-
近年来CO2排放问题引起人们重视,CO2作为一种主要温室气体,大量排放使全球气温上升,对全球气候造成巨大影响[1]。由于化石能源在世界范围内仍然是主要利用能源,碳排放量巨大,为应对气候变化,减少CO2排放,各国出台了如碳税、绿色能源补贴等相关政策控制排放[2]。CO2捕集、利用与封存(Carbon Capture, Utilization and Storage, CCUS)技术作为一种高效减碳技术被提出[3],CCUS主要分为3个部分:捕集,运输,封存或利用。CO2先从低浓度排放源被富集,然后通过以管道为主的运输方式输送至封存的位置进行封存或送至利用的工厂进行加工使用[4],捕集过程是CCUS技术中能耗的主要来源。燃煤电力、钢铁、水泥、炼油和石化生产是主要的固定排放源[5-6],其中石化行业排放的尾气相较其他行业具有CO2浓度高、排放集中的特点,因此对其排放的CO2进行碳捕集是优先选择[7]。
目前CO2捕集技术主要有吸收法、吸附法、膜分离法及低温分离法4大类,吸收法和吸附法在烟气CO2捕集方面更具经济可行性[8]。溶剂吸收法使用最广泛,目前以吸收法为基础的CO2分离技术较为成熟并已得到了普遍商业化使用,其具有强选择性,得到的产品气纯度高,同时其技术设备投资较低[9]。化学吸收技术已在国内外广泛应用,加拿大shell Cansolv于2013年建立了商业化运行的CO2燃烧后捕集工程——Boundary Dam Project[10],其采用特制的Cansolv DC-103吸收剂,用于捕集燃煤电厂的烟气CO2。该项目在实际运行状态下每天可捕集170 t CO2,烟气中CO2平均浓度为9.1 VOL%,捕集率保持在91%左右,平均捕集能耗为2.33 MJ/kg。奥地利的CO2 SEPPL中试工程建于Dürnrohr发电厂[11],采用吸收法捕集烟气中CO2,使用蒸汽对再沸器加热以提供热量再生吸收剂,平均CO2捕集能耗为3.1 MJ/kg。加拿大国际碳捕集实验中心采用混合MEA/MDEA溶液对UR项目进行了改良[12],显著降低了能耗。澳大利亚昆士兰Tarong中试项目[13],在吸收塔内部采用中间冷却,实际测试发现使重沸器的热负荷降低了10%。澳大利亚位于Hazelwood发电站的UNO MK3中试项目采用碳酸钾作为吸收剂[14],使用扩散促进剂后其再生能耗可降至2~3 MJ/kg CO2。
但是化学吸收法的吸收剂易损耗需要不断补充,同时吸收剂对设备会产生腐蚀,并且由于吸收剂中含水量高,运行过程再生能耗较高[15-16],目前国内外已有较多研究两相吸收剂的研发,有望改善吸收剂腐蚀、挥发及高能耗的问题[17]。与化学吸收法相比,吸附法使用沸石等吸附剂捕集CO2,吸附/再生过程操作简单,具有无降解、不腐蚀的优点,无有害二次产物生成,在规模化CO2捕集应用中显示出优势与潜力[18]。DR-VPSA[19]、AD Asorb[20]、Two-stage VPSA[21]等吸附工艺已经中试或处于实验验证阶段。吸附法利用吸附剂在不同温度/压力下对CO2的吸附容量差异来实现CO2分离回收,包含吸附与脱附两个阶段。根据脱附方法的不同分为变压吸附、变温吸附以及变温变压耦合吸附过程等[22]。但是当前吸附法也存在处理低浓度CO2烟气时能耗高,CO2产品气浓度及回收率较低的问题[23-24]。因此吸附法可能更适于较高浓度的原料气处理。捕集烟气中CO2的吸附技术在国内外已有许多相关的实例研究,大部分处于实验室开发或中试阶段,大规模的商业应用较少。4种捕集技术的对比如表1所示。
表 1 4种常见CO2捕集技术对比
Table 1. Comparison of four common CO2 capture technologies
CO2分离技术 技术优点 技术缺点 吸收法 1)工艺技术成熟、流程简洁、设备简单。
2)吸收速率快,选择性强,可处理低浓度烟气。
3)综合能耗低、投资较低。1)吸收剂易挥发、逃逸,需要不断补充。
2)吸收剂对设备腐蚀。吸附法 1)技术成熟,工艺污染小。
2)技术自动化运行可靠、启动快,便于调节。1)气体预先需增压处理,有较高动力消耗,能耗较高。
2)装置投资高,对水分敏感。膜分离法 1)工艺过程简单,操作简便。
2)一次性投资较少、设备紧凑、占地面积小。1)对预处理要求高,膜易被污染,能耗高。
2)得到的产物纯度较低,往往需要多级处理。低温分离法 1)工艺简单,技术成熟度高。
2)回收率以及纯度都较高。1)设备投资大,运行成本高。
2)适用于高浓度处理。文章首先综述了国内外变压吸附技术在CO2捕集领域的研究进展,对变压吸附材料及工艺研究进行了总结与评价,随后以一个实际工程项目为案例,针对变压吸附捕集CO2技术在石化行业的应用进行了分析讨论。
-
本案例针对惠州石化区某石化企业的煤制氢装置净化单元、低温甲醇洗单元产出的约80万t中浓度碳源进行捕集,所捕集的CO2暂定用于地质封存。原料气总流量为
72613.88 Nm3/h,初始温度约为30 ℃,设计年运行时间8000 h。原料气具体参数如表2所示。表 2 原料气参数
