-
模拟选用ABAQUS有限元软件,选用饱和砂土海床作为地基模型及参数取值标准。对于复杂荷载作用下的倾斜螺旋群桩,需进行三维分析,且边界条件的设定应充分考虑螺旋桩土接触的变形程度,在本研究计算条件下,为消除边界效应并满足计算精度的要求,模型边界螺旋桩侧土体和桩端土体同时取40 m,即20倍桩径。算例中边界条件为:土体底部采用全约束ENCASTRE(U1=U2=U3=UR1=UR2=UR3=0),不允许各向位移和转动;土体侧边采用径向约束ZASYMM(U1=U2=UR3=0),仅允许竖直方向位移和扭转;土体上部为自由端。触面法向摩擦选择硬接触,切向采用罚函数,根据经验将砂土与螺旋桩之间的摩擦系数设置为0.3。
倾斜单桩模型如图1(a)所示;倾斜螺旋群桩基础模型如图1(b)所示;单元选择为土体均为C3D8R实体单元,螺旋桩采用S4R壳单元;不同工况建模的参数为:倾斜角度取5°、8°和12°,桩中心间距取16 m、24 m和40 m,桩数取4和8,后文中工况名称如N4-S16-A5,N表示桩数、S表示间距(m)、A表示倾斜角度(°),桩身参数如表1所示;土体为单层砂土,采用摩尔-库伦本构,非关联流动法则,土质如表2所示。
表 1 桩身参数
Table 1. Pile parameters
m 桩径d 叶片直径D 桩入土长度L 叶片数n/个 叶片距桩底t 螺距p 厚度 2 5 25 1 1.5 2 0.03 表 2 土质参数
Table 2. Soil parameters
密度/(kg·m-3) 弹性模量/MPa 泊松比 内摩擦角/(°) 剪胀角/(°) 粘聚力/kPa 1200 18 0.3 34.4 0.1 5 -
文章中的有限元模型验证选取已有文献中的试验数据进行对比验证。王乐[18]通过开展螺旋桩大模型试验,研究了砂土相对密实度及叶片埋深、间距等因素对承载力及破坏模式的影响。
-
图2为不同桩数倾斜螺旋群桩荷载-位移曲线,由荷载-位移曲线可得群桩0.08 m位移时的极限承载力。
图 2 不同桩数倾斜螺旋群桩基础承载力
Figure 2. Bearing capacity of inclined helical pile-group foundations with different number of piles
表3为单根斜螺旋桩的承载力数据,根据群桩基础承载力和单桩承载力得到群桩效率系数(如表4所示),可发现螺旋倾斜群桩基础群桩效率系数大于1,即群桩中各基桩互相之间为正影响,承载力相较于单桩有较大提升;且桩数为8的群桩承载力为桩数为4的群桩承载力的2倍以上,即倾斜螺旋群桩效率系数随桩数增多而增大,且在群桩受压时该规律更明显。综合来看,倾斜螺旋群桩效率系数为正,相较于单桩基桩承载力提升了15%左右。
表 3 竖向0.08 m位移时单斜桩各工况承载力
Table 3. Bearing capacity of single inclined pile with vertical displacement of 0.08 m under various working conditions
工况 抗拔承载力/MN 受压承载力/MN A5 8.6469 9.8916 A6.5 8.0068 9.0076 A8 7.6918 8.7180 A10 7.0008 8.0627 A12 6.1778 7.2854 表 4 不同桩数倾斜螺旋群桩效率系数
Table 4. Efficiency coefficient of inclined helical pile groups with different number of piles
工况 N4-S24-A8 N8-S24-A8 抗拔承载力Qu/MN 35.4826 71.0373 群桩效率抗拔系数ηu 1.1548 1.1560 受压承载力Qc/MN 39.8730 80.3218 群桩受压效率系数ηc 1.1434 1.1517 图3为极限载荷情况下4桩倾斜螺旋群桩基础的受压和抗拔位移云图,8桩云图基本图形特征相似。如图3位移分布所示,两种工况以螺旋叶片为界,叶片上部桩身位移大于螺旋下部位移,即可知由于螺旋叶片的锚固作用,减小了桩底位移;群桩基础受压时位移分布等值线呈条形延伸至土面,拉拔时位移等值线在叶片深度附近呈现闭合,即说明拉拔时上部土体受到扰动较小,且受压时约0.016 m位移等值线邻桩相互连接形成整体,扩大了桩间土体的利用,群桩效应相较于拉拔作用下更为明显。
-
各工况下桩间距对于承载力的影响结果如图4所示,基础受压承载力随桩间距的增加而增大,最大与最小间距所对应的极限承载力差距在4%左右。抗拔承载力与抗压承载力呈现相同变化趋势,最大与最小间距所对应的极限抗拔承载力差距在3%~5%。
图 4 不同桩间距倾斜螺旋群桩受压荷载-位移曲线
Figure 4. Compressive load - displacement curves of inclined helical pile groups with different pile spacing
如图5(a)所示,各工况下受压效率系数均随间距增加而增大。在倾斜角度为5°时,受压群桩效率系数小于1,表明该倾角下各基桩相互之间为负影响;给定倾角范围内,倾角越大系数越大,当倾角由8°增至12°,其受压承载系数提高了约20%。且A=8°时,N=4与N=8时两曲线几乎重合,系数变化规律相同。如图5(b)所示,抗拔效率系数呈现出与受压效率系数相似的特点,但是系数值更大,表明相较于受压时,抗拔时倾斜群桩基础受桩间距的影响程度更大,倾角为12°时差距更加明显。
图 5 各工况群桩受压效率系数随间距变化
Figure 5. Compression efficiency coefficient variation of pile group with different pile spacing under various working conditions
根据受压极限承载时的位移云图提取群桩中心处不同深度应力值,得到基础中心轴土体竖向位移沿深度变化图(图6)。如图6(a)所示,受压工况下桩间距越小,中心土体压力叠加越显著,中心土体下压位移也越大;可以看到中心土体位移随深度先增大后减小,且间距越小变化规律越明显,位移变化极值均出现在8 m左右深度处。图6(b)为拉拔工况时的位移图,其规律与受压工况类似,但是峰值出现位置随桩间距增大而逐渐上移,且峰值逐渐减小,表5的具体数据也表明了极值深度随间距变化的相同规律。峰值的出现是应力叠加、基桩相互影响的表征现象,两种工况下极值随间距的变化不同,表明受压下桩对土体影响范围更大,桩间相互影响更为稳定。
