• 匿名盲审
  • 学术期刊非营利性
  • 全球免费开放获取全文
  • 最新科研成果提供绿色通道

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乙醇抑制氢气-空气混合物爆炸的实验研究

苏傲成 王筱蓉 姜根柱 朱源

苏傲成, 王筱蓉, 姜根柱, 朱源. 乙醇抑制氢气-空气混合物爆炸的实验研究[J]. 南方能源建设. doi: 10.16516/j.ceec.2024-108
引用本文: 苏傲成, 王筱蓉, 姜根柱, 朱源. 乙醇抑制氢气-空气混合物爆炸的实验研究[J]. 南方能源建设. doi: 10.16516/j.ceec.2024-108
SU Aocheng, WANG Xiaorong, JIANG Genzhu, ZHU Yuan. Experimental Research on Ethanol Inhibition of Hydrogen-Air Mixture Explosion[J]. SOUTHERN ENERGY CONSTRUCTION. doi: 10.16516/j.ceec.2024-108
Citation: SU Aocheng, WANG Xiaorong, JIANG Genzhu, ZHU Yuan. Experimental Research on Ethanol Inhibition of Hydrogen-Air Mixture Explosion[J]. SOUTHERN ENERGY CONSTRUCTION. doi: 10.16516/j.ceec.2024-108

乙醇抑制氢气-空气混合物爆炸的实验研究

doi: 10.16516/j.ceec.2024-108
基金项目: 国家自然科学基金“The reciprocity mechanism of ammonia-hydrogen spherically expanding flames' thermoacoustic and intrinsic instability”(52350410458);江苏省基础研究计划(自然科学基金)-青年基金项目“预热长碳链脂肪酸油高压蒸发特性及冷启动低温着火特性研究”(BK20180982)
详细信息
    作者简介:

    苏傲成,2000-,男,硕士生在读,主要从事可燃气体燃烧和爆炸特性研究工作(e-mail)221210201127@stu.just.edu.cn

    王筱蓉,1982-,女,江苏科技大学教授,南京理工大学兵器发射理论与技术专业博士,主要从事船舶与海上绿色能源系统及高端装备研发方向、绿色船舶动力及高端推进系统关键技术基础研究方向、海洋高端装备关键技术(基础)研究方向、新能源汽车发动机关键技术与装备研发方向的研究工作(e-mail)wangxiaorong@stu.just.edu.cn

    通讯作者:

    王筱蓉,(e-mail)wangxiaorong@stu.just.edu.cn

  • 中图分类号: TK91;TK407.9

Experimental Research on Ethanol Inhibition of Hydrogen-Air Mixture Explosion

  • 摘要:   目的  在加氢站制氢过程中,乙醇和氢气混合后易形成可燃气体,一旦受到火花或高温引燃,可能发生爆炸。为了降低加氢站制氢储氢过程中的爆炸风险,进行实验研究是至关重要的。  方法  针对在1 bar和400 K下不同当量比和不同乙醇掺混比例的氢气-乙醇-空气混合物,进行爆炸特性参数的分析。通过计算混合燃气的可燃极限和爆燃指数来评估爆炸危险程度,从而制定有效的安全措施降低爆炸风险。  结果  实验研究结果表明,当量比的增长会缩短爆炸时间,使其最终趋于稳定值,氢气体积分数(30%、50%、70%)对应的稳定爆炸时间为0.03 s、0.025 s以及0.019 s。最大爆炸压力、最大压力上升率以及爆燃指数都是随着当量比的增加先增大后降低,在当量比为1.3时达到峰值。随着乙醇的添加混合气的可燃极限不断降低,且UELmixture(混合物可燃性上限)的降低幅度明显高于LELmixture(混合物可燃性下限)。此外,最大压力上升率以及爆燃指数随着乙醇的添加都呈现明显的降低趋势,计算得出本研究的最大爆燃指数为11.85 MPa·m/s。  结论  研究成果揭示了当量比和掺混比例对混合燃料爆炸特性影响规律,为加氢站制氢和储氢过程中降低爆炸风险提供坚实的理论基础。
  • 图  1  实验装置