Table 2. Feed gas parameter
参数 数值 流量/(Nm3·h−1) 72 613.88 温度/℃ 30 压力/MPa 0.049 CO2/(VOL %) 73.918 N2/(VOL %) 26.06 CH4/(VOL %) 0.01 H2S/(VOL %) 0.001 CH3OH/(VOL %) 0.011 捕集系统产出的CO2产品气品质按海上封存项目规划要求如表3所示,满足地质封存的要求。
表 3 产品气成分要求
Table 3. Product gas composition requirements
组分 含量/% CO2 ≥95 H2O ≤0.007 H2 ≤0.75 CO ≤0.075 O2 ≤0.004 H2S ≤0.000 5 Sum(H2+N2+Ar+CH4+CO+O2) ≤4 -
本项目采用PSA工艺将原料气中的CO2提纯至98%以上,采用吸附剂为沸石。考虑到装置的负荷及操作灵活性,以及在装置低负荷下的能耗问题,本装置设定为2套PSA,单套处理气量36 306.94 Nm3/h,单套年产气体CO2约40万t。由于原料气浓度较高(73.918%),因此本案例设计采用单级PSA工艺处理方案,工艺流程示意如图6所示。
原料气准备,压力约0.049 MPa,温度低于40 ℃的原料气首先经过压缩机将压力提高至0.25 MPa左右,然后进入原料气缓冲罐,再进入PSA吸附装置开始捕集,工艺步骤如下所示。
1)升压阶段,低压吸附塔先与高压塔经过均压升至一定压力,再使原料气通入吸附床内使压力上升至预定的吸附压力,为高压吸附塔准备吸附。
2)吸附阶段,原料气进入吸附塔,混合气体中的CO2被沸石吸附,氮气及其他杂质气体从塔顶排出成为放空气,当吸附塔内传质区接近出口时结束吸附。
3)均压阶段,吸附结束的高压吸附塔与完成真空解吸的低压吸附塔进行均压,均压的目的是保存高压吸附床中气体含有的机械能,利用均压可以节省能量。
4)放空解吸阶段,和低压吸附塔进行均压降后,切换阀门,处于吸附相态的CO2解吸释放至CO2气缓冲罐。
5)抽真空解吸阶段,通过抽真空使吸附塔内吸附的高纯度CO2气体进一步解吸,送至CO2气缓冲罐供后续工段使用,结束后进入下一循环的升压阶段。
-
本案例处于规划建设阶段,运行参数为根据工艺规划的设计值进行评估和计算,对进入PSA系统的原料气、离开系统的放空气及CO2产品气进行运行监测分析,根据设计参数,物质流数据如表4所示。
表 4 物质流参数表
Table 4. Material flow parameter
参数 原料气 放空气 产品气 流量/(Nm3·h−1) 72 613.88 20 130.99 52 482.89 CO2/(VOL %) 73.918 10.665 98.18 N2/(VOL %) 26.06 89.3 1.803 CH4/(VOL %) 0.01 0.034 0.001 H2S/(VOL %) 0.001 0 0.001 CH3OH/(VOL %) 0.011 0.0004 0.015 工艺的CO2回收率计算如公式(1)所示。
$$ \mathrm{\eta }=\frac{{Q}_{2}{C}_{2}}{{Q}_{1}{C}_{1}} $$ (1) 式中:
η ——CO2回收率(%);
$ {Q}_{1} $——原料气流量(Nm3/h);
$ {Q}_{2} $——产品气流量(Nm3/h);
$ {C}_{1} $——原料气中CO2浓度(VOL %) ;
$ {C}_{2} $——产品气中CO2浓度(VOL %);
从运行状态下的物质流参数表可以看到产品气浓度基本可以维持在98%以上,同时回收率达96%,满足捕集需求。
-
本案例所采用的变压吸附捕集无吸收剂损耗,不需定时进行补充,在考虑运行能耗时仅需考虑电力消耗、系统使用的循环水及阀控所用的仪表空气。具体的工程消耗如表5所示。
表 5 工程消耗明细
Table 5. Detail of engineering consumption
参数 消耗量 消耗来源 电/kW 10 照明、仪表用 3 000 压缩机用 2 620 真空泵用 循环水/(t·h−1) 1 050 压缩机及真空泵用 仪表空气/(Nm3·h−1) 250 程控阀及调节阀用 依据本项目案例的设计工程消耗量,本变压吸附捕集技术的单位捕集电耗E计算如公式(2)所示。
$$ E=\frac{{P}_{1}+{P}_{2}+{P}_{3}}{{Q}_{2}{C}_{2}{{M}}\times {10}^{-3}}\times 22.4 $$ (2) 式中:
E ——CO2单位捕集能耗(kWh/t);
$ {P}_{1} $——照明、仪表用电(kW);
$ {P}_{2} $——压缩机用电(kW);
$ {P}_{3} $——真空泵用电(kW);
$ {Q}_{2} $——产品气流量(Nm3/h);
$ {C}_{2} $——产品气中CO2浓度(VOL %);
$ M $——摩尔质量,$ M $= 44 kg/kmol。
