析,可以看到出现峰值时对应的工况均是发生了管束共振,当脉动压力频率与管束固有频率不一致时,传热管又恢复了由流体激振为主导的强迫振动。
Experimental Study on Flow-Induced Vibration in Bend Zone of Steam Generator Tube Bundle
-
摘要:
目的 蒸汽发生器传热管在二次侧流体的冲刷作用下,容易产生流致振动问题,其中随机的湍流作用力是导致传热管振动的主要的机理之一。当流体的脉动压力频率与传热管固有频率相近时,会导致结构共振,长时间振动会导致传热管失效,因此研究传热管在流体激励下的动力响应特点是非常必要的。 方法 文章设计了节径比为1.47的传热管束弯管区流致振动试验装置,用空气-水两相流模拟了二次侧流体工况,分别测量了空泡份额为0.7~0.98,管间流速为5~13 m/s的流体脉动压力和管束振动加速度。 结果 结果表明,在低流速下,脉动压力主频与传热管固有频率接近,容易产生共振,且共振时管束振幅会有所增大。随着管间流速增大,管束受到的脉动压力也相应增大,而随着空泡份额的增大,脉动压力的变化是先增大后减小。在计算空气-水两相流工况下的脉动压力主频时,经验公式中的系数需要进行适当调整。 结论 本试验模拟了蒸汽发生器传热管束弯管区二次侧流体运行工况,在试验本体设计上考虑了与原型的几何相似性与支撑、约束相似性,相比以往的试验研究更接近实际情况,可为工程应用提供设计参考。 Abstract:Introduction Under the scouring impact of secondary side fluid, the steam generator tube is prone to flow-induced vibration. One of the main mechanisms leading to tube vibration is the random turbulent force. When the fluctuating pressure frequency of the fluid is close to the natural frequency of the tube, structural resonance will be caused and long-term vibration will lead to the failure of the tube. Therefore, it is necessary to study the dynamic response characteristics of steam generator tubes under fluid excitation. Method In this paper, a flow-induced vibration test device for the bend zone of tube bundle with a pitch-diameter ratio of 1.47 was designed. The secondary side fluid condition was simulated by air-water two-phase flow. The fluid fluctuating pressure and the vibration acceleration of tube bundle with a void fraction of 0.7~0.98 and a flow velocity between tubes of 5~13 m/s was measured. Result The results show that: the main frequency of fluctuating pressure is close to the natural frequency of tube at low flow velocity, which is easy to causes resonance; when resonance occurs, the amplitude of the tube bundle increases; with the increase of velocity between tubes, the fluctuating pressure on tube bundle increases correspondingly. With the increase of the void fraction, the fluctuation pressure first increases and then decreases. When calculating the main frequency of fluctuating pressure under the condition of air-water two-phase flow, the coefficient in the empirical formula can be adjusted appropriately. Conclusion This test simulated the working conditions of the secondary side fluid operation in the bend zone of steam generator tube bundle and considered the geometric similarity with the prototype and the similarity of support and constraint in the design of the model. This test was closer to the actual situation than the previous experimental research and can provide design references for engineering applications. -
表 1 传热管在两相流中的固有频率
Tab. 1. Natural frequency of tubes in two-phase flow
空泡份额 阶数 频率/Hz(传热管按照弯管半径由小到大排列) 管6-1 管5-1 管5-2 管6-4 管6-7 管5-7 0.7 1阶 44.197 44.087 43.891 43.508 43.322 43.130 2阶 50.181 49.865 49.712 49.510 49.332 49.187 0.8 1阶 44.932 44.844 44.643 44.217 43.509 43.284 2阶 51.016 50.759 50.413 50.150 49.903 48.955 0.9 1阶 45.706 45.577 45.301 45.052 44.877 44.511 2阶 51.894 50.964 50.534 50.210 49.920 49.330 0.98 1阶 46.521 46.254 45.920 45.750 45.510 45.119 2阶 52.819 52.579 52.113 51.904 51.723 51.249 表 2 空泡份额0.7,管间流速5 m/s下不同测点部位的脉动压力主频及对应功率谱密度值
Tab. 2. Main frequency of fluctuating pressure and power spectral density at different measuring points with εg=0.7 and Vcros=5 m/s
管束位置(按弯管
半径从大到小排列)4-1-90° 4-1-45° 5-3-90° 5-3-45° 5-6-90° 5-6-45° 脉动压力主频(Hz) 43.457 43.457 43.457 43.457 43.457 43.457 功率谱密度值(bar2/Hz) 0.048 0.050 0.037 0.036 0.018 0.015 表 3 空泡份额0.7,湍流抖振频率计算值与试验值对比
Tab. 3. Comparison between the calculated value and the experimental value of turbulence vibration frequency at εg=0.7.
