-
各个装置上的ECH系统组成结构虽然不尽相同,但其核心器件都是产生高功率毫米波的波源回旋管。回旋管一般分为二极管型和三极管型,典型的二极管型回旋管如图3所示,其主要由电子枪、谐振腔、准光模式变换器、输出窗口、收集极等组成[15]。其基本原理如下:阴极发射的空心电子束经电场加速和特定的磁场位形压缩后进入谐振腔,与电磁波互作用后通过能量传递激发高功率微波,最后通过准光模式变化以准高斯模式从输出窗口辐射出去,同时互作用之后的电子束在磁场的引导下进入收集极[16]。
对于未来聚变堆,为提高聚变增量,通常希望装置能够工作在较强的磁场条件下。而回旋管的工作频率与装置的磁场为近似正比关系。因此,近年来,研究人员已逐步将注意力转移到200 GHz以上高频回旋管的研制[17-18]。在托卡马克装置中,由于其环形磁场的大小取决于等离子体中的径向位置,因此ECH系统的频率将取决于期望的加热或电流驱动区域在等离子体中的位置。对于给定的等离子体位形(密度剖面、温度剖面)和装置参数(磁场、可能的发射位置),为选择出特定的最佳频率,需要进行充分的优化计算[16]。由于空间和成本的限制,导致在ECH系统每个功能的最佳频率之间,需要进行权衡与折中。同时,在高频条件下,回旋管内焦耳损耗和介电损耗导致的局部发热不可忽视。为了将热负荷限制在一定范围内,需要选择更高阶的振荡模式,导致模式竞争更为激烈。因此,限制高频回旋管腔体热负荷和抑制其中的竞争模式振荡是高频回旋管的研究重点[19]。
此外,近年来ECH系统中多频系统的比例也在逐步提升。回旋管所产生的毫米波在等离子体中的沉积位置是ECH相关研究中需要重点关注的。一般来说,决定波沉积位置的主要参数是装置磁场、毫米波的频率和入射角度,与ECH系统直接相关的参数即毫米波的频率和入射角度[3]。目前,对于大多数磁约束核聚变装置上的单频ECH系统而言,主要通过调节天线改变毫米波入射的极向角度和环向角度来改变毫米波的沉积位置。
相对于单频ECH系统,多频系统可以通过调整频率来改变波的沉积位置,从而减少对天线角度和窗口大小的要求[20]。此外,多频系统还能够满足不同运行阶段和方案的需求,以进行各种物理实验研究。因此,多频方案更加适用和灵活,在新建聚变装置ECH系统中较为有竞争力的方案。
目前德国ASDEX-U[21]、瑞士TCV[22]、韩国KSTAR[23]以及日本JT-60SA[24]等装置均发展了或者正在发展多频ECH系统,相关参数如表1所示。日本国立量子科学与技术研究院针对ITER研制的多频回旋管实现了连续波工作模式下单个回旋管在104 GHz、137 GHz和170 GHz都达到了1 MW量级的输出功率,并计划进一步改进该多频回旋管,以满足ITER装置在不同阶段的运行要求[14]。此外,设计中的欧盟DEMO装置ECH系统除考虑240 GHz左右的单频方案外,亦考虑了多频方案,在多频方案中ECH系统将运行在4个不同的频率点,这将有效地提升系统的灵活性,满足不同运行方案需求[25-26]。
表 1 国内外部分装置多频ECH系统相关参数
Table 1. Relevant parameters of multi-frequency ECH systems for some domestic and foreign installations
装置 频点数 频率/GHz 功率/MW ASDEX-U 2 140 0.91 105 0.62 TCV 2 84 1.00 126 1.00 KSTAR 2 105 0.80 140 0.95 JT60-SA 2 110 1.00 138 1.00 未来,多频点下的准光模式变换、高功率毫米波的低损耗传输以及波与等离子体的高效耦合等,对多频ECH系统的应用提出了更高的挑战。由于波的传播特性等会随着波的频率发生变化,现有单频ECH系统中的准光、极化等关键技术难以直接应用至多频ECH系统。当频率变化导致波与等离子体参数失配时,波在等离子体中吸收效率将会较低,未被吸收的微波能量将会影响装置部件的安全运行,甚至导致系统损坏。因此,在多频点下如何实现同样的高功率毫米波高效传输、波与等离子体的高效耦合等亦是未来ECH系统的研究重点。
Development Status and Trends of the ECH Technology for the Magnetic Confinement Fusion
-
摘要:
目的 磁约束聚变研究中,电子回旋加热(ECH)和电流驱动手段应用广泛,包括但不限于等离子体的启动、加热、无感电流驱动和磁流体不稳定性控制等。近年来,针对未来聚变堆发展需求,电子回旋加热相关技术得到了长足发展,ECH已成为磁约束聚变装置中主要的辅助加热手段之一。 方法 首先对ECH系统进行简介,阐述了其组成部分、特点和应用现状;然后重点从4个方面论述了目前ECH系统相关技术的发展现状与趋势。 结果 结合ECH相关技术的研究现状及应用需求,得出各相关技术发展的重难点。 结论 文章立足于ECH相关技术的发展现状与趋势,从高频以及多频回旋管(微波源)、ECH系统智能控制技术、高效电流驱动技术以及基于回旋管的相干汤姆逊散射技术等多个方面,对ECH系统相关技术的未来研究方向及应用进行了展望。 Abstract:Introduction In magnetic confinement fusion research, electron cyclotron heating (ECH) and current drive means are widely implemented for applications including, but not limited to, plasma initiation, heating, non-inductive current drive, and magnetohydrodynamic instability control. In recent years, ECH-related technologies have experienced significant development in response to the development needs of future fusion reactors, and ECH has become one of the main auxiliary heating means in magnetic confinement fusion devices. Method Firstly, the ECH system was introduced, and its components, characteristics and application status were described; then the development status and trends of ECH system-related technologies were discussed with emphasis on four aspects. Result Combined with the