-
双馈风力发电系统如图1所示,主要包括风机、齿轮箱、双馈风力发电机、转子侧变流器、网侧变流器、变压器和滤波电感等部分组成。
在dq轴旋转坐标下,DFIG的数学模型[10]如下式所示
电压方程为
$$ \left\{ \begin{gathered} {u_{sd}} = {R_s}{i_{sd}} + \dfrac{{d{\psi _{sd}}}}{{dt}} - {\omega _s}{\psi _{s{\text{q}}}} \\ {u_{sq}} = {R_s}{i_{sq}} + \dfrac{{d{\psi _{sq}}}}{{dt}} + {\omega _s}{\psi _{sd}} \\ \end{gathered} \right. $$ (1) $$ \left\{ \begin{gathered} {u_{rd}} = {R_r}{i_{rd}} + \dfrac{{d{\psi _{rd}}}}{{dt}} - {\omega _{sl}}{\psi _{rq}} \\ {u_{rq}} = {R_r}{i_{rq}} + \dfrac{{d{\psi _{rq}}}}{{dt}} + {\omega _{sl}}{\psi _{rd}} \\ \end{gathered} \right. $$ (2) 式中:
$ {u_{sd}} $——定子d轴电压(V);
$ {u_{sq}} $——定子q轴电压(V);
$ {u_{rd}} $——转子d轴电压(V);
$ {u_{rq}} $——转子q轴电压(V);
$ {i_{sd}} $ ——定子d轴电流(A);
$ {i_{sq}} $ ——定子q轴电流(A);
$ {i_{rd}} $ ——转子d轴电流(A);
$ {i_{rq}} $ ——转子q轴电流(A);
$ {\psi _{sq}} $——定子d轴磁链(Wb);
$ {\psi _{sd}} $——定子q轴磁链(Wb);
$ {\psi _{rd}} $——转子d轴磁链(Wb);
$ {\psi _{rq}} $——转子q轴磁链(Wb);
$ {R_s} $ ——定子电阻(Ω);
$ {R_r} $ ——转子电阻(Ω);
$ {\omega _1} $——定子磁场的同步电角速度(rad/s);
$ {\omega _{sl}} $——为转差角速度(rad/s);
$ {\omega _r} $ ——转子电角速度(rad/s)。
磁链方程为
$$ \left\{ {\begin{array}{*{20}{c}} {{\psi _{sd}} = {L_s}{i_{sd}} + {L_m}{i_{rd}}} \\ {{\psi _{sq}} = {L_s}{i_{sq}} + {L_m}{i_{rq}}} \\ {{\psi _{rd}} = {L_r}{i_{rd}} + {L_m}{i_{sd}}} \\ {{\psi _{rq}} = {L_r}{i_{rq}} + {L_m}{i_{sq}}} \end{array}} \right. $$ (3) 式中
$ {L_m} $——旋转坐标系下的等效互感(H)。
功率方程
$$ \left\{ {\begin{array}{*{20}{c}} {{P_s} = {u_{sd}}{i_{sd}} + {u_{sq}}{i_{sq}}} \\ {{Q_s} = {u_{sq}}{i_{sd}} - {u_{sd}}{i_{sq}}} \\ {{P_r} = {u_{rd}}{i_{rd}} + {u_{rq}}{i_{rq}}} \\ {{Q_r} = {u_{rq}}{i_{rd}} - {u_{rd}}{i_{rq}}} \end{array}} \right. $$ (4) 式中:
$ {P_s} $——定子有功功率(W);
$ {Q_s} $——定子无功功率(W);
$ {P_r} $——转子有功功率(W);
$ {Q_r} $——转子无功功率(W)。
-
双馈风力发电机基于磁场定向的矢量控制通过坐标变换,将三相电机模型等效成dq坐标系下的直流电机模型。通过对转子电流的精准控制,实现了对发电机转矩和功率的精准控制,从而提升了电机的性能和运行效率。
将定子磁链定向在旋转坐标下的d轴,由式(3)得
$$ \left\{ \begin{gathered} {\psi _{sd}} = {L_s}{i_{sd}} + {L_m}{i_{rd}} = {\psi _s} \\ {\psi _{sq}} = {L_s}{i_{sq}} + {L_m}{i_{rq}} = 0 \\ \end{gathered} \right. $$ (5) 式中:
$ {\psi _s} $——定子磁链矢量幅值(Wb)。
将(5)化简得
$$ \left\{ \begin{gathered} {i_{sd}} = \dfrac{1}{{{L_s}}}({\psi _s} - {L_m}{i_{rd}}) \\ {i_{sq}} = - \dfrac{{{L_m}}}{{{L_s}}}{i_{rq}} \\ \end{gathered} \right. $$ (6) 忽略定子电阻影响,定子电压方程为:
$$ \left\{ {\begin{split}& {{u_{sd}} = {R_s}{i_{sd}} + \dfrac{d}{{dt}}{\psi _{sd}} - {\omega _{\text{l}}}{\psi _{sq}} = \dfrac{d}{{dt}}{\psi _{sd}} = 0} \\& {{u_{sq}} = {R_s}{i_{sq}} + \dfrac{d}{{dt}}{\psi _{sq}} + {\omega _{\text{l}}}{\psi _{sd}} = {\omega _{\text{l}}}{\psi _s} = {U_s}} \end{split}} \right. $$ (7) 式中:
$ {U_s} $——定子电压矢量幅值(V)。
将式(7)代入(4)得到定子功率表达式为
$$ \left\{ \begin{gathered} {P_s} = {u_{sd}}{i_{sd}} + {u_{sq}}{i_{sq}} = {U_s}{i_{sq}} = - {U_s}\dfrac{{{L_m}}}{{{L_s}}}{i_{rq}} \\ {Q_s} = {u_{sq}}{i_{sd}} - {u_{sd}}{i_{sq}} = {U_s}{i_{sd}} = {U_s}\dfrac{{({\psi _s} - {L_m}{i_{rd}})}}{{{L_s}}} \\ \end{gathered} \right. $$ (8) 电磁转矩表达式可化简为
$$ {T_e} = {n_p}\dfrac{{{L_m}}}{{{L_s}}}({\psi _{sq}}{i_{rd}} - {\psi _{sd}}{i_{rq}}) = - {n_p}\dfrac{{{L_m}}}{{{L_s}}}{\psi _s}{i_{rq}} $$ (9) 由式(9)可以看出,转子dq轴电流可以对有功和无功功率解耦控制。将(6)代入到式(5)得转子磁链方程为
$$ \left\{ \begin{gathered} {\psi _{rd}} = {L_r}{i_{rd}} + {L_m}{i_{sd}} = \sigma {L_r}{i_{rd}} + \dfrac{{{L_m}{\psi _s}}}{{{L_s}}} \\ {\psi _{rq}} = {L_r}{i_{rq}} + {L_m}{i_{sq}} = \sigma {L_r}{i_{rq}} \\ \end{gathered} \right. $$ (10) σ为总漏磁系数,表达式为:
$$ \sigma = 1 - \dfrac{{L_m^2}}{{{L_s}{L_r}}} $$ (11) 将式(10)代入式(2)得
$$\left\{\begin{split}& u_{r d}=R_r i_{r d}+\sigma L_r \dfrac{d i_{r d}}{d t}+\Delta u_{r d} \\& u_{r q}=R_r i_{r q}+\sigma L_r \dfrac{d i_{r q}}{d t}+\Delta u_{r q} \\& \Delta u_{r d}=-\left(\omega_1-\omega_r\right) \sigma L_r i_{r q} \\& \Delta u_{r q}=\left(\omega_1-\omega_r\right) \dfrac{L_s}{L_m} \psi_s+\left(\omega_1-\omega_r\right) \sigma L_r i_{r d} \end{split}\right. $$ (12) 式(12)的∆urd、∆urq为交叉耦合项,可通过设置前馈补偿项以提升系统的动稳态性能。
结合上述推导,本文构建了基于PI调节器的转子侧变流器控制框图,具体结构如图2所示。
-
滑模控制(Sliding Mode Control,SMC)是非线性控制,它通过非连续性的控制来使控制对象运行在滑模面上,促使系统实现“滑动模态运动”[11-14]。 然而,其缺点是当控制目标运行到滑模面后,在滑模面来回穿梭,以锯齿状态趋近平衡点。这种运动方式会造成目标抖振,对系统的控制效果造成影响 [15-19]。
因此,降低滑模控制中的抖振性是滑模控制研究的重点。在解决抖振问题方面,应用在自抗扰控制系统中的幂次函数取得了良好的效果,能够使系统实现无抖振、单调的收敛[20]。
-
$$ fal(s,a,\delta ) = \left\{ {\begin{split}& {{sgn} (s)*|s{|^a}}&{\quad |s| \geqslant \delta } \\ & {\dfrac{s}{{{\delta ^{(1 - a)}}}}}&{\quad |s| < \delta } \end{split}} \right. $$ (13) s为输入信号,sgn(s)为符号函数,定义为
$$ {\text{sgn}}(s){\text{ = }}\left\{ {\begin{array}{*{20}{l}} {\text{1}}&{\quad s > {\text{0}}} \\ {\text{0}}&{\quad s{\text{ = 0}}} \\ {{{ - 1}}}&{\quad s < {\text{0}}} \end{array}} \right. $$ (14) 符号函数如下图3所示,即s>0时函数值为l ;s<0时函数值为−1;s=0时函数值为0。
由于符号函数呈现阶跃特性,在s小于0时取−1,s大于0时取1,控制器的控制效果也会呈现阶跃特性,其控制器的性能也会受到影响。因此,引进一种抗抖振因子函数来改善传统的幂次函数。改进型幂次函数如下式(15)所示。
$$ Gfal(s,a,\delta ) = \left\{ {\begin{split}& {G(s)*|s{|^a}}&{\quad |s| \geqslant \delta } \\ & {\dfrac{s}{{{\delta ^{(1 - a)}}}}}&{\quad |s| < \delta } \end{split}} \right. $$ (15) 其中:G(s)为抗抖振因子函数,且:
$$ G(s) = \dfrac{s}{{\left| s \right| + v}} $$ (16) 式中v>0。抗抖振因子函数G(s)如下图4所示,其在零点两侧无穷处分别渐近于−1和1。
比较图3和图4两种函数的图像,Gfal函数在零点两侧呈现渐进特性,因此在不同情况下的Gfal函数的抗抖振性更好。基于这一观察,本文将非线性函数fal全部替换为Gfal。
-
转子电流d、q轴误差函数定义如下:
$$ \left[ {\begin{array}{*{20}{c}} {{e_d}(t)} \\ {{e_q}(t)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {i_{dr}^ * (t)} \\ {i_{qr}^ * (t)} \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} {{i_{dr}}(t)} \\ {{i_{qr}}(t)} \end{array}} \right] $$ (17) 为了防止稳态误差的产生,影响系统的性能,设计了积分滑模控制器,积分滑模面函数如下式(18)所示:
$$ s_{d_{4 q}}(t)=e_{d_{q}}(t)+c_{d_{4}} \int_{0}^{t} e_{d_{4}}(t) d t $$ (18) 其中,$ {s_{dq}}\left( t \right) = {\left[ {{s_d}\left( t \right){s_q}\left( t \right)} \right]^T} $,$ {e_{dq}}\left( t \right) = {\left[ {{e_d}\left( t \right){e_q}\left( t \right)} \right]^T} $,$ {c_d} $、$ {c_q} $为积分常数,t→∞。
改进型幂次滑模控制器趋近律设计为:
$$ \dfrac{{{\text{d}}{s_{dq}}(t)}}{{{\text{d}}t}} = - \varepsilon Gfal({s_{dq}},\alpha ,\delta ) $$ (19) 其中ε为滑模增益。
联立式(19)和(18)得
$$ \varepsilon Gfal({s_{dq}},\alpha ,\delta ) + {c_{dq}}{e_{dq}}(t) = \dfrac{{d{i_{dqr}}}}{{dt}} $$ (20) 为了验证改进型幂次滑模控制的稳定性,定义Lyapunov函数:
$$ V = \dfrac{1}{2}{s_{dq}}^2 $$ (21) 联立(21)和(18)得
$$ \dfrac{{d{s_{dq}}}}{{dt}} = i_{dqr}^* + {c_{dq}}{e_{dq}}(t) + \dfrac{{{R_r}}}{\sigma }{i_{dqr}} - \dfrac{{{u_{dqr}}}}{\sigma } + \dfrac{{\Delta {u_{dqr}}}}{\sigma } $$ (22) 对(22)求导
$$ \begin{split} \mathop V\limits^ \bullet = & {s_{dq}}\left( {i_{dqr}^* + {c_{dq}}{e_{dq}}(t) + \dfrac{{{R_r}}}{\sigma }{i_{dqr}} - \dfrac{{{u_{dqr}}}}{\sigma } + \dfrac{{\Delta {u_{dqr}}}}{\sigma }} \right) = \\& - {s_{dq}}\varepsilon Gfal({s_{dq}},\alpha ,\delta ) \end{split} $$ (23) 当δ>0,α∈(0,1)时,Lyapunov函数V正定,且V≤0,满足滑动模态存在不等式条件:
$$ \underset{{s}_{dq}\to 0}{\mathrm{lim}}{s}_{dq}{{\mathop {{s}}\limits^ \bullet}_{dq}}\leqslant 0 $$ (24) 由此可知采用上述滑模控制律时,系统满足Lyapunov稳定性条件。
系统采用1.2节中的基于定子磁链的矢量控制策略,结合上述基于改进型幂次函数的滑模控制器,引入到传统矢量控制中基于PI控制的电流环,具体结构图如下图5所示
-
在Matlab软件上搭建上述两种调节器调节器的双馈风力发电系统仿真模型。仿真参数见表1所示
表 1 DFIG仿真参数
Table 1. Parameters of DFIG
参数 数值 定子侧电阻/Ω 1.91 转子侧电阻/Ω 0.0621 定子自感/H 0.0167 转子自感/H 0.0167 定转子间互感/H 0.0165 电网频率/f 50 额定电压/V 380 极对数 2 转动惯量/kg·m2 0.2 图6(a)展示了双馈风力发电系统的仿真电路图,图6(b)展示了机侧滑膜控制模型图,图6(c)展示了风机模型图
风机模型的参数如下:空气密度为1.2 m/s,风机直径为66 m,桨距角为0,最佳叶尖速比为8.1,齿轮箱变速比为108.18。
图7展示了风速稳定在10 m/s时,在PI控制下(下面简称I型系统),和改进滑模控制下(下面简称II型系统)的功率曲线图。
图7在风速稳定情况下的功率曲线图,II型系统无功功率稳定在0,有功功率也保持稳定,体现了良好的静态性能,和I型系统相比,II型系统的无功功率更快到达了稳定,体现了快速性。