    Fig.  1  Experimental device

    图  2  定容燃烧弹实物图

    Fig.  2  Physical image of constant volume incendiary bomb

    图  3  爆炸参数

    Fig.  3  Explosion parameters

    图  4  不同氢气比例下可燃极限

    Fig.  4  Flammability limits under different hydrogen ratios

    图  5  爆炸压力

    Fig.  5  Explosion pressure

    图  6  爆炸压力上升率

    Fig.  6  Explosion pressure rise rate

    图  7  爆炸时间

    Fig.  7  Explosion time

    图  8  最大爆炸压力

    Fig.  8  Maximum explosion pressure

    图  9  最大压力上升速率

    Fig.  9  Maximum pressure rise rate

    图  10  爆燃指数

    Fig.  10  Deflagration index

    表  1  爆燃指数等级划分

    Tab.  1.   Classification of deflagration index

    等级 KG/(MPa·m·s−1)
    st0 0
    st1 1~20
    st2 20~30
    下载: 导出CSV
  • [1] BECKEN S, MACKEY B, LEE D S. Implications of preferential access to land and clean energy for sustainable aviation fuels [J]. Science of the total environment, 2023, 886: 163883. DOI:  10.1016/j.scitotenv.2023.163883.
    [2] ZHANG Y, WANG X R, ZHANG J W, et al. Investigation of cellular characteristics of hydrogen-ethanol flame at elevated temperatures and pressures [J]. Fuel, 2023, 341: 127643. DOI:  10.1016/j.fuel.2023.127643.
    [3] LIANG C, LI X L, XU C S, et al. Hydrogen addition effect on cellularization and intrinsic instability of ethyl acetate spherical expanding flame [J]. International journal of hydrogen energy, 2024, 49: 222-239. DOI:  10.1016/j.ijhydene.2023.07.157.
    [4] OKONKWO P C. A case study on hydrogen refueling station techno-economic viability [J]. International journal of hydrogen energy, 2024, 49: 736-746. DOI:  10.1016/j.ijhydene.2023.11.086.
    [5] 刘畅, 林汉辰, 史陈芳达, 等. 中国氢燃料电池汽车市场发展现状及展望 [J]. 南方能源建设, 2024, 11(2): 162-171. DOI:  10.16516/j.ceec.2024.2.16.

    LIU C, LIN H C, SHI C F D, et al. Development status and outlook of hydrogen powered fuel cell vehicle market in China [J]. Southern energy construction, 2024, 11(2): 162-171. DOI:  10.16516/j.ceec.2024.2.16.
    [6] 危昊翔,王筱蓉,姜根柱,等.掺醇生物柴油混合燃料蒸发特性 [J/OL].南方能源建设,1-8(2024-07-31) [2024-08-16]. http://kns.cnki.net/kcms/detail/44.1715.TK.20240731.0852.002.html.

    WEI H X, WANG X R, JIANG G Z, et al. Evaporation Characteristics of Ethanol Blended Biodiesel Fuel for Generators [J/OL]. Southern energy construction, 1-8 (2024-07-31) [2024-08-16]. http://kns.cnki.net/kcms/detail/44.1715.TK.20240731.0852.002.html.
    [7] 苏傲成, 姜根柱, 王筱蓉, 等. 乙醇-氢气-空气混合燃气的层流燃烧速度测定 [J]. 车用发动机, 2024(1): 42-48.

    SU A C, JIANG G Z, WANG X R, et al. Measurement of laminar combustion velocity of ethanol-hydrogen-air mixed gas [J]. Vehicle engine, 2024(1): 42-48.
    [8] MA Y, WANG X R, LI T, et al. Hydrogen and ethanol: production, storage, and transportation [J]. International journal of hydrogen energy, 2021, 46(54): 27330-27348. DOI:  10.1016/j.ijhydene.2021.06.027.
    [9] YAN S, FENG J, XIA Z H, et al. Effect of corn stalks on coal catalytic hydrogasification in a pressurized fluidized bed for manufacturing CH4 [J]. Fuel, 2024, 358: 130118. DOI:  10.1016/j.fuel.2023.130118.
    [10] 朱源, 姜根柱, 王筱蓉, 等. 高温下掺氢燃气层流燃烧速度和稳定性研究 [J]. 车用发动机, 2023(6): 26-32.

    ZHU Y, JIANG G Z, WANG X R, et al. Laminar combustion speed and stability of hydrogen-doped-gas at high temperature [J]. Vehicle engine, 2023(6): 26-32.
    [11] 张嘉玮. 掺氢预混燃气燃烧爆炸特性及密闭空间泄爆仿真研究 [D]. 镇江: 江苏科技大学, 2023. DOI:  10.27171/d.cnki.ghdcc.2023.000099.

    ZHANG J W. Simulation study on combustion and explosion characteristics of hydrogen-doped premixed gas and confined space explosion release [D]. Zhenjiang: Jiangsu University of Science and Technology, 2023. DOI:  10.27171/d.cnki.ghdcc.2023.000099.
    [12] YADAV N K, SAXENA M R, MAURYA R K. Inhalation toxicity characterization of nanoparticle and carbonyl emission from conventional diesel and methanol/gasoline-diesel RCCI engine [J]. Fuel, 2024, 366: 131353. DOI:  10.1016/j.fuel.2024.131353.
    [13] WANG Z H, HAN X L, HE Y, et al. Experimental and kinetic study on the laminar burning velocities of NH3 mixing with CH3OH and C2H5OH in premixed flames [J]. Combustion and flame, 2021, 229: 111392. DOI:  10.1016/j.combustflame.2021.02.038.
    [14] 张嘉瑞. 燃气轮机燃烧室中NH3/H2燃烧和排放特性研究 [D]. 济南: 齐鲁工业大学, 2024. DOI:  10.27278/d.cnki.gsdqc.2024.000339.

    ZHANG J R. Numerical on NH3/H2 combustion and emission characteristics in gas turbine combustion chamber [D]. Jinan: Qilu University of Technology, 2024. DOI:  10.27278/d.cnki.gsdqc.2024.000339.
    [15] 金宝志. NH3/H2/空气火焰层流燃烧特性的实验及仿真研究 [D]. 北京: 北京交通大学, 2022. DOI:  10.26944/d.cnki.gbfju.2022.001844.

