-
某海域集装箱海岛型深水枢纽港,港口及其后方港区有较大的用电需求。风电场附近区域年平均风向多为北风,次常风向为东南风,轮毂高度年平均风速超过7.5 m/s,平均风功率密度超过400 W/m2,风能资源较为丰富。港池防波堤单侧上风向布置,水深介于10~18 m之间,总长接近8 km,防波堤拟采用桶式基础结构,两侧护石防护。
本工程选址在防波堤北侧外海域,距离防波堤中心线介于50~250 m之间。场址宽约200 m,长约7.5 km,涉海面积约1.5 km2,见图3。
风机平行防波堤单行布置,风机中心点位距离防波堤中心线约70 m,排布在防波堤头、尾加宽段防护区域之间的海域,减少因风机布置对周边航行的影响,也保证风机自身安全,避免船只碰撞。风机基础征海面积部分在原防波堤征海范围,该部分无需新增用海。风机间列距按3.5D考虑,共布置11台13.6 MW风机,总规划容量约150 MW,见图4。
集电海底电缆采用66 kV电压等级,共布置2回,每回串联5~6台风机。电缆均布置在靠近防波堤一侧的护石上,既避免对防波堤结构本体的影响,又方便电缆的敷设及稳定、便于检修维护,见图5。除接入陆上登陆点一小段外,其余海底电缆均位于防波堤原征海范围内,无需新增用海,见图6。
-
本工程相比同类型、相同容量开放式水域的海上风电项目,此布置方案主要有4个方面的优势。
1)征海面积大为减少,节约了宝贵的海洋资源。
根据对国内近40个水深条件10~50 m、离岸距离10~89 km的已建或在建项目进行研究,该类项目总规划容量介于0.198~1 GW,单位容量征海面积介于4.6~25.4 hm2/万kW,均值约11.8 hm2/万kW,本工程单位容量征海面积不到1.5 hm2/万kW,减少比例超过80%。
2)缩小涉海范围,减少排他性用海面积。
本工程规划容量150 MW,涉海范围长约7.5 km,宽约200 m,总面积约1.5 km2,根据业内“10万kW装机容量涉海范围不超过16 km2 ”的一般标准,本方案涉海面积不到标准的10%。
3)减少了对周边海域海上通行的影响,提高了船舶通航及自身风机的安全性。
4)海底电缆在防波堤护石上布置,提高了电缆敷设与检修维护的便利性。
此外,大型港区防波堤外建设的分布式海上风电场相比开放式水域大型海上风电场址,无需配套建设海上升压站及高电压等级的送出海底电缆,节省相应用海面积的同时,降低了工程建设的成本。同时,防波堤场址的风机和集电海底电缆,其安装与运营维护可考虑利用防波堤堤身结构作为施工场地,减少部分海上施工运维作业,增加施工窗口期,具体对比如表1所示。
表 1 两类场址对比表
Table 1. Comparison table of two types of sites
类别 常规开放式水域海上风电场 交能融合分布式海上风电场 备注 水深条件 10~50 m 10~13 m - 离岸距离 10~89 m 30 km 与陆域最近距离 征海面积 4.6~25.4,均值11.8(hm2/万kW) 约1.5(hm2/万kW) 单元容量用海面积 涉海范围 行业要求10(万kW/16 km2) 约1(10万kW/16 km2) 每10万kW装机容量涉海范围 通航安全 视场址周边航线情况,一般需新增碍航区,部分场址影响较大 受防波堤“保护”,无新增碍航点,影响较小 - 施工与运维 海上施工作业,窗口期受限 部分可考虑借助防波堤进行施工与运维,可延长窗口期 - 建设设施 一般包含5部分:风机、集电海底电缆、海上升压站、送出海底电缆、陆上集控中心 仅需3部分:风机、集电海底电缆、陆上集控中心。
可节省用海面积,降低建设成本。-
Site Selection and Layout of Distributed Offshore Wind Power Based on Energy and Transportation Integration
-
摘要:
目的 在近海浅水海上风电场场址资源日益稀缺,场址逐步向深远海、大型化、基地化发展的背景下,探讨一种交能融合的分布式海上风电,以规避开放式水域的大型海上风电场常出现的涉海范围广、征海面积大、影响通航安全等问题。 方法 基于已建或正在规划的大型港区配套建设的防波堤进行优选场址,在分析港池与防波堤的功能与布置的基础上,通过对海上风力发电机组及海底电缆的优化布置,可实现技术与经济、政策与环境等多方面的提升。 结果 对比国内数十个开放式水域已建海上风电工程,基于交能融合的分布式海上风电场可显著地缩小场址涉海范围、减少征海面积,并降低对周边区域船舶海上通行的影响,是一种相对安全、经济、环保的海上风电场址类型。 结论 通过对交能融合的分布式海上风电选址与布置的探讨,阐述了该类型海上风电场在节约用海、减少海上碍航物、捆绑送出和就地消纳、施工与运维等多方面的优点,并可将其作为现阶段单一海上风电类型的重要补充,成为一种新的增量海上风电场址资源。 Abstract:Introduction In the backdrop of the increasingly scarce availability of sea-based wind farms in near-sea shallow water areas and the trend towards deeper and wider waters, as well as larger and more concentrated facilities, a discussion is presented on a distributed offshore wind energy system that integrates energy and transportation, in order to avoid the commonly encountered issues of large-scale offshore wind farms in open waters, such as extensive sea-area requirements and impacts on shipping safety. Method Based on the existing or planned