图 6 基础中心轴土体竖向位移沿深度变化
Figure 6. Vertical displacement variation of soil along foundation central axis with depth
表 5 各工况极值深度及其相应上拔位移
Table 5. Extreme depth and corresponding uplift displacement under various working conditions
工况名 极值深度/m 上拔位移/m N4-S16-A5 −14.0 0.0225 N4-S24-A5 −10.0 0.0163 N4-S40-A5 −5.0 0.0084 N4-S16-A8 −12.0 0.0167 N4-S24-A8 −8.0 0.0110 N4-S40-A8 −2.0 0.0046 N4-S16-A12 −11.5 0.2081 N4-S24-A12 −8.0 0.0152 N4-S40-A12 −4.0 0.0077 -
如图7所示,当桩数为4时,在5°~8°范围内,倾角越大基础受压性能越好;倾角8°为界点,增加倾角受压承载力提升较小;当桩数为8时,倾角5°~12°,受压承载力随着倾角增大而逐渐增加,未见明显的临界角度。取各工况下0.1 m极限受压承载时的荷载大小,并计算相对于单桩的群桩效率系数如表6所示。
图 7 不同倾斜角度倾斜螺旋群桩受压荷载-位移曲线
Figure 7. Compressive load - displacement curves of inclined helical pile groups with different inclination angles
表 6 不同倾角螺旋群桩基础受压承载力及群桩效率系数
Table 6. Compressive bearing capacity and pile group efficiency coefficient of helical pile-group foundations with different inclination angles
工况 受压承载力Qc/MN 群桩效率系数η N4-S16-A5 36.9517 0.9397 N4-S16-A8 39.3328 1.0003 N4-S16-A12 39.6274 1.0077 N4-S24-A5 37.9001 0.9638 N4-S24-A8 39.9018 1.0147 N4-S24-A12 40.3133 1.0252 N4-S40-A5 38.6791 0.9836 N4-S40-A8 40.3285 1.0256 N4-S40-A12 40.9992 1.0426 N8-S16-A5 75.5970 0.9612 N8-S16-A8 77.8069 0.9893 N8-S16-A12 79.7883 1.0145 如表6所示,随着倾角的增大,螺旋桩群桩基础受压承载力逐渐增大,群桩受压效率系数也逐渐增大。其中四桩基础单桩倾角由5°增大到8°,承载力增加4.26%~6.44%,而8°到12°仅增加0.75%~1.66%,且大于8°倾角的受压效率系数都大于1,可见对于受压承载时8°倾角较为高效。
根据受压极限承载时的位移云图提取群桩中心处不同深度应力值,得到基础中心轴土体竖向位移沿深度变化图(图8),图8中各受压位移曲线变化规律一致,位移随深度增加先增大后减小,各工况下中心轴下压位移极值在8 m深度处,该位置处土体应力叠加情况最显著。N=8时,曲线基本重合的原因可能在于相较于N=4而言,桩间距相同,桩数更多,所涉及的土体范围更大,各参数差异所造成的影响对于土体影响很小。在模型所处参数范围内,受压时群桩中心处土体竖向位移极值深度与桩间距、倾角无明显相关关系。
-
倾斜角度对于抗拔承载力的影响如图9所示,各工况下群桩基础承载力随倾角升高而增大,如前文所述,桩数越大增幅越大。抗拔承载力变化规律同受压承载力一致。
图 9 不同倾斜角度倾斜螺旋群桩抗拔工况荷载-位移曲线
Figure 9. Load - displacement curves of inclined helical pile groups with different inclination angles under uplift conditions
取各工况下0.1 m时的极限拉拔承载力,计算相对于单桩的群桩效率系数(表7)。如表7所示,四桩基础倾角变化由5°增加到8°,抗拔承载力增加了3.82%~5.87%,但是由8°增加到12°,变化只有1.5%;八桩基础各工况间承载力增加值在2.5%左右。且N4-S16工况,从5°到12°群桩效率系数增加了0.0565,N4-S24增加了0.0539,N4-S40增加了0.0505,即涉及土体范围越大,倾斜角度对于承载力的影响越小。
表 7 不同倾角螺旋群桩基础抗拔承载力及群桩效率系数
Table 7. Uplift bearing capacity and pile group efficiency coefficient of helical pile-group foundations with different inclination angles
工况 抗拔承载力Qu/MN 群桩效率系数η N4-S16-A5 32.8874 0.9633 N4-S16-A8 34.8180 1.0198 N4-S16-A12 34.7163 1.0169 N4-S24-A5 33.7003 0.9871 N4-S24-A8 35.5292 1.0407 N4-S24-A12 35.5392 1.0410 N4-S40-A5 34.5809 1.0129 N4-S40-A8 35.9018 1.0516 N4-S40-A12 36.3082 1.0635 N8-S16-A5 68.0144 0.9961 N8-S16-A8 69.7417 1.0214 N8-S16-A12 71.7570 1.0509 图10中八桩基础桩间位移等值线在0.0167 m左右开始相互独立,该等值线现状随角度增大逐渐内缩,随着倾斜角度的增大抗拔影响土体范围逐渐扩大;从图11可得四桩基础中心轴位移等值线密度明显小于八桩基础,在0.008 4 m处位移等值线已相互分离;提取中心轴土体位移值沿深度变化如图12所示。
图 10 极限拉拔荷载八桩基础位移云图
Figure 10. Displacement contours of eight-pile foundation under ultimate pullout load