图8到图10展示了在风速突变时候的动态响应,第一次突变1 s时风速由8 m/s突变至10 m/s,第二次突变风速由10 m/s突变至12 m/s。有功功率跟随参考值的波形图。
相比较而言,I型系统风速突变情况下,有功功率的追踪过程波动较大,并且在第二次风速突变时候,I型系统约在1.3 s时候才在追踪到参考值。II型系统跟踪过程无超调,跟踪速度更快。
图9展示了风速突变过程中电磁转矩的波形图,在风速两次突变过程中,II型系统的过渡过程与I型系统相比平滑了许多,体现了II型系统更高的控制精度和优良的动态性能。
图10展示了风速突变时候发电机转子转速的的波形图,可见在第二次风速突变的时候,II型系统几乎无超调,而I型系统波动较大。可见II型系统具有更好的跟踪效果。
Vector Control of Doubly Fed Wind Turbine Generator Based on Sliding Mode Variable Structure
-
摘要:
目的 电流环是双馈风力发电机并网过程中的重要控制环节。针对传统PI控制时双馈风力发电系统在参数摄动时动态性能不佳以及传统趋近律滑模控制存在抖振问题,对滑模变结构进行了研究和设计。 方法 基于滑模变结构的双馈风力发电机矢量控制研究方法主要聚焦于利用滑模变结构控制的优点,如响应速度快、对参数变化和扰动不敏感等,结合双馈风力发电机的特性,实现精确的矢量控制。首先设计滑模面,确保系统状态在滑模面上滑动,进而设计滑模控制器以稳定系统状态,并通过反馈调整使系统跟踪期望轨迹,从而达到对双馈风力发电机的高效、稳定控制,并将抗抖振因子与幂次函数相结合设计趋近律函数,提出一种改进型型幂次函数来提高控制器的性能,构建了基于改进幂次函数的滑模控制器。 结果 仿真表明,在风速突变的情况下,基于改进型幂次函数的滑模控制器控制过程几乎无超调。 结论 与传统PI调节器相比, 基于改进型幂次函数的滑模控制器具有优良的动态性能和控制精度,能够在双馈风力发电系统中有效地改善控制效果,提高稳定性和抗干扰能力。 Abstract:Introduction Current loop is an important control link in the grid-connection process of doubly-fed wind turbines. Aiming at the poor dynamic performance of doubly-fed wind turbine system during parameter uptake in traditional PI control and the jitter problem in traditional convergence law sliding film control, the sliding mode variable structure is studied and designed. Method The research method of vector control of doubly-fed wind turbine based on sliding mode variable structure mainly focuses on utilizing the advantages of sliding mode variable structure control, such as fast response speed, insensitivity to parameter changes and perturbations, etc., and combining with the characteristics of doubly-fed wind turbine to realize accurate vector control. The method firstly designs the sliding mode surface to ensure that the system state slides on the sliding mode surface, and then designs the sliding mode controller to stabilize the system state and adjusts the system to track the desired trajectory through feedback, so as to achieve efficient and stable control of doubly-fed wind turbine, combines the anti-jitter factor with the power function to design the convergence law function, and puts forward a kind of improved type-type power function to improve the performance of the controller, and constructs a sliding mode variable structure control based on the Sliding mode controller with improved power function. Result Simulations show that the