    JIN B Z. Experimental and numerical study of the laminar burning characteristics of NH3/H2/air flames [D]. Beijing: Beijing Jiaotong University, 2022. DOI:  10.26944/d.cnki.gbfju.2022.001844.
    [16] 陈家兴. 乙醇—氢气—空气混合物层流燃烧特性的研究 [D]. 镇江: 江苏科技大学, 2021. DOI:  10.27171/d.cnki.ghdcc.2021.000339.

    CHEN J X. Effect of hydrogen addition on laminar combustion characteristics of ethanol-air mixture [D]. Zhenjiang: Jiangsu University of Science and Technology, 2021. DOI:  10.27171/d.cnki.ghdcc.2021.000339.
    [17] 李童. 输氢管道泄露燃气燃烧火焰不稳定性和爆炸特性的研究 [D]. 镇江: 江苏科技大学, 2022. DOI:  10.27171/d.cnki.ghdcc.2022.000622.

    LI T. Research on combustion flame instability and explosion characteristics of gas leaking from hydrogen pipeline [D]. Zhenjiang: Jiangsu University of Science and Technology, 2022. DOI:  10.27171/d.cnki.ghdcc.2022.000622.
    [18] 马寅. 乙醇制氢储氢过程中气体泄露燃烧与爆炸基础研究 [D]. 镇江: 江苏科技大学, 2022. DOI:  10.27171/d.cnki.ghdcc.2022.000632.

    MA Y. Basic research on combustion and explosion of leaked gas from the ethanol produced hydrogen and storage [D]. Zhenjiang: Jiangsu University of Science and Technology, 2022. DOI:  10.27171/d.cnki.ghdcc.2022.000632.
    [19] SHANG S, BI M S, ZHANG C S, et al. Experimental and numerical simulation study of hydrogen explosion suppression by a small amount of ethylene [J]. International journal of hydrogen energy, 2024, 50: 1234-1244. DOI:  10.1016/j.ijhydene.2023.10.042.
    [20] LIANG B, HUANG L, GAO W, et al. Flame evolution and pressure dynamics of methane-hydrogen-air explosion in a horizontal rectangular duct [J]. Fuel, 2024, 357: 129962. DOI:  10.1016/j.fuel.2023.129962.
    [21] SHI L, MENG X B, WU Y, et al. Numerical simulation study of the mechanism of hydrogen explosion inhibition by fine water mist containing NaOH [J]. Powder technology, 2024, 432: 119166. DOI:  10.1016/j.powtec.2023.119166.
    [22] ZHANG S Y, WEN X P, GUO Z D, et al. Experimental study on the multi-level suppression of N2 and CO2 on hydrogen-air explosion [J]. Process safety and environmental protection, 2023, 169: 970-981. DOI:  10.1016/j.psep.2022.11.069.
    [23] JI H, FAN S J, LU R J, et al. Explosion suppression characteristics of modified ABC powder driven by argon/CO2 [J]. Powder technology, 2024, 433: 119254. DOI:  10.1016/j.powtec.2023.119254.
    [24] 郭宏展, 张衍, 王筱蓉. 氢气-甲烷-乙醇混合燃料的爆炸压力特性 [J]. 爆炸与冲击, 2023, 43(12): 125403. DOI:  10.11883/bzycj-2023-0224.