offshore wind farms in large ports, the best site was selected based on the built-in breakwaters that accompanied the port. After analyzing the functions and layouts of the port basin and the breakwater, the optimal layout of the offshore wind turbines and seabed cables was achieved through optimization. This could lead to improvements in technology, economics, policy, and environment in various aspects. Result Compared to over a dozen existing offshore wind farms built in open waters in China, the distributed offshore wind farm based on energy and transportation can significantly reduce the scope of operations and the area required for construction the sea-area, also lower the impact on shipping in the surrounding area. Furthermore, it is a relatively safe, economic, and environmentally friendly type of offshore wind farm site. Conclusion Through discussions on the selection and layout of distributed offshore wind farms based on energy and transportation, the advantages of this type of offshore wind farm, such as reducing the required sea area, minimizing marine obstacles, integrating supply and consumption, and reducing construction and operation costs, are described. This type of offshore wind farm can serve as an important supplement to the current single type of offshore wind farm and become a new type of incremental offshore wind farm site resource in the current stage. -
表 1 两类场址对比表
Tab. 1. Comparison table of two types of sites
类别 常规开放式水域海上风电场 交能融合分布式海上风电场 备注 水深条件 10~50 m 10~13 m - 离岸距离 10~89 m 30 km 与陆域最近距离 征海面积 4.6~25.4,均值11.8(hm2/万kW) 约1.5(hm2/万kW) 单元容量用海面积 涉海范围 行业要求10(万kW/16 km2) 约1(10万kW/16 km2) 每10万kW装机容量涉海范围 通航安全 视场址周边航线情况,一般需新增碍航区,部分场址影响较大 受防波堤“保护”,无新增碍航点,影响较小 - 施工与运维 海上施工作业,窗口期受限 部分可考虑借助防波堤进行施工与运维,可延长窗口期 - 建设设施 一般包含5部分:风机、集电海底电缆、海上升压站、送出海底电缆、陆上集控中心 仅需3部分:风机、集电海底电缆、陆上集控中心。
可节省用海面积,降低建设成本。- -
[1] SOARES-RAMOS E P P, DE OLIVEIRA-ASSIS L, SARRIAS-MENA R, et al. Current status and future trends of offshore wind power in Europe [J]. Energy, 2020, 202: 117787. DOI: 10.1016/j.energy.2020.117787. [2] 赵靓. 五大千万千瓦级海上风电基地周边配套产业加紧完善 [J]. 风能, 2022(10): 44-47. DOI: 10.3969/j.issn.1674-9219.2022.10.010. ZHAO L. Accelerate the improvement of supporting industries around the five major 10 million kilowatt offshore wind power bases [J]. Wind energy, 2022(10): 44-47. DOI: 10.3969/j.issn.1674-9219.2022.10.010. [3] 王晴勤. 广东省海上风电场选址制约因素探讨 [J]. 武汉大学学报(工学版), 2011, 44(增刊1): 6-10. WANG Q Q. Restricting factors of offshore wind power farms location in Guangdong province [J]. Engineering journal of Wuhan university, 2011, 44(Suppl.1): 6-10. [4] 张力, 张炳成, 黄晶晶, 等. “源网荷储”构建交能融合发展数智赋能推动交通绿色转型 [J]. 