带入运行参数计算得到单位捕集电耗E约为56 kWh/t CO2,相较化学吸收法具有明显的能耗优势。能耗较低的原因主要为本案例的PSA装置所采用的吸附剂为沸石分子筛,因此具有快速的吸脱附动力学特性,能够在较小的压力差下具备较高的吸附容量差异,因此对于中浓度的CO2捕集,采用基于沸石的PSA技术可有效降低捕集能耗。
在装置的三废排放情况方面,本案例采用的PSA技术无有害废气、废液产生,主要的废渣为沸石吸附剂,在达到15 a的使用年限后进行无害化处理即可。在噪声方面,由于装置无动力设备,无大型噪音源,装置整体噪声控制在85 dB以下。综上,本案例所采用的PSA捕集CO2技术对环境影响较小,在环保方面具有优势。
Research Progress of Pressure Swing Adsorption CO2 Capture Technology and Case Analysis of Its Application in Petrochemical Industry
-
摘要:
目的 作为CCUS(Carbon Capture, Utilization and Storage)中重要的碳捕集手段,变压吸附(Pressure Swing Adsorption,PSA)捕集CO2技术受到广泛应用。但过高的捕集能耗和运行成本制约了技术的推广和落地,如何精准地依据实际情况选择合适的捕集技术并降低捕集能耗尤为重要。 方法 针对国内外变压吸附技术的基础研究与技术应用进行了讨论,并以某石化企业采用PSA技术捕集CO2的实际应用案例,分析了该技术在石化行业应用的经济性和前景。 结果 在文章案例中,采用PSA吸附捕集CO2技术的项目对煤制氢装置净化单元、低温甲醇洗单元产出的约80万t中浓度碳源进行捕集封存,针对73.9%浓度的CO2原料气,装置实现了96%的CO2回收率以及98%的捕集纯度,在杂质气体方面,H2S、CH4及CH3OH均控制在0.015%以下,可实现约56 kWh/t CO2的捕集电耗。研究发现,变压吸附技术具备吸附剂再生能耗低、压阻低、工艺连续及吸附剂稳定性强的优势,表现出技术与经济可行性。由于变压吸附以物理吸附为主,因此PSA对于低浓度的原料气CO2处理可能会面临能耗较高且富集浓度不足的问题。 结论 综上,PSA捕集CO2技术适宜用于中浓度碳源的处理,在未来石化、水泥等行业中排放的尾气处理上具有潜力。 Abstract:Introduction As an important carbon capture method in CCUS, pressure swing adsorption (PSA) CO2 capture technology has been widely used. However, the excessive capture energy consumption and operation cost restrict the promotion and implementation of the technology. How to accurately select the appropriate capture technology according to the actual situation and reduce the capture energy consumption is particularly important. Method This paper discussed the basic research and technical application of PSA technology at home and abroad, and analyzed the economy and prospect of PSA technology in petrochemical industry based on a practical application case of PSA technology for CO2 capture in a petrochemical enterprise. Result In this case, the project using PSA CO2 capture technology captured and stored about 800000 tons of medium-concentration carbon sources produced by the purification unit and low-temperature methanol washing unit of the coal-to-hydrogen plant. For 73.9% concentration of CO2 raw gas, the device achieved 96% CO2 recovery rate and 98% capture purity. H2S, CH4 and CH3OH are all controlled below 0.015%, which