    GUO H Z, ZHANG Y, WANG X R. Explosion pressure characteristics of hydrogen-methane-ethanol mixtures [J]. Explosion and shock waves, 2023, 43(12): 125403. DOI:  10.11883/bzycj-2023-0224.
    [25] CORONADO C J R, CARVALHO J A JR, ANDRADE J C, et al. Flammability limits: a review with emphasis on ethanol for aeronautical applications and description of the experimental procedure [J]. Journal of hazardous materials, 2012, 241-242: 32-54. DOI:  10.1016/j.jhazmat.2012.09.035.
    [26] DRYSDALE D. An introduction to fire dynamics (3rd ed. ) [M]. Chichester: John Wiley & Sons, 2011: 1-34.
    [27] KUCHTA J M. Investigation of fire and explosion accidents in the chemical, mining, and fuel-related industries – a manual [R]. Washington: Bureau of Mines, 1985: 680.
    [28] KUZNETSOV M, KOBELT S, GRUNE J, et al. Flammability limits and laminar flame speed of hydrogen–air mixtures at sub-atmospheric pressures [J]. International journal of hydrogen energy, 2012, 37(22): 17580-17588. DOI:  10.1016/j.ijhydene.2012.05.049.
    [29] LIU X L, ZHANG Q. Influence of initial pressure and temperature on flammability limits of hydrogen–air [J]. International journal of hydrogen energy, 2014, 39(12): 6774-6782. DOI:  10.1016/j.ijhydene.2014.02.001.
    [30] LIANG H, WANG T, LUO Z M, et al. Investigation on the lower flammability limit and critical inhibition concentration of hydrogen under the influence of inhibitors [J]. Fuel, 2024, 356: 129595. DOI:  10.1016/j.fuel.2023.129595.
  • [1] 苏杭, 李华, 宋执权, 徐猛, 李振瀚, 吴乾坤.  混合式新型聚变电源概念设计 . 南方能源建设, doi: 10.16516/j.ceec.2024.3.06
    [2] 危昊翔, 王筱蓉, 姜根柱, 黄晨峻, 张溟睿.  掺醇生物柴油混合燃料蒸发特性 . 南方能源建设, doi: 10.16516/j.ceec.2024-145
    [3] 陆皓炜, 姜根柱, 王筱蓉.  乙醇氢气预混燃料层流燃烧特性 . 南方能源建设, doi: 10.16516/j.ceec.2024-179
    [4] 朱军辉.  掺氢条件下的燃气轮机调压站设计 . 南方能源建设, doi: 10.16516/j.gedi.issn2095-8676.2023.03.015
    [5] 李小龙, 洪小飞, 陈宇卿.  燃气轮机掺氢燃烧技术 . 南方能源建设, doi: 10.16516/j.gedi.issn2095-8676.2023.06.002
    [6] 王子兴, 杨美娥, 王浩鹏, 宋民航.  基于多孔介质燃烧器的氨重整制氢技术分析 . 南方能源建设, doi: 10.16516/j.gedi.issn2095-8676.2023.03.006
    [7] 桂薇.  独立式海上风电制氢工艺设计 . 南方能源建设, doi: 10.16516/j.gedi.issn2095-8676.2022.04.005
    [8] 范勇刚, 王忠, 朱瑾, 付焕兴, 陈昌山.  广州增城H级燃气-蒸汽联合循环机组供热抽汽点选择研究 . 南方能源建设, doi: 10.16516/j.gedi.issn2095-8676.2021.02.002
    [9] 张赢, 林燕, 梁展鹏, 王真.  大型燃气-蒸汽联合循环单轴机组主厂房布置设计 . 南方能源建设, doi: 10.16516/j.gedi.issn2095-8676.2020.S2.013
    [10] 徐常, 贺墨琳, 杨成, 张英杰, 熊晓晟.  贵州电网负荷特性影响因素分析 . 南方能源建设, doi: 10.16516/j.gedi.issn2095-8676.2020.S1.007
    [11] 郑开云.  燃气-超临界CO2联合循环发电系统 . 南方能源建设, doi: 10.16516/j.gedi.issn2095-8676.2019.03.015
    [12] 胡乐生, 池代波, 韦文兵.  钢筋混凝土墙-钢排架混合结构阀厅地震效应分析 . 南方能源建设, doi: 10.16516/j.gedi.issn2095-8676.2019.S1.013
    [13] 彭明祥.  条形浅基础极限承载力的滑移线解 . 南方能源建设, doi: 10.16516/j.gedi.issn2095-8676.2019.04.003
    [14] 刘军伟, 张紫凡, 钟杰峰.  海上平台混合直流供电方案研究与仿真分析 . 南方能源建设, doi: 10.16516/j.gedi.issn2095-8676.2018.02.016
    [15] 彭娜.  孟加拉某燃气轮机电站重油处理及供应系统研究 . 南方能源建设, doi: 10.16516/j.gedi.issn2095-8676.2016.01.026
    [16] 郝为瀚, 简翔浩.  混合直流输电柔性直流换流站直流场接线研究 . 南方能源建设, doi: 10.16516/j.gedi.issn2095-8676.2016.S1.021
    [17] 陶林惠, 尹谦钧.  电站钢结构中美规范耐火极限要求对比研究 . 南方能源建设, doi: 10.16516/j.gedi.issn2095-8676.2016.01.019
    [18] 曾勇, 曾颖.  燃气热电联产机组选型、调峰能力及电价机制分析 . 南方能源建设, doi: 10.16516/j.gedi.issn2095-8676.2015.01.013
    [19] 黄镜欢, 施海云.  分布式能源站燃气内燃机的余热利用方式探讨 . 南方能源建设, doi: 10.16516/j.gedi.issn2095-8676.2015.02.012
    [20] 李云龙, 易璇, 杨海峰, 霍小东.  混合澄清槽的临界安全设计研究 . 南方能源建设, doi: 10.16516/j.gedi.issn2095-8676.2015.04.025
  • 加载中
图(10) / 表 (1)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  26
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-12
  • 录用日期:  2024-05-28
  • 修回日期:  2024-04-30
  • 网络出版日期:  2024-08-19

乙醇抑制氢气-空气混合物爆炸的实验研究

doi: 10.16516/j.ceec.2024-108
    基金项目:  国家自然科学基金“The reciprocity mechanism of ammonia-hydrogen spherically expanding flames' thermoacoustic and intrinsic instability”(52350410458);江苏省基础研究计划(自然科学基金)-青年基金项目“预热长碳链脂肪酸油高压蒸发特性及冷启动低温着火特性研究”(BK20180982)
    作者简介:

    苏傲成,2000-,男,硕士生在读,主要从事可燃气体燃烧和爆炸特性研究工作(e-mail)221210201127@stu.just.edu.cn

    王筱蓉,1982-,女,江苏科技大学教授,南京理工大学兵器发射理论与技术专业博士,主要从事船舶与海上绿色能源系统及高端装备研发方向、绿色船舶动力及高端推进系统关键技术基础研究方向、海洋高端装备关键技术(基础)研究方向、新能源汽车发动机关键技术与装备研发方向的研究工作(e-mail)wangxiaorong@stu.just.edu.cn