research status and application requirements of ECH-related technologies, the important and difficult points in developing each related technology are identified. Conclusion Based on the development status and trends of ECH-related technologies, the article forecasts future research directions and applications of ECH system-related technologies in diverse aspects, including high-frequency and multi-frequency gyrotrons (microwave sources), the intelligent control technology of ECH system, the high-efficiency current drive technology, and the gyrotron-based collective Thomson scattering technology. -
Key words:
- ECH /
- gyrotron /
- intelligent control /
- current drive /
- collective Thomson scattering
-
表 1 国内外部分装置多频ECH系统相关参数
Tab. 1. Relevant parameters of multi-frequency ECH systems for some domestic and foreign installations
装置 频点数 频率/GHz 功率/MW ASDEX-U 2 140 0.91 105 0.62 TCV 2 84 1.00 126 1.00 KSTAR 2 105 0.80 140 0.95 JT60-SA 2 110 1.00 138 1.00 -
[1] 王辉辉. 磁约束聚变堆托卡马克误差场研究进展综述 [J]. 南方能源建设, 2022, 9(2): 1-18. DOI: 10.16516/j.gedi.issn2095-8676.2022.02.001. WANG H H. The progress of error field investigation in magnetically confined fusion tokamak reactor [J]. Southern energy construction, 2022, 9(2): 1-18. DOI: 10.16516/j.gedi.issn2095-8676.2022.02.001. [2] WESSON J. Tokamaks [M]. Oxford: Oxford University Press, 2004. [3] PRATER R. Heating and current drive by electron cyclotron waves [J]. Physics of plasmas, 2004, 11(5): 2349-2376. DOI: 10.1063/1.1690762. [4] XIA D H, CHEN X X, XU D F, et al. Recent progress of the ECRH system and initial experimental results on the J-TEXT tokamak [J]. Plasma science and technology, 2022, 24(12): 124010. DOI: 10.1088/2058-6272/aca4b5. [5] ZHANG J L, XIA D H, LIU C H, et al. Design of a launcher for the 105-GHz ECRH System on J-TEXT [J]. IEEE Transactions on Plasma Science, 2019, 48(6): 1560-1565. DOI: 10.1109/TPS.2019.2951816. [6] LLOYD B. Overview of ECRH experimental results [J]. Plasma physics and controlled fusion, 1998, 40(8A): A119-A138. DOI: 10.1088/0741-3335/40/8A/010. [7] ERCKMANN V, GASPARINO U. Electron cyclotron resonance heating and current drive in toroidal fusion plasmas [J]. Plasma physics and controlled fusion, 1994, 36(12): 1869-1962. DOI: 10.1088/0741-3335/36/12/001. [8] WAGNER D, STOBER J, LEUTERER F, et al. Status, operation, and extension of the ECRH system at ASDEX upgrade [J]. Journal of infrared, millimeter, and terahertz waves, 2016, 37(1): 45-54. DOI: 10.1007/s10762-015-0187-z. [9] CENGHER M, CHEN X, ELLIS R, et al. Advances in technology and high power performance of the ECH system on DIII-D [J]. Fusion engineering and design, 2017, 123: 295-298. DOI: 10.1016/j.fusengdes.2017.05.022. [10] WANG X J, LIU F K, SHAN J F, et al. Progress of high power and long pulse ECRH system in EAST [J]. Fusion engineering and design, 2015, 96-97: 181-186. DOI: 10.1016/j.fusengdes.2015.03.042. [11] HUANG M, RAO J, SONG S D, et al. Design and research of electron cyclotron resonance heating and current