中国勘察设计, 2023(增刊1): 10-13. ZHANG L, ZHANG B C, HUANG J J, et al. "Source-grid-load-storage" building block for energy integration and digital intelligence drives transportation green transition [J]. China engineering consulting, 2023(Suppl.1): 10-13. [5] 周文峰, 张凯, 祖巧红, 等. 风电和光伏在绿色港口建设中的应用 [J]. 港口装卸, 2023(2): 36-38 DOI: 10.3963/j.issn.1000-8969.2023.02.012. ZHOU W F, ZHANG K, ZU Q H, et al. Application of wind power and photovoltaics in green port construction [J]. Port operation, 2023(2): 36-38. DOI: 10.3963/j.issn.1000-8969.2023.02.012. [6] 宋海良. 推进交通与能源高质量融合发展 [J]. 国企管理, 2023(4): 56-58. DOI: 10.3969/j.issn.2095-7599.2023.04.023. SONG H L. Promoting the high-quality integration development of transportation and energy [J]. China state-owned enterprise management, 2023(4): 56-58. DOI: 10.3969/j.issn.2095-7599.2023.04.023. [7] 王征. 英国漂浮式海上风电开发的用海权规划 [J]. 风能, 2022(12): 44-51. DOI: 10.3969/j.issn.1674-9219.2022.12.013. WANG Z. Sea use rights planning for floating offshore wind power development in the UK [J]. Wind energy, 2022(12): 44-51. DOI: 10.3969/j.issn.1674-9219.2022.12.013. [8] 陈灏, 孙省利, 张才学, 等. 广东省实施海洋牧场与海上风电融合发展的可行性分析 [J]. 海洋通报, 2022, 41(2): 208-214. DOI: 10.11840/j.issn.1001-6392.2022.02.010. CHEN H, SUN X L, ZHANG C X, et al. Feasibility analysis on the integrated development of marine ranch and offshore wind power in Guangdong province [J]. Marine science bulletin, 2022, 41(2): 208-214. DOI: 10.11840/j.issn.1001-6392.2022.02.010. [9] 刘展志, 王诗超, 郝为瀚, 等. 大规模海上风电集中送出建设模式研究 [J]. 南方能源建设, 2023, 10(1): 13-20. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.002. LIU Z Z, WANG S C, HAO W H, et al. Research on construction mode of large-scale offshore wind power centralized transmission [J]. Southern energy construction, 2023, 10(1): 13-20. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.002. [10] 王晴勤, 许婷芳. 近海深水海上风电场的选址 [J]. 船舶工程, 2020, 42(增刊1): 594-596,604. DOI: 10.13788/j.cnki.cbgc.2020.S1.138. WANG Q Q, XU T F. Site selection of offshore deep-water offshore wind farms [J]. Ship engineering, 2020, 42(Suppl.1): 594-596,604. DOI: 10.13788/j.cnki.cbgc.2020.S1.138. [11] 廖静. 广东首个海上风电场: 打造海上风电工程典范 [J]. 海洋与渔业, 2018(5): 28-31. DOI: 10.3969/j.issn.1672-4046.2018.05.012. LIAO J. Guangdong's first offshore wind farm: creating a model for offshore wind power engineering [J]. Ocean and fishery, 2018(5): 28-31. DOI: 10.3969/j.issn.1672-4046.2018.05.012. [12] 季则舟. 基于与环境相协调的韧性海岸工程建设策略 [J]. 海洋与湖沼, 2022, 53(4): 830-837. DOI: 10.11693/hyhz20211 200344. JI Z Z. Construction strategies for resilience coastal engineering in harmony with environment [J]. Oceanologia et limnologia sinica, 2022, 53(4): 830-837. DOI: 10.11693/hyhz20211 200344. [13] 刘梦瑶. 