    通讯作者: 王筱蓉,(e-mail)wangxiaorong@stu.just.edu.cn
  • 中图分类号: TK91;TK407.9

摘要:   目的  在加氢站制氢过程中,乙醇和氢气混合后易形成可燃气体,一旦受到火花或高温引燃,可能发生爆炸。为了降低加氢站制氢储氢过程中的爆炸风险,进行实验研究是至关重要的。  方法  针对在1 bar和400 K下不同当量比和不同乙醇掺混比例的氢气-乙醇-空气混合物,进行爆炸特性参数的分析。通过计算混合燃气的可燃极限和爆燃指数来评估爆炸危险程度,从而制定有效的安全措施降低爆炸风险。  结果  实验研究结果表明,当量比的增长会缩短爆炸时间,使其最终趋于稳定值,氢气体积分数(30%、50%、70%)对应的稳定爆炸时间为0.03 s、0.025 s以及0.019 s。最大爆炸压力、最大压力上升率以及爆燃指数都是随着当量比的增加先增大后降低,在当量比为1.3时达到峰值。随着乙醇的添加混合气的可燃极限不断降低,且UELmixture(混合物可燃性上限)的降低幅度明显高于LELmixture(混合物可燃性下限)。此外,最大压力上升率以及爆燃指数随着乙醇的添加都呈现明显的降低趋势,计算得出本研究的最大爆燃指数为11.85 MPa·m/s。  结论  研究成果揭示了当量比和掺混比例对混合燃料爆炸特性影响规律,为加氢站制氢和储氢过程中降低爆炸风险提供坚实的理论基础。

English Abstract

苏傲成, 王筱蓉, 姜根柱, 朱源. 乙醇抑制氢气-空气混合物爆炸的实验研究[J]. 南方能源建设. doi: 10.16516/j.ceec.2024-108
引用本文: 苏傲成, 王筱蓉, 姜根柱, 朱源. 乙醇抑制氢气-空气混合物爆炸的实验研究[J]. 南方能源建设. doi: 10.16516/j.ceec.2024-108
SU Aocheng, WANG Xiaorong, JIANG Genzhu, ZHU Yuan. Experimental Research on Ethanol Inhibition of Hydrogen-Air Mixture Explosion[J]. SOUTHERN ENERGY CONSTRUCTION. doi: 10.16516/j.ceec.2024-108
Citation: SU Aocheng, WANG Xiaorong, JIANG Genzhu, ZHU Yuan. Experimental Research on Ethanol Inhibition of Hydrogen-Air Mixture Explosion[J]. SOUTHERN ENERGY CONSTRUCTION. doi: 10.16516/j.ceec.2024-108
    • 随着全球氢能源技术的快速发展和广泛应用,加氢站作为氢能源基础设施的关键组成部分备受瞩目[1-5]。与此同时,乙醇作为一种可再生能源,在绿色能源生产中展现出巨大潜力。乙醇制氢被广泛视为一种可持续发展的途径,在加氢站内通过催化转化过程可以实现氢气的生产[6-8]。且相对于甲烷、甲醇和氨气等燃料具有许多优点。乙醇是生物质产品,可以通过粮食或农业废弃物发酵生产,而甲烷主要来源于化石燃料,不仅非可再生,且在开采和使用过程中会有较大温室气体排放[9-11]。乙醇相对于甲醇来说确实具有更低的毒性,而且在燃烧过程中通常不会释放出甲醛和乙醛这样致癌的羰基化合物[12]。乙醇燃烧产生的二氧化碳和水相对干净,而氨气制氢的方法可能产生氮氧化物等有害物质[13-15]。然而,乙醇和氢气混合后易形成可燃气体,一旦受到火花或高温引燃,可能发生爆炸,造成人员伤亡和财产损失[16-18]。乙醇与氢气混合后的爆炸特性直接影响到加氢站的安全性和环保性。了解这些特性可以帮助设计更安全的加氢站系统,降低爆炸风险。因此,为了确保乙醇制氢及加氢站的安全运行,有必要深入研究乙醇对氢气-空气混合物爆炸的抑制作用,为爆炸危害评估提供理论依据。