图 11 极限拉拔荷载四桩基础位移云图
Figure 11. Displacement contours of four-pile foundation under ultimate pullout load
图 12 不同工况基础中心轴上拔位移沿深度变化
Figure 12. Uplift displacement variation along foundation central axis with depth under different working conditions
图12中表明拉拔时中心轴沿深度方向土体位移先增大后减小,在4~5 m深度处达到最大值,曲线上的数值大小反映了基础中心轴上桩间影响强度的大小,与云图的影响范围是一致的;图12中上拔位移数值与图9中承载力数值是对应关系,承载力越大,上拔位移越小,即抗拔对于土体扰动越小承载力越大;同时也可观察到倾角对于极值点位置无明显的影响。
Research on Bearing Characteristics of Offshore Inclined Helical Pile-Group Foundations in Sandy Soil
-
摘要:
目的 海上风电产业是全球新能源发展道路上最具先导性和战略性的新兴产业之一。文章以应用于海上风电基础中的倾斜螺旋群桩基础为研究对象,系统地研究了其承载特性。作为一种具有广阔应用前景的新型基础型式,对其承载特性进行精准研究对后续倾斜螺旋群桩基础的普及应用及海上风电行业发展有着重要意义。 方法 通过有限元软件系统地研究了桩数、桩间距和倾斜角度等变量对倾斜螺旋群桩承载特性的影响,进而得出了多种工况下螺旋桩的群桩效应系数及承载力随桩数、倾斜角度和桩间距的变化规律。 结果 结果表明:倾斜螺旋群桩相较于单桩基桩承载力提升了15%左右,群桩效率系数随桩数增加而增大;群桩基础承载力随桩间距呈正相关变化趋势,桩间距越小中心土体压力叠加越显著,在桩间距取值范围内,极限承载力变化幅值为4%左右;倾角越大,倾斜螺旋群桩基础受压承载力性能越优异,群桩受压效率系数也随之增大,受压承载时8°倾角较为高效;受拉拔作用时,倾斜螺旋群桩上部土体受到扰动较小,倾斜群桩基础受桩间距的影响程度更大,群桩中心处土体竖向位移极值深度随桩间距增大而逐渐上移;受压作用时,倾斜螺旋群桩对土体影响范围更大,桩间相互影响更为稳定,群桩中心处土体竖向位移极值深度与桩间距、倾角无明显相关关系。 结论 研究成果可为我国海上风电螺旋群桩基础建设提供一定的研究思路及手段,对倾斜螺旋群桩基础尺寸设计及承载力评估具有一定的参考意义,有一定的科学意义和工程应用价值。 Abstract:Introduction The offshore wind power industry is among the most pioneering and strategic emerging sectors in the global development of new energy sources. The research focuses on the inclined helical pile-group foundation, which is currently applied for offshore wind turbines, and systematically studies its load-bearing characteristics. It is of great significance to accurately understand the load-bearing characteristics for the subsequent popularization of this promising new type of foundation and the overall development of the offshore wind power industry. Method The effects of various variables, including pile number, pile spacing and inclination angle, on the bearing characteristics of inclined helical pile groups were systematically studied by finite element software, and the change trends of the pile group effect coefficient and bearing capacity with these factors were obtained under various working conditions. Result The results show an approximately 15% improvement in the load carrying capacity of inclined helical pile groups compared to monopoles. Additionally, the efficiency coefficient of pile groups increases with a larger pile number. The load carrying capacity of pile-group foundations is positively correlated with pile spacing, as smaller pile spacing leads to a more significant superposition of central soil pressure. The variation in ultimate load carrying capacity remains within about 4% across the value range of pile spacing. Larger inclination angles enhance the compressive load carrying capacity of inclined helical pile-group foundations, causing an increase in their