新发展理念下连云港绿色港口的建设发展研究 [J]. 北方经贸, 2023(3): 107-110. DOI: 10.3969/j.issn.1005-913X.2023.3.bfjm202303026. LIU M Y. Research on the construction and development of Lianyungang green port under the new development concept [J]. Northern economy and trade, 2023(3): 107-110. DOI: 10.3969/j.issn.1005-913X.2023.3.bfjm202303026. [14] 刘晓明, 谭祖贶, 袁振华, 等. 柔性直流接入海上风电并网选址综合优化 [J]. 发电技术, 2022, 43(6): 892-900 DOI: 10.12096/j.2096-4528.pgt.22011. LIU X M, TAN Z K, YUAN Z H, et al. Comprehensive optimization of access point selection for offshore wind farm integrated with voltage source converter high voltage direct current [J]. Power generation technology, 2022, 43(6): 892-900. DOI: 10.12096/j.2096-4528.pgt.22011. [15] 岳莹, 王智科. 分布式风电在绿色港口建设中的应用 [J]. 港口科技, 2019(4): 33-38. DOI: 10.3969/j.issn.1673-6826.2019.04.009. YUE Y, WANG Z K. Application of distributed wind power in green port construction [J]. Port science & technology, 2019(4): 33-38. DOI: 10.3969/j.issn.1673-6826.2019.04.009. [16] 刘新苗, 卢洵, 娄源媛, 等. 基于时序运行模拟的风火打捆最优容量配比整定 [J]. 电力系统保护与控制, 2021, 49(21): 53-62. DOI: 10.19783/j.cnki.pspc.210116. LIU X M, LU X, LOU Y Y, et al. Optimal setting of wind-thermal-bundled capacity ratio based on chronological operation simulation [J]. Power system protection and control, 2021, 49(21): 53-62. DOI: 10.19783/j.cnki.pspc.210116. [17] 周玲娟. 游艇基地防波堤平面研究 [J]. 珠江水运, 2017(11): 92-94. DOI: 10.14125/j.cnki.zjsy.2017.11.036. ZHOU L J. Study on the breakwater plan of yacht base [J]. Pearl River water transport, 2017(11): 92-94. DOI: 10.14125/j.cnki.zjsy.2017.11.036. [18] 周川, 蔡彦枫, 王俊, 等. 基于CFO的海上风电场微观选址优化算法研究 [J]. 可再生能源, 2021, 39(1): 67-73. DOI: 10.13941/j.cnki.21-1469/tk.2021.01.012. ZHOU C, CAI Y F, WANG J, et al. Study on the optimization algorithm of wind farm micro-siting based on CFO in offshore [J]. Renewable energy resources, 2021, 39(1): 67-73. DOI: 10.13941/j.cnki.21-1469/tk.2021.01.012. [19] 魏坤, 刘洋, 周立钦, 等. 交能融合在高速公路服务区建设中的应用研究 [J]. 交通节能与环保, 2023, 19(1): 86-90. DOI: 10.3969/j.issn.1673-6478.2023.01.020. WEI K, LIU Y, ZHOU L Q, et al. Research on the application of traffic energy integration in the construction of expressway service areas [J]. Transport energy conservation & environmental, 2023, 19(1): 86-90. DOI: 10.3969/j.issn.1673-6478.2023.01.020. [20] 许莉, 李锋, 彭洪兵. 中国海上风电发展与环境问题研究 [J]. 中国人口·资源与环境, 2015, 25(增刊1): 135-138. DOI: 10.19474/j.cnki.10-1156/f.001196. XU L, LI F, PENG H B. Development of offshore wind power and its environmental problems in China [J]. China population, resources and environment, 2015, 25(Suppl.1): 135-138. DOI: 10.19474/j.cnki.10-1156/f.001196.