dive system on HL-2M tokamak [J]. EPJ web of conferences, 2017, 147: 04006. DOI: 10.1051/epjconf/201714704006. [12] WOLF R C, ALI A, ALONSO A, et al. Major results from the first plasma campaign of the Wendelstein 7-X stellarator [J]. Nuclear fusion, 2017, 57(10): 102020. DOI: 10.1088/1741-4326/aa770d. [13] SHIMOZUMA T, IGAMI H, KUBO S, et al. Optimization of the high harmonic ECRH scenario to extend a heating plasma parameter range in LHD [J]. Nuclear fusion, 2015, 55(6): 063035. DOI: 10.1088/0029-5515/55/6/063035. [14] IKEDA R, SHINYA T, YAJIMA S, et al. Multi-frequency, megawatt-power gyrotron to facilitate a wide range of operations at ITER [J]. Nuclear fusion, 2023, 63(6): 066028. DOI: 10.1088/1741-4326/accdeb. [15] LITVAK A, SAKAMOTO K, THUMM M. Innovation on high-power long-pulse gyrotrons [J]. Plasma physics and controlled fusion, 2011, 53(12): 124002. DOI: 10.1088/0741-3335/53/12/124002. [16] THUMM M K A, DENISOV G G, SAKAMOTO K, et al. High-power gyrotrons for electron cyclotron heating and current drive [J]. Nuclear fusion, 2019, 59(7): 073001. DOI: 10.1088/1741-4326/ab2005. [17] TANG Y Y, WANG X J, ZHANG L Y, et al. Design status of the ECRH system for CFETR [J]. Fusion engineering and design, 2022, 182: 113225. DOI: 10.1016/j.fusengdes.2022.113225. [18] IKEDA R, KAJIWARA K, NAKAI T, et al. Progress on performance tests of ITER gyrotrons and design of dual-frequency gyrotrons for ITER staged operation plan [J]. Nuclear fusion, 2021, 61(10): 106031. DOI: 10.1088/1741-4326/ac21f7. [19] THUMM M. Recent advances in the worldwide fusion gyrotron development [J]. IEEE transactions on plasma science, 2014, 42(3): 590-599. DOI: 10.1109/TPS.2013.2284026. [20] ZOHM H, THUMM M. On the use of step-tuneable gyrotrons in ITER [J]. Journal of physics: conference series, 2005, 25: 274-282. DOI: 10.1088/1742-6596/25/1/033. [21] WAGNER D, STOBER J, KIRCHER M, et al. Extension of the multi-frequency ECRH system at ASDEX upgrade [C]//Proceedings of the 41st International Conference on Infrared, Millimeter, and Terahertz Waves, Copenhagen, Denmark, September 25-30, 2016. Copenhagen: IEEE, 2016: 1-2. DOI: 10.1109/IRMMW-THz.2016.7758412. [22] SIRAVO U, ALBERTI S, DUBRAY J, et al. Electrical integration of two 1 MW/2 s dual-frequency gyrotrons into the EC-system of the TCV tokamak [J]. Fusion engineering and design, 2019, 146: 1510-1514. DOI: 10.1016/j.fusengdes.2019.02.117. [23] PARK H K, CHOI M J, HONG S H, et al. Overview of KSTAR research progress and future plans toward ITER and K-DEMO [J]. Nuclear fusion, 2019, 59(11): 112020. DOI: 10.1088/1741-4326/ab20e2. [24] HORIE N, OMORI K, OMORI A, et al. High power test of wideband polarizer for electron cyclotron current driving system in JT-60SA [J]. Fusion engineering and design, 2017, 122: 218-222. DOI: 10.1016/j.fusengdes.2017.08.013. [25] KALARIA P C, AVRAMIDIS K A, FRANCK J, et al. Systematic cavity design approach for a multi-frequency gyrotron for DEMO and study of its RF behavior [J]. Physics of plasmas, 2016, 23(9): 092503. DOI: 10.1063/1.4962238. [26] JELONNEK J, AIELLO G, ALBERTI S, et al. Design considerations for future DEMO gyrotrons: a review on related gyrotron activities within EURO fusion [J]. Fusion engineering and design, 2017, 123: 241-246. DOI: 10.1016/j.fusengdes.2017.01.047. [27] 赵磊, 李立, 卜英南, 等. 