compression efficiency coefficient. Compressive bearing is found to be effective at an inclination angle of 8°. When subjected to pulling action, the upper soil of inclined helical pile groups experiences less disturbance, the foundations' behavior is more influenced by the pile spacing, and the extreme depth of vertical displacement of the soil at the center of the pile groups gradually decreases with the increase of pile spacing. Conversely, under compressive action, the inclined helical pile-groups exert an influence on the soil in a larger extent, and the interaction effect among piles becomes more stable, without indicating obvious correlation between the extreme depth of vertical displacement of the soil at the center of the pile groups and the pile spacing and inclination angle. Conclusion The research results serve to provide certain research approaches and means for the construction of offshore wind power helical pile-group foundations in China, and hold certain reference significance for the dimensional design and bearing capacity evaluation of inclined helical pile-group foundations, demonstrating their value in scientific research and engineering applications. -
表 1 桩身参数
Tab. 1. Pile parameters
m 桩径d 叶片直径D 桩入土长度L 叶片数n/个 叶片距桩底t 螺距p 厚度 2 5 25 1 1.5 2 0.03 表 2 土质参数
Tab. 2. Soil parameters
密度/(kg·m-3) 弹性模量/MPa 泊松比 内摩擦角/(°) 剪胀角/(°) 粘聚力/kPa 1200 18 0.3 34.4 0.1 5 表 3 竖向0.08 m位移时单斜桩各工况承载力
Tab. 3. Bearing capacity of single inclined pile with vertical displacement of 0.08 m under various working conditions
工况 抗拔承载力/MN 受压承载力/MN A5 8.6469 9.8916 A6.5 8.0068 9.0076 A8 7.6918 8.7180 A10 7.0008 8.0627 A12 6.1778 7.2854 表 4 不同桩数倾斜螺旋群桩效率系数
Tab. 4. Efficiency coefficient of inclined helical pile groups with different number of piles
工况 N4-S24-A8 N8-S24-A8 抗拔承载力Qu/MN 35.4826 71.0373 群桩效率抗拔系数ηu 1.1548 1.1560 受压承载力Qc/MN 39.8730 80.3218 群桩受压效率系数ηc 1.1434 1.1517 表 5 各工况极值深度及其相应上拔位移
Tab. 5. Extreme depth and corresponding uplift displacement under various working conditions
工况名 极值深度/m 上拔位移/m N4-S16-A5 −14.0 0.0225 N4-S24-A5 −10.0 0.0163 N4-S40-A5 −5.0 0.0084 N4-S16-A8 −12.0 0.0167 N4-S24-A8 −8.0 0.0110 N4-S40-A8 −2.0 0.0046 N4-S16-A12 −11.5 0.2081 N4-S24-A12 −8.0 0.0152 N4-S40-A12 −4.0 0.0077 表 6 不同倾角螺旋群桩基础受压承载力及群桩效率系数
Tab. 6. Compressive bearing capacity and pile group efficiency coefficient of helical pile-group foundations with different inclination angles
工况 受压承载力Qc/MN 群桩效率系数η N4-S16-A5 36.9517 0.9397 N4-S16-A8 39.3328 1.0003 N4-S16-A12 39.6274 1.0077 N4-S24-A5 37.9001 0.9638 N4-S24-A8 39.9018 1.0147 N4-S24-A12 40.3133 1.0252 N4-S40-A5 38.6791 0.9836 N4-S40-A8 40.3285 1.0256 N4-S40-A12 40.9992 1.0426 N8-S16-A5 75.5970 0.9612 N8-S16-A8 77.8069 0.9893 N8-S16-A12 79.7883 1.0145 表 7 不同倾角螺旋群桩基础抗拔承载力及群桩效率系数