      爆炸压力相关参数是评价混合物爆炸危害的关键因素,目前国内外许多研究人员对含氢燃料的爆炸特性进行了研究。Shang等[19]对乙烯抑制氢气爆炸进行了实验与数值模拟研究,研究结果显示添加少量的C2H4以提高最大爆炸压力和最大压力上升率。然而,当C2H4体积分数增加时,爆炸参数呈现单调下降模式,并逐渐接近零。Liang等[20]研究了甲烷-氢气-空气爆炸的火焰演化,发现当当量比从φ=0.8增加到φ=1.4时,最大爆炸超压和最大压力上升率均呈先增大后减小的趋势。随着氢含量从0%增加到100%,两者都继续增加,当量比对应于最大压力上升率的峰值从φ=1.2变化到φ=1.0。Shi等[21]通过数值模拟研究了含NaOH细水雾对氢气爆炸火焰的影响,研究发现NaOH的加入可以提高超细水雾对氢气爆炸的抑制效果,这是物理抑制和化学抑制共同作用的结果。摩尔分数曲线表明,NaOH通过捕获高能自由基延缓了氢气爆炸的反应过程。此外,N2和CO2在封闭管道中对氢气-空气爆炸的多级抑制作用[22]。通过比较爆炸压力、压力上升速率、燃烧持续时间和火焰传播等爆炸参数发现爆炸区附近的惰性气体在抑制爆炸中起着重要作用。与单级抑爆相比,同侧抑制剂的多级抑爆效果不明显,而不同侧抑制剂的多层抑爆效果最好。除了N2和CO2两种相对惰性的气体外,氩气可以延迟爆炸超压的到来[23]。郭宏展等[24]研究发现乙醇比例的增加会降低氢气甲烷混合气的最大压力上升速率和爆炸指数。以上研究结果显示,氢气添加会对燃料的燃烧特性和爆炸参数带来影响。尽管含氢燃料的燃烧和爆炸已经有了一些基础研究,但是关于乙醇抑制氢气-空气混合物爆炸的实验研究的相关文献却相对匮乏。

      本研究使用定容燃烧系统对常压下不同掺混比和不同当量比下的混合气的爆炸压力、压力上升率、爆炸时间以及爆燃指数综合分析,揭示了当量比和掺混比例对混合燃料爆炸特性影响规律,为加氢站制氢和储氢过程中降低爆炸风险提供坚实的理论基础。

    • 实验装置如图1所示,主要由定容燃烧弹、光学系统、数据采集系统以及进排气系统构成。该系统的核心是中心的定容燃烧弹,如图2所示,视窗直径为90 mm,容积为2.067 L。K型热电偶监测定容燃烧室中燃料/空气混合物的温度,并通过温度显示器显示出来。压力传感器以电压信号的形式实时监测容器内的压力。点火控制器控制容器中心的两根直径为0.4 mm的铂丝电极进行电火花点火,点火能量约为15 mJ。数字脉冲发生器与高速摄像机和示波器相连,保证高速摄像机和示波器在点火后同步拍摄图像和记录信号。高速摄像机以12 800 fps的拍摄速度和1 024×1 024像素的分辨率记录了0.1 s内完成的火焰燃烧过程。

      图  1  实验装置

      Figure 1.  Experimental device

      图  2  定容燃烧弹实物图

      Figure 2.  Physical image of constant volume incendiary bomb

    • 首先使用新鲜空气对定容燃烧弹进行连续5 min的洗气,可以有效去除定容燃烧弹内多余的杂质气体。之后关闭进气阀对定容燃烧进行抽真空,直到压力表显示0.2 bar左右的数值时停止抽真空,等待加热到实验温度。然后使用微量注射器注入所需体积的燃料,等待其在定容燃烧系统中蒸发6 min。最后把掺混设定体积的氢气和新鲜空气通过进气阀通入到定容燃烧弹内,使燃料和空气混合物充分混合5 min,再次等待温度回升到实验所需数值即可使用铂丝电极进行电火花点火。每次试验结束后需重复上述步骤,为了保证实验的可靠性,每组工况至少重复三次实验。

    • 可燃极限指气体或蒸汽与空气混合的最低浓度和最高浓度,能够形成可燃混合物的范围,分为可燃性上限和可燃性下限。在常温常压下氢气的可燃极限为4%、74.2%,乙醇的可燃极限为3.3%、19%[25]。通过Drysdale等[26]指出在常压下对于任何温度都可以根据在常温下确定的可燃极限进行计算,如式(1)和式(2)所示:

      $$ \rm{UFL} _{ \mathrm{T}} \mathrm= \rm{UFL} _{ \mathrm{298}} \mathrm{[1+0.000\;721(} \mathit{T} _{ \mathrm{0}} \mathrm{-298)]} $$ (1)
      $$ \rm{LFL} _{ \mathrm{T}} = \rm{LFL} _{ \mathrm{298}} \mathrm{[1-0.000\;78(} \mathit{T} _{ \mathrm{0}} \mathrm{-298)]} $$ (2)

      式中:

      UFLT ——可燃性上限(%vol);

      LFLT ——可燃性下限(%vol);

      UFL298 ——常温常压下的可燃性上限(%vol);

      LFL298 ——常温常压下的可燃性上限(%vol)。

      根据Le Chatelier公式[27]可以算出混合的气体的可燃极限,如式(3)和式(4)所示:

      $$ {{\mathrm{UFL}}}_{{\mathrm{mixture}}}=\frac{100}{\left({C}_{1}/{{\mathrm{UFL}}}_{1}\right)+\left({C}_{2}/{{\mathrm{UFL}}}_{2}\right)+\dots +\left({C}_{i}/{{\mathrm{UFL}}}_{i}\right)} $$ (3)
      $$ {{\mathrm{LFL}}}_{{\mathrm{mixture}}}=\frac{100}{\left({C}_{1}/{{\mathrm{LFL}}}_{1}\right)+\left({C}_{2}/{{\mathrm{LFL}}}_{2}\right)+\dots +\left({C}_{i}/{{\mathrm{LFL}}}_{i}\right)} $$ (4)