基于PLC的HL-2A装置电子回旋共振加热系统控制与保护 [J]. 核聚变与等离子体物理, 2010, 30(3): 230-235. DOI: 10.16568/j.0254-6086.2010.03.009. ZHAO L, LI L, BU Y N, et al. Control and protection system based PLC for the ECRH system on the HL-2A tokamak [J]. Nuclear fusion and plasma physics, 2010, 30(3): 230-235. DOI: 10.16568/j.0254-6086.2010.03.009. [28] 杨永. EAST装置电子回旋共振加热系统中央控制器设计 [J]. 核聚变与等离子体物理, 2021, 41(3): 234-239. DOI: 10.16568/j.0254-6086.202103007. YANG Y. Central controller design of electronic cyclotron resonance heating system for EAST [J]. Nuclear fusion and plasma physics, 2021, 41(3): 234-239. DOI: 10.16568/j.0254-6086.202103007. [29] 杨永. 电子回旋共振加热系统中央控制器异常诊断设计与仿真 [J]. 计算机测量与控制, 2020, 28(5): 46-50. DOI: 10.16526/j.cnki.11-4762/tp.2020.05.011. YANG Y. Design and simulation of abnormal diagnosis of central controller of ECRH system [J]. Computer measurement & control, 2020, 28(5): 46-50. DOI: 10.16526/j.cnki.11-4762/tp.2020.05.011. [30] TORREZAN A C, PONCE D, GORELOV Y, et al. New features of the ECH control system on DIII-D and impact of power modulation on collector loading [J]. Fusion engineering and design, 2019, 146: 486-490. DOI: 10.1016/j.fusengdes.2018.12.098. [31] WILDE F, MARSEN S, STANGE T, et al. Automated mode recovery for gyrotrons demonstrated at Wendelstein 7-X [J]. Fusion engineering and design, 2019, 148: 111258. DOI: 10.1016/j.fusengdes.2019.111258. [32] WILDE F, LAQUA H P, MARSEN S, et al. Measurements of satellite modes in 140 GHz Wendelstein 7-X gyrotrons: an approach to an electronic stability control [C]//Proceedings of the 2017 18th International Vacuum Electronics Conference, London, UK, April 24-26, 2017. London: IEEE, 2017: 1-2. DOI: 10.1109/IVEC.2017.8289661. [33] GORMEZANO C, SIPS A C C, LUCE T C, et al. Steady state operation [J]. Nuclear fusion, 2007, 47(6): S285-S336. DOI: 10.1088/0029-5515/47/6/S06. [34] CHEN X, PETTY C C, LOHR J, et al. Doubling off-axis electron cyclotron current drive efficiency via velocity space engineering [J]. Nuclear fusion, 2022, 62(5): 054001. DOI: 10.1088/1741-4326/ac544a. [35] PETTY C C, PRATER R, LOHR J, et al. Detailed measurements of the electron cyclotron current drive efficiency on DIII-D [J]. Nuclear fusion, 2002, 42(12): 1366-1375. DOI: 10.1088/0029-5515/42/12/303. [36] POLI E, TARDINI G, ZOHM H, et al. Electron-cyclotron-current-drive efficiency in DEMO plasmas [J]. Nuclear fusion, 2013, 53(1): 013011. DOI: 10.1088/0029-5515/53/1/013011. [37] BAE Y S, NAMKUNG W, CHO M H. Ray tracing study on top ECCD launch in KSTAR [J]. EPJ web of conferences, 2017, 157: 03003. DOI: 10.1051/epjconf/201715703003. [38] GAROFALO A M, CHAN V S, CANIK J M, et al. Progress in the physics basis of a fusion nuclear science