can achieve about 56 kWh/t CO2 capture power consumption. It is found that pressure swing adsorption technology has the advantages of low energy consumption, low piezoresistivity, continuous process and strong stability of adsorbent, which shows the technical and economic feasibility. Since pressure swing adsorption is mainly physical adsorption, PSA may face the problem of high energy consumption and insufficient enrichment concentration for the treatment of low concentration of CO2 feed gas.Conclusion In summary, PSA CO2 capture technology is suitable for the treatment of medium concentration carbon sources, and has potential in thetreatment of exhaust emissions in petrochemical, cement and other industries in the future. -
Key words:
- carbon capture /
- PSA /
- CO2 /
- medium concentration carbon source /
- petrochemical industry
-
图 2 富硅稻壳制备多孔炭-沸石复合材料[36]
Fig. 2 Preparation of porous carbon-zeolite composites from silica-rich rice husks
图 3 PEI浸渍于多孔SiO2[49]
Fig. 3 PEI impregnated in porous SiO2
表 1 4种常见CO2捕集技术对比
Tab. 1. Comparison of four common CO2 capture technologies
CO2分离技术 技术优点 技术缺点 吸收法 1)工艺技术成熟、流程简洁、设备简单。
2)吸收速率快,选择性强,可处理低浓度烟气。
3)综合能耗低、投资较低。1)吸收剂易挥发、逃逸,需要不断补充。
2)吸收剂对设备腐蚀。吸附法 1)技术成熟,工艺污染小。
2)技术自动化运行可靠、启动快,便于调节。1)气体预先需增压处理,有较高动力消耗,能耗较高。
2)装置投资高,对水分敏感。膜分离法 1)工艺过程简单,操作简便。
2)一次性投资较少、设备紧凑、占地面积小。1)对预处理要求高,膜易被污染,能耗高。
2)得到的产物纯度较低,往往需要多级处理。低温分离法 1)工艺简单,技术成熟度高。
2)回收率以及纯度都较高。1)设备投资大,运行成本高。
2)适用于高浓度处理。表 2 原料气参数
Tab. 2. Feed gas parameter
参数 数值 流量/(Nm3·h−1) 72 613.88 温度/℃ 30 压力/MPa 0.049 CO2/(VOL %) 73.918 N2/(VOL %) 26.06 CH4/(VOL %) 0.01 H2S/(VOL %) 0.001 CH3OH/(VOL %) 0.011 表 3 产品气成分要求
Tab. 3. Product gas composition requirements
组分 含量/% CO2 ≥95 H2O ≤0.007 H2 ≤0.75 CO ≤0.075 O2 ≤0.004 H2S ≤0.000 5 Sum(H2+N2+Ar+CH4+CO+O2) ≤4 表 4 物质流参数表
Tab. 4. Material flow parameter
参数 原料气 放空气 产品气 流量/(Nm3·h−1) 72 613.88 20 130.99 52 482.89 CO2/(VOL %) 73.918 10.665 98.18 N2/(VOL %) 26.06 89.3 1.803 CH4/(VOL %) 0.01 0.034 0.001 H2S/(VOL %) 0.001 0 0.001 CH3OH/(VOL %) 0.011 0.0004 0.015 表 5 工程消耗明细
Tab. 5. Detail of engineering consumption
参数 消耗量 消耗来源 电/kW 10 照明、仪表用 3 000 压缩机用 2 620 真空泵用 循环水/(t·h−1) 1 050 压缩机及真空泵用 仪表空气/(Nm3·h−1) 250 程控阀及调节阀用 -