      式中:

      C1, C2, ..., Ci——每种燃料气体在燃料混合物中的比例(%体积基数);

      UFLmixture ——混合物可燃性上限;

      LFLmixture ——混合物可燃性下限。

      数据采集系统采集到的数据为电压值,根据转换公式可以将电压值转变为压力值,然后通过经验公式进行修正,得到压力的值,如公式(5)所示:

      $$ p=0.5\left(V-{V}_{0}\right)\frac{100\;000}{101\;325}+{p}_{0} $$ (5)

      式中:

      p ——压力(bar);

      p0 ——初始压力(bar);

      V ——电压值(v);

      V0 ——初始电压(v)。

      代表爆炸危害的参数主要为爆炸时间tc、最大爆炸压力pmax和最大压力上升速率(dp/dt)max以及爆燃指数KG,其中爆燃指数KG代表容器中的定容气体燃烧和爆炸单位体积,本研究使用KG来代表爆炸的强度,如公式(6)所示:

      $$ {K}_{G}={\left({{\mathrm{d}}p}/{{\mathrm{d}}t}\right)}_{{\mathrm{max}}}{V}^{\frac{1}{3}} $$ (6)
    • 图3展示了T0=400 K、氢气比例为50%、当量比为1.0、常压下的爆炸压力、压力上升率以及爆炸持续时间。图中蓝色为压力曲线,红色为压力上升率曲线,对压力曲线求导得到压力上升率曲线,由电压值转变的压力值有小幅度震荡,故对得到的压力曲线和压力上升率曲线进行平滑。图中还标注了pmax、(dp/dt)max以及tc的位置。

      图  3  爆炸参数

      Figure 3.  Explosion parameters

    • 可燃极限是分析爆炸特性时的一个重要参数,LEL和UEL的差值可以反映出爆炸发生的浓度范围,从而帮助我们判断是否存在爆炸风险[28-30]图4展示了在常压下、400 K下,不同乙醇掺混比例对可燃极限的影响。观察图4可知,当向氢气中掺入乙醇时,可燃极限持续降低。随着乙醇比例的增加,降低速度逐渐减缓。同时,UEL的降低幅度明显高于LEL。当氢气比例从70%降低至30%时,LEL和UEL分别降低了0.27%和16.3%。这是因为乙醇的燃烧温度比氢气低,所以在相同条件下,含有乙醇的混合气体更容易燃烧。当乙醇比例增加时,混合气体的LEL和UEL都会降低,意味着混合气体的爆炸性会减弱。因此乙醇可以在一定程度上抑制氢气爆炸的范围。

      图  4  不同氢气比例下可燃极限

      Figure 4.  Flammability limits under different hydrogen ratios

    • 图5展示了不同当量比和不同掺混比下的压力曲线。从图中可以看出,所有的压力都是先处在稳压阶段,然后逐渐上升达到最大值,最后开始缓慢下降。随着当量比的增加,压力达到峰值速度也不断增加,即压力达到峰值的时间缩短。当混合气体中可燃气体的当量比增加时,意味着混合气体中可燃气体的浓度增加。可燃气体浓度的增加会导致爆炸反应的速率增加,因为在更高的浓度下,可燃气体分子之间发生碰撞的几率增加,从而促进了爆炸反应的进行。这样就会导致爆炸产生的压力峰值更快地达到,整个爆炸过程的时间缩短。随着掺混乙醇比例的降低,爆炸达到峰值的时间也在缩短。这是因为乙醇分子具有较高的反应活性,能够参与爆炸反应并吸收部分能量。因此,当乙醇的掺混比例降低时,混合气体中的反应活性也相应减弱,爆炸反应的速率加快,导致爆炸达到峰值的时间缩短,从而促进爆炸反应的进行。

      图  5  爆炸压力

      Figure 5.  Explosion pressure

      爆炸压力上升率通过对爆炸压力进行求导得到,图6显示了反应爆炸压力的变化情况以及爆炸压力上升速率的变化。从图中可以粗略观察到,随着当量比的增加,爆炸压力上升速率达到峰值的时间不断缩短。在当量比为1.3~1.4的区间,爆炸压力上升速率达到峰值的时间最短,这表明在此工况下爆炸发生得更迅速。此外,乙醇比例的降低也会导致爆炸压力上升速率达到峰值的时间缩短。综上所述,结果显示当量比的提升和掺混乙醇比例的降低都会减少爆炸的发生时间。

      图  6  爆炸压力上升率

      Figure 6.  Explosion pressure rise rate

      爆炸时间也是表征爆炸危害的重要参数,可以帮助进行安全评估,图7展示了爆炸时间的曲线。从图中可以观察到,随着当量比的降低,爆炸延续的时间不断减少。特别是在当量比小于1时,爆炸时间的变化率更大。当当量比大于1时,爆炸延续的时间逐渐趋于一个稳定值。掺混比为30%H2+70%C2H5OH、50%H2+50%C2H5OH以及70%H2+30%C2H5OH对应的稳定爆炸时间为0.03 s、0.025 s以及0.019 s。另外随着乙醇比例的降低,爆炸延续的时间也在缩短。较低的乙醇比例意味着更高的氢气浓度,而氢气具有较高的燃烧反应活性。因此,当乙醇比例降低时,氢气参与的燃烧反应速率增加,导致爆炸延续的时间缩短。近似的爆炸压力发生在更短的时间内会增加爆炸的危害。