control process of the sliding film controller based on a modified power function is almost free of overshooting under sudden wind speed changes. Conclusion Compared with the traditional PI regulator, the improved power function based sliding mode controller has excellent dynamic performance and control accuracy, which can effectively improve the control effect, stability and anti-interference ability in the doubly-fed wind power generation system. -
Key words:
- doubly fed machine /
- vector control /
- power function /
- sliding mode control /
- anti-jamming.
-
表 1 DFIG仿真参数
Tab. 1. Parameters of DFIG
参数 数值 定子侧电阻/Ω 1.91 转子侧电阻/Ω 0.0621 定子自感/H 0.0167 转子自感/H 0.0167 定转子间互感/H 0.0165 电网频率/f 50 额定电压/V 380 极对数 2 转动惯量/kg·m2 0.2 -
[1] 杨博, 束洪春, 邱大林, 等. 变风速下双馈感应发电机非线性鲁棒状态估计反馈控制 [J]. 电力系统自动化, 2019, 43(4): 60-69. DOI: 10.7500/AEPS20180330007. YANG B, SHU H C, QIU D L, et al. Nonlinear robust state estimation feedback control of doubly-fed induction generator under variable wind speeds [J]. Automation of electric power systems, 2019, 43(4): 60-69. DOI: 10.7500/AEPS20180330007. [2] NIAN H, YI X L. Coordinated control strategy for doubly-fed induction generator with DC connection topology [J]. IET renewable power generation, 2015, 9(7): 747-756. DOI: 10.1049/iet-rpg.2014.0347. [3] 黄守道, 谭健, 许琤, 等. 双馈风力发电机有功、无功的解耦控制 [J]. 电气传动, 2008, 38(9): 7-10. DOI: 10.3969/j.issn.1001-2095.2008.09.002. HUANG S D, TAN J, XU Z, et al. Decoupled control of active and reactive power in a doubly fed induction generator [J]. Electric drive, 2008, 38(9): 7-10. DOI: 10.3969/j.issn.1001-2095.2008.09.002. [4] 杨文焕, 倪凯峰. 基于模糊控制的双馈风力发电最优控制策略 [J]. 电工技术学报, 2013, 28(4): 279-284. DOI: 10.19595/j.cnki.1000-6753.tces.2013.04.038. YANG W H, NI K F. Optimal control strategy for the doubly-fed wind power system based on the fuzzy control technique [J]. Transactions of China electrotechnical society, 2013, 28(4): 279-284. DOI: 10.19595/j.cnki.1000-6753.tces.2013.04.038. [5] BEN ELGHALI S E, EL HACHEMI BENBOUZID M, AHMED-ALI T, et al. High-order Sliding mode control of a marine current turbine driven doubly-fed induction generator [J]. IEEE journal of oceanic engineering, 2010, 35(2): 402-411. DOI: 10.1109/JOE.2010.2040402. [6] 李晓明, 牛玉广, 王世林, 等. 双馈风机自适应神经分散协调预测控制 [J]. 控制理论与应用, 2015, 32(7): 902-911. DOI: 10.7641/CTA.2015.40972. LI X M, NIU Y G, WANG S L, et al. Adaptive neural decentralized-coordinated predictive control of double fed induction generator [J]. Control theory & applications, 2015, 32(7): 902-911. DOI: 10.7641/CTA.2015.40972. [7] 周涛. 