管间流速/(m/s) 试验值/Hz 计算值/Hz 经验系数=3.05 经验系数=2.8 5 43.457 44.822 43.017 6 45.410 47.511 45.598 7 49.316 52.441 50.330 8 59.248 61.854 59.363 9 64.453 67.232 64.525 10 68.359 71.266 68.397 11 93.750 98.608 94.637 12 98.632 102.193 98.079 13 99.450 103.986 99.799 表 4 空泡份额0.98,湍流抖振频率计算值与试验值对比
Tab. 4. Comparison between the calculated value and the experimental value of turbulence vibration frequency at εg=0.98.
管间流速/(m/s) 试验值/Hz 计算值/Hz 经验系数=3.05 经验系数=2.85 5 43.296 44.822 43.378 6 45.41 47.511 45.981 7 50.781 52.441 50.752 8 59.082 61.854 59.861 9 64.941 67.232 65.069 10 68.847 71.266 68.971 11 94.238 98.608 95.431 12 98.145 102.193 98.902 13 100.098 103.986 100.637 -
[1] 王海洋, 荣健. 碳达峰、碳中和目标下中国核能发展路径分析 [J]. 中国电力, 2021, 54(6): 86-94. DOI: 10.11930/j.issn.1004-9649.202103141. WANG H Y, RONG J. Analysis on China's nuclear energy development path under the goal of peaking carbon emissions and achieving carbon neutrality [J]. Electric power, 2021, 54(6): 86-94. DOI: 10.11930/j.issn.1004-9649.202103141. [2] 张玉祯, 廖佰凤, 汪静, 等. 压水堆核电站工业供汽系统技术可行性研究 [J]. 南方能源建设, 2022, 9(2): 120-124. DOI: 10.16516/j.gedi.issn2095-8676.2022.02.017. ZHANG Y Z, LIAO B F, WANG J, et al. Feasibility research in the technology for industrial steam supply by PWR nuclear power plant [J]. Southern energy construction, 2022, 9(2): 120-124. DOI: 10.16516/j.gedi.issn2095-8676.2022.02.017. [3] 薛颖成, 吴宗辉, 何建. 考虑微动磨损下蒸汽发生器传热管时变可靠性评估方法 [J]. 核动力工程, 2024, 45(1): 164-170. DOI: 10.13832/j.jnpe.2024.01.0164. XUE Y C, WU Z H, HE J. Time-varying reliability evaluation method of steam generator heat transfer tubes considering fretting wear [J]. Nuclear power engineering, 2024, 45(1): 164-170. DOI: 10.13832/j.jnpe.2024.01.0164. [4] TANAKA H, TANAKA K, SHIMIZU F, et al. Fluidelastic analysis of tube bundle vibration in cross-flow [J]. Journal of fluids and structures, 2002, 16(1): 93-112. DOI: 10.1006/jfls.2001.0411. [5] 韩世超, 赵嘉明, 王翠芸, 等. 某核电堆型蒸汽发生器排污系统设计改进 [J]. 南方能源建设, 2016, 3(3): 45-47,53. DOI: 10.16516/j.gedi.issn2095-8676.2016.03.009. HAN S C, ZHAO J M, WANG C Y, et al. Design improvement of steam generator blowdown system [J]. Southern energy construction, 2016, 3(3): 45-47,53. DOI: 10.16516/j.gedi.issn2095-8676.2016.03.009. [6] SUN Y, CAI Z B, CHEN Z Q, et al. Impact fretting wear of Inconel 690 tube with different supporting structure under cycling low kinetic energy [J]. Wear, 2017, 376-377: 625-633. DOI: 10.1016/j.wear.2017.01.011. [7] PETTIGREW M J, TAYLOR C E, FISHER N J, et al. Flow-induced vibration: recent findings and open questions [J]. Nuclear engineering and design, 1998, 185(2/3): 249-276. DOI: 10.1016/S0029-5493(98)00238-6. [8] PETTIGREW M J, TAYLOR C E, KIM B S. The effects of bundle geometry on heat exchanger tube vibration in two-phase cross flow [J]. Journal of pressure vessel technology, 2001, 123(4): 414-420. DOI: 10.1115/1.1388236. [9] JO J C, JHUNG M J. Flow-induced vibration and fretting-wear predictions of steam generator helical tubes [J]. Nuclear engineering and design, 2008, 238(4): 890-903. DOI: 10.1016/j.nucengdes.2006.12.001. [10] LAM K, JIANG G D, LIU Y, et al. Simulation of cross-flow-induced vibration of cylinder arrays by surface vorticity method [J]. Journal of fluids and structures, 2006, 22(8): 1113-1131. DOI: 10.1016/j.jfluidstructs.2006.03.004. [11] DE PEDRO B, PARRONDO J, MESKELL C, et al. CFD modelling of the cross-flow through normal triangular tube arrays with one tube undergoing forced vibrations or fluidelastic instability [J]. Journal of fluids and structures, 2016, 64: 67-86. DOI: 10.1016/j.jfluidstructs.2016.04.006. [12] 邱桂辉, 任红兵, 周鹏, 等. 