Tab. 7. Uplift bearing capacity and pile group efficiency coefficient of helical pile-group foundations with different inclination angles
工况 抗拔承载力Qu/MN 群桩效率系数η N4-S16-A5 32.8874 0.9633 N4-S16-A8 34.8180 1.0198 N4-S16-A12 34.7163 1.0169 N4-S24-A5 33.7003 0.9871 N4-S24-A8 35.5292 1.0407 N4-S24-A12 35.5392 1.0410 N4-S40-A5 34.5809 1.0129 N4-S40-A8 35.9018 1.0516 N4-S40-A12 36.3082 1.0635 N8-S16-A5 68.0144 0.9961 N8-S16-A8 69.7417 1.0214 N8-S16-A12 71.7570 1.0509 -
[1] 官嫣嫣, 庄佳才. 基于风险管理的海上风电进度管理方法研究 [J]. 南方能源建设, 2022, 9(1): 34-39. DOI: 10.16516/j.gedi.issn2095-8676.2022.01.005. GUAN Y Y, ZHUANG J C. Research on schedule management method of offshore wind power based on risk management [J]. Southern energy construction, 2022, 9(1): 34-39. DOI: 10.16516/j.gedi.issn2095-8676.2022.01.005. [2] 蔡绍宽. 双碳目标的挑战与电力结构调整趋势展望 [J]. 南方能源建设, 2021, 8(3): 8-17. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.002. CAI S K. Challenges and prospects for the trends of power structure adjustment under the goal of carbon peak and neutrality [J]. Southern energy construction, 2021, 8(3): 8-17. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.002. [3] SPAGNOLI G, DE HOLLANDA CAVALCANTI TSUHA C. A review on the behavior of helical piles as a potential offshore foundation system [J]. Marine georesources & geotechnology, 2020, 38(9): 1013-1036. DOI: 10.1080/1064119X.2020.1729905. [4] International Energy Agency. World energy outlook 2020 [EB/OL]. [2023-05-17]. https://www.iea.org/reports/world-energy-outlook-2020. [5] RATHOD D, NIGITHA D, KRISHNANUNNI K T. Experimental investigation of the behavior of monopile under asymmetric two-way cyclic lateral loads [J]. International journal of geomechanics, 2021, 21(3): 06021001. DOI: 10.1061/(asce)gm.1943-5622.0001920. [6] YANG B, WEI K X, YANG W X, et al. A feasibility study of reducing scour around monopile foundation using a tidal current turbine [J]. Ocean engineering, 2021, 220: 108396. DOI: 10.1016/j.oceaneng.2020.108396. [7] 丁红岩, 李彦娥, 张浦阳, 等. 海上风电四筒导管架基础下放过程试验研究 [J]. 天津大学学报(自然科学与工程技术版), 2022, 55(8): 792-801. DOI: 10.11784/tdxbz202107044. DING H Y, LI Y E, ZHANG P Y. Experimental investigation of an offshore wind turbine four-bucket jacket foundation during lowering operation [J]. Journal of Tianjin University (science and technology), 2022, 55(8): 792-801. DOI: 10.11784/tdxbz202107044. [8] 乐丛欢, 任建宇, 姜明涛, 等. 砂土中四筒导管架风机基础抗弯承载力研究 [J]. 海洋工程, 2021, 39(2): 12-19. DOI: 10.16483/j.issn.1005-9865.2021.02.002. LE C H, REN J Y, JIANG M T, et al. Analysis of the moment bearing capacity of four-bucket jacket foundation in sandy soil [J]. The ocean engineering, 2021, 39(2): 12-19. DOI: 10.16483/j.issn.1005-9865.2021.02.002. [9] 张海锋, 马娜. 光伏支架基础形式介绍及基础设计的探讨 [J]. 