基于一种新型趋近律的自适应滑模控制 [J]. 控制与决策, 2016, 31(7): 1335-1338. DOI: 10.13195/j.kzyjc.2015.0518. ZHOU T. Adaptive sliding control based on a new reaching law [J]. Control and decision, 2016, 31(7): 1335-1338. DOI: 10.13195/j.kzyjc.2015.0518. [8] 叶佳卓, 邓双喜, 周宁博, 等. 基于幂次变速趋近律的逆变器环流滑模控制 [J]. 电力系统及其自动化学报, 2021, 33(8): 56-61. DOI: 10.19635/j.cnki.csu-epsa.000707. YE J Z, DENG S X, ZHOU N B, et al. Circulating current sliding-mode control of inverter based on power variable rate reaching law [J]. Proceedings of the CSU-EPSA, 2021, 33(8): 56-61. DOI: 10.19635/j.cnki.csu-epsa.000707. [9] XIONG L Y, WANG J, MI X, et al. Fractional order sliding mode based direct power control of grid-connected DFIG [J]. IEEE transactions on power systems, 2018, 33(3): 3087-3096. DOI: 10.1109/TPWRS.2017.2761815. [10] 王君瑞, 彭飘飘, 刘凡齐. 基于滑模变结构双馈风力发电机直接功率控制 [J]. 计算机仿真, 2015, 32(12): 85-88, 196. DOI: 10.3969/j.issn.1006-9348.2015.12.018. WANG J R, PENG P P, LIU F Q. Direct power control for doubly fed induction generator based on sliding mode variable [J]. Computer simulation, 2015, 32(12): 85-88, 196. DOI: 10.3969/j.issn.1006-9348.2015.12.018. [11] 方馨, 王丽梅, 张康. 基于扰动观测器的永磁直线电机高阶非奇异快速终端滑模控制 [J]. 电工技术学报, 2023, 38(2): 409-421. DOI: 10.19595/j.cnki.1000-6753.tces.211779. FANG X, WANG L M, ZHANG K. High order nonsingular fast terminal sliding mode control of permanent magnet linear motor based on disturbance observer [J]. Transactions of China electrotechnical society, 2023, 38(2): 409-421. DOI: 10.19595/j.cnki.1000-6753.tces.211779. [12] 林增健, 刘文泽, 谭炜豪. 基于变指数滑模的双馈水电机组功率控制研究 [J]. 三峡大学学报(自然科学版), 2021, 43(6): 81-86. DOI: 10.13393/j.cnki.issn.1672-948x.2021.06.013. LIN Z J, LIU W Z, TAN W H. Research on power control of hydroelectric generating units with doubly fed induction generators based on variable exponential sliding mode control [J]. Journal of China three gorges university (natural sciences), 2021, 43(6): 81-86. DOI: 10.13393/j.cnki.issn.1672-948x.2021.06.013. [13] 李培强, 邱时严, 李欣然, 等. 双馈风力发电系统的滑模变结构控制技术 [J]. 电力系统及其自动化学报, 2017, 29(8): 29-35. DOI: 10.3969/j.issn.1003-8930.2017.08.005. LI P Q, QIU S Y, LI X R, et al. Sliding mode variable structure control technology used in doubly-fed induction generation system [J]. Proceedings of the CSU-EPSA, 2017, 29(8): 29-35. DOI: 10.3969/j.issn.1003-8930.2017.08.005. [14] 赵永玮, 董锋斌, 刘昌建. 