facility based on the advanced tokamak concept [J]. Nuclear fusion, 2014, 54(7): 073015. DOI: 10.1088/0029-5515/54/7/073015. [39] CHEN X, PRATER R, PETTY C, et al. Top launch for higher off-axis electron cyclotron current drive efficiency [J]. EPJ web of conferences, 2019, 203: 01004. DOI: 10.1051/epjconf/201920301004. [40] BINDSLEV H, HOEKZEMA J A, EGEDAL J, et al. Fast-ion velocity distributions in JET measured by collective Thomson scattering [J]. Physical review letters, 1999, 83(16): 3206. DOI: 10.1103/PhysRevLett.83.3206. [41] MACHUZAK J S, WOSKOV P P, GILMORE J, et al. TFTR 60 GHz alpha particle collective Thomson scattering diagnostic [J]. Review of scientific instruments, 1995, 66(1): 484-486. DOI: 10.1063/1.1146323. [42] KRIER L, AVRAMIDIS K A, BRAUNE H, et al. Short-pulse frequency stabilization of a MW-class ECRH gyrotron at W7-X for CTS diagnostic [J]. Fusion engineering and design, 2023, 192: 113828. DOI: 10.1016/j.fusengdes.2023.113828. [43] MEO F, BINDSLEV H, KORSHOLM S B, et al. Commissioning activities and first results from the collective Thomson scattering diagnostic on ASDEX Upgrade (invited) [J]. Review of scientific instruments, 2008, 79(10): 10E501. DOI: 10.1063/1.2989140. [44] DENG W C, SHI Z B, SHI P W, et al. Development of a 105 GHz fast ion collective Thomson scattering diagnostic on HL-2A tokamak [J]. Journal of instrumentation, 2022, 17: C02006. DOI: 10.1088/1748-0221/17/02/C02006. [45] NIELSEN S K, STEJNER M, RASMUSSEN J, et al. Measurements of the fast-ion distribution function at ASDEX upgrade by collective Thomson scattering (CTS) using active and passive views [J]. Plasma physics and controlled fusion, 2015, 57(3): 035009. DOI: 10.1088/0741-3335/57/3/035009. [46] FOKIN A, GLYAVIN M, GOLUBIATNIKOV G, et al. High-power sub-terahertz source with a record frequency stability at up to 1 Hz [J]. Scientific reports, 2018, 8(1): 4317. DOI: 10.1038/s41598-018-22772-1. [47] DENISOV G G, KUFTIN A N, GLYAVIN M Y, et al. Experimental tests of a high-stable 170 GHz/25 kW gyrotron as a master oscillator for frequency locking of megawatt level microwave sources [C]//Proceedings of the 2021 22nd International Vacuum Electronics Conference, Rotterdam, Netherlands, April 27-30, 2021. Rotterdam: IEEE, 2021: 1-2. DOI: 10.1109/IVEC51707.2021.9722456. [48] KORSHOLM S B, CHAMBON A, GONÇALVES B, et al. ITER collective Thomson scattering—preparing to diagnose fusion-born alpha particles (invited) [J]. Review of scientific instruments, 2022, 93(10): 103539. DOI: 10.1063/5.0101867. [49] STEJNER M, NIELSEN S K, BINDSLEV H, et al. Principles of fuel ion ratio measurements in fusion plasmas by collective Thomson scattering [J]. Plasma physics and controlled fusion, 2011, 53(6): 065020. DOI: 10.1088/0741-3335/53/6/065020. [50] KORSHOLM S B, STEJNER M, BINDSLEV H, et al. Measurements of intrinsic ion Bernstein waves in a tokamak by collective Thomson scattering [J]. Physical review letters, 2011, 106(16): 165004. DOI: 10.1103/PhysRevLett.106.165004.