太阳能, 2020, 320(12): 66-70. DOI: 10.3969/j.issn.1003-0417.2020.12.011. ZHANG H F, MA N. Introduction of foundation form of PV bracket and discussion of foundation design [J]. Solar energy, 2020, 320(12): 66-70. DOI: 10.3969/j.issn.1003-0417.2020.12.011. [10] AL-BAGHDADI T. Screw piles as offshore foundations: numerical and physical modelling [D]. Dundee: University of Dundee, 2018. [11] PÉREZ Z A, SCHIAVON J A, TSUHA C D H C, et al. Numerical and experimental study on influence of installation effects on behaviour of helical anchors in very dense sand [J]. Canadian geotechnical journal, 2018, 55(8): 1067-1080. DOI: 10.1139/cgj-2017-0137. [12] Supportworks. Technical manual [R]. Cary Circle: Supportworks, 2017. [13] RICHARDS D, BLAKE A, WHITE D, et al. Field tests assessing the installation performance of screw pile geometries optimised for offshore wind applications [C]//1st International Symposium on Screw Piles for Energy Applications, Dundee, UK, May 27-28, 2019. Dundee: University of Dundee, 2019: 47-54. [14] LIN Y F, XIAO J D, LE C H, et al. Bearing characteristics of helical pile foundations for offshore wind turbines in sandy soil [J]. Journal of marine science and engineering, 2022, 10(7): 889. DOI: 10.3390/JMSE10070889. [15] ACKERMANN T, SÖDER L. An overview of wind energy-status 2002 [J]. Renewable and sustainable energy reviews, 2002, 6(1/2): 67-127. DOI: 10.1016/S1364-0321(02)00008-4. [16] PERKO H A. Helical piles: a practical guide to design and installation [M]. Hoboken: John Wiley & Sons, 2009. DOI: 10.1002/9780470549063. [17] 陈青山. 砂土中海上风电螺旋桩基础竖向承载特性研究 [D]. 天津: 天津大学, 2020. DOI: 10.27356/d.cnki.gtjdu.2020.004614. CHEN Q S. Research on vertical bearing characteristics of screw pile foundation for offshore wind turbine in sand [D]. Tianjin: Tianjin University, 2020. DOI: 10.27356/d.cnki.gtjdu.2020.004614. [18] 王乐. 细粒石英砂中螺旋桩施工过程及上拔承载性能研究 [D]. 天津: 天津大学, 2019. DOI: 10.27356/d.cnki.gtjdu.2019.002107. WANG L. Study on the construction process and uplift capacity of helical piles in fine silica sand [D]. Tianjin: Tianjin University, 2019. DOI: 10.27356/d.cnki.gtjdu.2019.002107. [19] CLEMENCE S P, LUTENEGGER A J. Industry survey of state of practice for helical piles and tiebacks [J]. DFI journal-the journal of the deep foundations institute, 2015, 9(1): 21-41. DOI: 10.1179/1937525514Y.0000000007. [20] BYRNE B W, HOULSBY G T. Helical piles: an innovative foundation design option for offshore wind turbines [J]. Philosophical transactions of the royal society A: mathematical, physical and engineering sciences, 2015, 373(2035): 20140081. DOI: 10.1098/rsta.2014.0081. [21] FATEH A M A, ESLAMI A, FAHIMIFAR A. Direct CPT and CPTu methods for determining bearing capacity of helical piles [J]. Marine georesources & geotechnology, 2017, 35(2): 193-207. DOI: 10.1080/1064119X.2015.1133741. [22] DING H Y, WANG L, ZHANG P Y, et al. Study on the lateral bearing capacity