基于新型幂次趋近律的DFIG滑模直接功率控制 [J]. 电工技术, 2023(8): 24-30. DOI: 10.19768/j.cnki.dgjs.2023.08.007. ZHAO Y W, DONG F B, LIU C J. DFIG sliding mode direct power control based on novel power reaching law [J]. Electric engineering, 2023(8): 24-30. DOI: 10.19768/j.cnki.dgjs.2023.08.007. [15] 缪仲翠, 张文宾, 余现飞, 等. 基于转速估计的PMSM分数阶积分滑模控制 [J]. 太阳能学报, 2021, 42(3): 28-34. DOI: 10.19912/j.0254-0096.tynxb.2018-1045. MIAO Z C, ZHANG W B, YU X F, et al. Fractional order integral sliding mode control for PMSM based on speed estimation [J]. Journal of solar energy, 2021, 42(3): 28-34. DOI: 10.19912/j.0254-0096.tynxb.2018-1045. [16] 张国山, 李现磊. 一种滑模控制新型幂次趋近律的设计与分析 [J]. 天津大学学报(自然科学与工程技术版), 2020, 53(11): 1112-1119. DOI: 10.11784/tdxbz201907050. ZHANG G S, LI X L. Design and analysis of a new power reaching law for sliding mode control [J]. Journal of Tianjin university (science and technology), 2020, 53(11): 1112-1119. DOI: 10.11784/tdxbz201907050. [17] 廖瑛, 杨雅君, 王勇. 滑模控制的新型双幂次组合函数趋近律 [J]. 国防科技大学学报, 2017, 39(3): 105-110. DOI: 10.11887/j.cn.201703017. LIAO Y, YANG Y J, WANG Y. Novel double power combination function reaching law for sliding mode control [J]. Journal of national university of defense technology, 2017, 39(3): 105-110. DOI: 10.11887/j.cn.201703017. [18] 董锋斌, 刘昌建, 赵永玮, 等. 基于扩张状态观测器的DFIG网侧变换器滑模控制 [J]. 电力工程技术, 2023, 42(2): 206-214. DOI: 10.12158/j.2096-3203.2023.02.024. DONG F B, LIU C J, ZHAO Y W, et al. Sliding mode control for DFIG grid-side converter based on extended state observer [J]. Electric power engineering technology, 2023, 42(2): 206-214. DOI: 10.12158/j.2096-3203.2023.02.024. [19] 高日辉, 陈燕, 马春燕, 等. 基于滑模控制的三相PWM整流器结构设计与性能仿真 [J]. 太原理工大学学报, 2018, 49(2): 258-263. DOI: 10.16355/j.cnki.issn1007-9432tyut.2018.02.013. GAO R H, CHEN Y, MA C Y, et al. Physical design and performance simulation of three-phase PWM rectifier based on sliding-mode control [J]. Journal of Taiyuan university of technology, 2018, 49(2): 258-263. DOI: 10.16355/j.cnki.issn1007-9432tyut.2018.02.013. [20] 张兰红, 李胜, 张卿杰. 永磁同步风电系统转速环自抗扰控制器设计 [J]. 控制工程, 2022, 29(9): 1645-1651. DOI: 10.14107/j.cnki.kzgc.20200573. ZHANG L H, LI S, ZHANG Q J. Design of active disturbance rejection controller in speed loop for permanent magnet synchronous wind power generation system [J]. Control engineering of China, 2022, 29(9): 1645-1651. DOI: 10.14107/j.cnki.kzgc.20200573.