核电厂蒸汽发生器传热管接近管运行特性研究 [J]. 核科学与工程, 2023, 43(6): 1294-1299. QIU G H, REN H B, ZHOU P, et al. Operation characteristics analysis of heat transfer tubes with tube proximity phenomenon in steam generator of nuclear power plant [J]. Nuclear science and engineering, 2023, 43(6): 1294-1299. [13] CHU I C, CHUNG H J, LEE S. Flow-induced vibration of nuclear steam generator U-tubes in two-phase flow [J]. Nuclear engineering and design, 2011, 241(5): 1508-1515. DOI: 10.1016/j.nucengdes.2011.01.034. [14] SURESH KUMAR V A, NOUSHAD I B, RAJAN K K. Steam generator test facility—A test bed for steam generators of Indian sodium cooled fast breeder reactors [J]. Nuclear engineering and design, 2012, 248: 169-177. DOI: 10.1016/j.nucengdes.2012.03.021. [15] SAWADOGO T, MUREITHI N. Fluidelastic instability study in a rotated triangular tube array subject to two-phase cross-flow. part I: fluid force measurements and time delay extraction [J]. Journal of fluids and structures, 2014, 49: 1-15. DOI: 10.1016/j.jfluidstructs.2014.02.004. [16] SAWADOGO T, MUREITHI N. Fluidelastic instability study on a rotated triangular tube array subject to two-phase cross-flow. Part II: Experimental tests and comparison with theoretical results [J]. Journal of fluids and structures, 2014, 49: 16-28. DOI: 10.1016/j.jfluidstructs.2014.04.013. [17] 蒋天泽, 李朋洲, 马建中, 等. 两相流作用下管束流致振动的3个关键力学问题 [J]. 核动力工程, 2016, 37(增刊2): 14-19. DOI: 10.13832/j.jnpe.2016.S2.0014. JIANG T Z, LI P Z, MA J Z, et al. Three key mechanical problems of flow induced vibration of tube bundles in two-phase flow [J]. Nuclear power engineering, 2016, 37(Suppl. 2): 14-19. DOI: 10.13832/j.jnpe.2016.S2.0014. [18] 齐欢欢, 姜乃斌, 冯志鹏, 等. 华龙一号蒸汽发生器流致振动关键技术研究及应用 [J]. 核动力工程, 2019, 40(增刊1): 37-40. DOI: 10.13832/j.jnpe.2019.S1.0037. QI H H, JIANG N B, FENG Z P, et al. Key technology research and application of flow-induced vibration in HPR1000 steam generator [J]. Nuclear power engineering, 2019, 40(Suppl. 1): 37-40. DOI: 10.13832/j.jnpe.2019.S1.0037. [19] 谭添才, 高李霞, 李朋洲, 等. ZH-65型蒸汽发生器传热管束流致振动试验研究 [J]. 核动力工程, 2019, 40(增刊1): 63-66. DOI: 10.13832/j.jnpe.2019.S1.0063. TAN T C, GAO L X, LI P Z, et al. Experimental study on flow-induced vibration of heat transfer tube bundles of ZH-65 steam generator [J]. Nuclear power engineering, 2019, 40(Suppl. 1): 63-66. DOI: 10.13832/j.jnpe.2019.S1.0063. [20] 唐力晨, 谢永诚, 景益, 等. 抗振条面内接触刚度对蒸汽发生器传热管流致振动的影响 [J]. 原子能科学技术, 2016, 50(4): 645-652. DOI: 10.7538/yzk.2016.50.04.0645. TANG L C, XIE Y C, JING Y, et al. Influence of in-plane contact stiffness of anti-vibration bar on flow-induced vibration of heat-transfer tube in steam generator [J]. Atomic energy science and technology, 2016, 50(4): 645-652. DOI: 10.7538/yzk.2016.50.04.0645. [21] 刘丽艳, 王一鹏, 朱勇, 等. 