of single-helix pile for offshore wind power [C]//Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering, Madrid, Spain, June 17-22, 2018. Madrid: ASME, 2018. [23] WANG L, ZHANG P Y, DING H Y, et al. The uplift capacity of single-plate helical pile in shallow dense sand including the influence of installation [J]. Marine structures, 2020, 71: 102697. DOI: 10.1016/j.marstruc.2019.102697. [24] DING H Y, WANG L, ZHANG P Y, et al. The recycling torque of a single-plate helical pile for offshore wind turbines in dense sand [J]. Applied sciences, 2019, 9(19): 4105. DOI: 10.3390/app9194105. [25] 周航, 余昊, 曾少华. 饱和黏土中螺旋桩安装效应对抗拔承载力影响的试验研究 [J]. 岩土力学, 2022, 43(12): 3249-3258. DOI: 10.16285/j.rsm.2022.0137. ZHOU H, YU H, ZENG S H. Experimental study of the installation effect of helical piles in saturated clay on uplift resistance [J]. Rock and soil mechanics, 2022, 43(12): 3249-3258. DOI: 10.16285/j.rsm.2022.0137. [26] 胡伟, 孟建伟, 刘顺凯, 等. 单螺旋锚桩水平承载机理试验与理论研究 [J]. 岩土工程学报, 2020, 42(1): 158-167. DOI: 10.11779/CJGE202001018. HU W, MENG J W, LIU S K, et al. Experimental and theoretical researches on horizontal bearing mechansim of single screw anchor pile [J]. Chinese journal of geotechnical engineering, 2020, 42(1): 158-167. DOI: 10.11779/CJGE202001018. [27] 韦芳芳, 邵盛, 陈道申, 等. 黏土中倾斜螺旋桩的水平承载性能数值模拟及理论研究 [J]. 东南大学学报(自然科学版), 2021, 51(3): 463-472. DOI: 10.3969/j.issn.1001-0505.2021.03.015. WEI F F, SHAO S, CHEN D S, et al. Numerical simulation and theoretical research on horizontal bearing capacity of inclined helical pile in clay [J]. Journal of southeast university (natural science edition), 2021, 51(3): 463-472. DOI: 10.3969/j.issn.1001-0505.2021.03.015. [28] 李青松, 文磊, 孔纲强, 等. 基于孔扩张理论的螺旋桩抗拔承载力计算分析 [J]. 岩土力学, 2021, 42(4): 1088-1094, 1103. DOI: 10.16285/j.rsm.2020.1329. LI Q S, WEN L, KONG G Q, et al. Theoretical computation of the uplift bearing capacity of helical piles based on cavity expansion method [J]. Rock and soil mechanics, 2021, 42(4): 1088-1094, 1103. DOI: 10.16285/j.rsm.2020.1329. [29] 刘志鹏, 孔纲强, 文磊, 等. 螺旋桩竖向抗拔极限承载力理论计算分析 [J]. 中南大学学报(自然科学版), 2021, 52(10): 3659-3667. DOI: 10.11817/j.issn.1672-7207.2021.10.028. LIU Z P, KONG G Q, WEN L, et al. Theoretical calculation on ultimate bearing capacity of helical piles under tension [J]. Journal of Central South University (science and technology), 2021, 52(10): 3659-3667. DOI: 10.11817/j.issn.1672-7207.2021.10.028. [30] LANYI-BENNETT S A, DENG L J. Axial load testing of helical pile groups in glaciolacustrine clay [J]. Canadian geotechnical journal, 2019, 56(2): 187-197. DOI: 10.1139/cgj-2017-0425. [31] ALBUSODA B S, ABBASE H O. Performance assessment of single and group of helical piles embedded in expansive soil [J]. International journal of geo-engineering, 2017, 8(1): 25. DOI: 10.1186/s40703-017-0063-x.