      图  7  爆炸时间

      Figure 7.  Explosion time

    • 图8图9分别展示了不同工况下最大爆炸压力和最大压力上升速率,能够直观地表达爆炸带来的危害。从图8图9中可以看出,随着当量比的增加,最大爆炸压力和最大压力上升速率呈现先增大后降低的趋势。在当量比为1.3时达到最大值,此时爆炸带来的危害最大。氢气比例的变化对最大爆炸压力的影响不明显,但在当量比大于1的情况下,随着氢气比例的增加,最大爆炸压力略微降低,这说明在当量比大于1时,降低氢气比例会稍微增加爆炸的危害。乙醇比例对最大压力上升速率的影响较大,乙醇比例的降低会很大程度上提高最大压力上升速率,也表明爆炸会发生在更短的时间内,与上一节爆炸压力上升率展示的结果一致。

      图  8  最大爆炸压力

      Figure 8.  Maximum explosion pressure

      图  9  最大压力上升速率

      Figure 9.  Maximum pressure rise rate

      NFPA 68(2002)标准是美国国家消防协会发布的关于爆炸压力释放防护的标准。这个标准将爆燃指数分为4个等级,用于表征爆炸的强度和危害,越高的爆燃指数表征更大爆炸危害,爆燃指数的分级情况如表1所示。本研究不同工况下的爆燃指数如图10所示,图中展示了随着当量比的增加爆燃指数先增高后降低,在当量比为1.3时达到顶峰,表明此时的爆炸危害最大。随着乙醇比例的提升,爆燃指数也会明显降低,表明乙醇比例的提升会减小爆炸的危害。本研究最大的爆燃指数为11.85 MPa·m/s,表明爆炸的强度较大,对环境和人员安全构成威胁。此外,还可以将常压和400 K下爆燃指数拟合成关于当量比的三阶多项式,本研究拟合结果为:

      表 1  爆燃指数等级划分

      Table 1.  Classification of deflagration index

      等级 KG/(MPa·m·s−1)
      st0 0
      st1 1~20
      st2 20~30

      图  10  爆燃指数

      Figure 10.  Deflagration index

      $$ \mathit{u} _{ \mathrm{L1}} \mathrm{=-51.569} {\varphi } ^{ \mathrm{3}} \mathrm{+152.615} {\varphi } ^{ \mathrm{2}} \mathrm{-136.139} {\varphi } \mathrm{+40.012} $$ (7)
      $$ \mathit{u} _{ \mathrm{L2}} \mathrm{=-7.002} {\varphi } ^{ \mathrm{3}} \mathrm{+7.383} {\varphi } ^{ \mathrm{2}} \mathrm{+17.831} {\varphi } \mathrm{-11.648} $$ (8)
      $$ \mathit{u} _{ \mathrm{L3}} \mathrm{=-28.095} {\varphi } ^{ \mathrm{3}} \mathrm{+71.519} {\varphi } ^{ \mathrm{2}} \mathrm{-42.923} {\varphi } \mathrm{+8.024} $$ (9)

      式中:

      uL1uL2uL3——氢气体积分数(30%、50%、70%)的爆燃指数,根据所得的关系式可以近似求出常压下、初始温度为400 K和当量比(φ=0.7~1.4)下混合气的近似爆燃指数。

    • 为了研究常压下乙醇对氢气-空气混合物爆炸的抑制作用,在定容燃烧系统中研究了不同掺混比和当量比下爆炸特性,得到了以下结论:

      1)乙醇的添加会明显降低混合物的可燃极限,且UEL的降低幅度明显高于LEL。当氢气比例从70%降低至30%时,LEL和UEL分别降低了0.27%和16.3%。

      2)随着当量比的增加,爆炸时间会缩短并趋于稳定值。氢气体积分数(30%、50%、70%)对应的稳定爆炸时间为0.03 s、0.025 s以及0.019 s。此外随着当量比增加,最大爆炸压力、最大压力上升率以及爆燃指数都是先增大后降低,在当量比为1.3时达到峰值。

      3)随着乙醇比例的提升,在当量比大于1的时候,最大爆炸压力略微增加,同时爆炸延续时间也会延长。此外,最大压力上升率以及爆燃指数随着乙醇的添加都呈现明显的降低趋势,这表明乙醇对氢气的爆炸性具有一定的抑制作用。研究计算得出的最大爆燃指数为11.85 MPa·m/s,显示了爆炸的强度较大,会对环境和人员安全构成威胁。最后,成功地拟合出3个乙醇、氢气爆燃指数的三阶多项式关系式,为理解这种混合物的爆炸特性及其控制策略提供了科学依据。

参考文献 (30)

目录

    /

    返回文章
    返回