蒸汽发生器U形管湍流抖振及微动磨损研究 [J]. 振动与冲击, 2021, 40(8): 35-40. DOI: 10.13465/j.cnki.jvs.2021.08.005. LIU L Y, WANG Y P, ZHU Y, et al. A study on turbulent buffeting and fretting wear of U-tube of a steam generator [J]. Journal of vibration and shock, 2021, 40(8): 35-40. DOI: 10.13465/j.cnki.jvs.2021.08.005. [22] 崔素文, 朱勇, 任红兵. 防振条对蒸汽发生器传热管完整性的影响分析 [J]. 核动力工程, 2016, 37(6): 109-112. DOI: 10.13832/j.jnpe.2016.06.0109. CUI S W, ZHU Y, REN H B. Effect of anti-vibration bar on steam generator tube integrity [J]. Nuclear power engineering, 2016, 37(6): 109-112. DOI: 10.13832/j.jnpe.2016.06.0109. [23] 隋永旭. 一种核电主设备内管路流致振动分析 [J]. 设计与计算, 2019(1): 13-16. DOI: 10.3969/j.issn.1673-3355.2019.01.004. SUI Y X. Flow-induced vibration analysis of internal pipeline of a nuclear power main equipment [J]. CFHI technology, 2019(1): 13-16. DOI: 10.3969/j.issn.1673-3355.2019.01.004. [24] 邱桂辉, 任红兵, 朱勇, 等. 核电厂蒸汽发生器管子支撑板方孔对流场分布的影响 [C]//中国核学会. 中国核科学技术进展报告(第八卷)中国核学会2023年学术年会论文集 第9册 核安全 核设备 反应堆热工流体力学, 西安, 2023-10-17. 北京: 科学技术文献出版社, 2023: 107-113. DOI: 10.26914/c.cnkihy.2023.103816. QIU G H, REN H B, ZHU Y, et al. Impacts of square hole of tube support plate on flow field distribution of steam generator in nuclear power plant [C]//Chinese Nuclear Society. Progress Report on China Nuclear Science & Technology (Vol. 8), Xi'an, October 17, 2023. Beijing: Science and Technology Literature Publishing House, 2023: 107-113. DOI: 10.26914/c.cnkihy.2023.103816. [25] 崔素文, 杨芝栋, 任红兵. 蒸汽发生器管束支撑结构对传热管完整性的影响分析 [J]. 压力容器, 2020, 37(10): 52-56. DOI: 10.3969/j.issn.1001-4837.2020.10.008. CUI S W, YANG Z D, REN H B. Study on the influence of steam generator tube bundle supports on tube integrity [J]. Pressure vessel technology, 2020, 37(10): 52-56. DOI: 10.3969/j.issn.1001-4837.2020.10.008. [26] 蔡逢春, 黄旋, 沈平川, 等. 蒸汽发生器传热管在泵致脉动压力载荷下的动力学响应研究 [J]. 原子能科学技术, 2018, 52(2): 269-275. DOI: 10.7538/yzk.2018.52.02.0269. CAI F C, HUANG X, SHEN P C, et al. Study on dynamic response of steam generator heat transfer tube under pump-induced pressure pulsation [J]. Atomic energy science and technology, 2018, 52(2): 269-275. DOI: 10.7538/yzk.2018.52.02.0269. [27] 杨林, 李晓蒙, 张可丰, 等. 一种可开展管束流致振动试验台架的设计 [C]//中国核学会. 中国核科学技术进展报告(第六卷)——中国核学会2019年学术年会论文集第3册(核能动力分卷), 包头, 2019-08-20. 北京: 中国原子能出版社, 2019: 63-68. DOI: 10.26914/c.cnkihy.2019.056496. YANG L, LI X M, ZANG K F, et al. Test facility design of the flow induced vibration of U-tubes in the two-phase flow [C]//Chinese Nuclear Society. Progress Report on China Nuclear Science & Technology (Vol. 6), Baotou, August 20, 2019. Beijing: Chinese Nuclear Society, 2019: 63-68. DOI: 10.26914/c.cnkihy.2019.056496. [28] American Society of Mechanical Engineers. ASME boiler and pressure vessel code section III, Division 1: appendices N1300 [S]. NewYork: American Society of Mechanical Engineers, 2007. [29] ROGERS R J, TAYLOR C, PETTIGREW M J. Fluid effects on multi-span heat exchanger tube vibration [C]//Proceedings of ASME Pressure Vessels and Piping Conference. San Antonio: ASME, 1984: 17-26. [30] OWEN P R. Buffeting excitation of boiler tube vibration [J]. Journal of mechanical engineering science, 1965, 7(4): 431-439. DOI: 10.1243/JMES_JOUR_1965_007_065_02.