[1] LUEKING A D, COLE M W. Energy and mass balances related to climate change and remediation [J]. Science of the total environment, 2017, 590-591: 416-429. DOI: 10.1016/j.scitotenv.2016.12.101. [2] 李汪繁, 吴何来. 双碳目标下我国碳市场发展分析及建议 [J]. 南方能源建设, 2022, 9(4): 118-126. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.015. LI W F, WU H L. Analysis and suggestions for the development of carbon emissions trading markets in China under carbon peak and neutrality goals [J]. Southern energy construction, 2022, 9(4): 118-126. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.015. [3] JEFFERSON M. IPCC fifth assessment synthesis report: "climate change 2014: longer report": critical analysis [J]. Technological forecasting and social change, 2015, 92: 362-363. DOI: 10.1016/j.techfore.2014.12.002. [4] YAUMI A L, BAKAR M Z A, HAMEED B H. Recent advances in functionalized composite solid materials for carbon dioxide capture [J]. Energy, 2017, 124: 461-480. DOI: 10.1016/j.energy.2017.02.053. [5] Global CCS Institute. Global status of CCS 2020 [R]. Australia: Global CCS Institute, 2021. [6] 张治忠, 陈继平, 谭学谦, 等. 天然气联合循环电厂燃烧后CO2捕集一体化技术经济评价 [J]. 南方能源建设, 2023, 10(2): 55-61. DOI: 10.16516/j.gedi.issn2095-8676.2023.02.008. ZHANG Z Z, CHEN J P, TAN X Q, et al. Economic evaluation of post-combustion CO2 capture integration technology in natural gas combined cycle power plant [J]. Southern energy construction, 2023, 10(2): 55-61. DOI: 10.16516/j.gedi.issn2095-8676.2023.02.008. [7] SONG C F, LIU Q L, DENG S, et al. Cryogenic-based CO2 capture technologies: state-of-the-art developments and current challenges [J]. Renewable and sustainable energy reviews, 2019, 101: 265-278. DOI: 10.1016/j.rser.2018.11.018. [8] 董瑞, 高林, 何松, 等. CCUS技术对我国电力行业低碳转型的意义与挑战 [J]. 发电技术, 2022, 43(4): 523-532. DOI: 10.12096/j.2096-4528.pgt.22053. DONG R, GAO L, HE S, et al. Significance and challenges of CCUS technology for low-carbon transformation of China´s power industry [J]. Power generation technology, 2022, 43(4): 523-532. DOI: 10.12096/j.2096-4528.pgt.22053. [9] TAO M N, XU N, GAO J Z, et al. Phase-change mechanism for capturing CO2 into an environmentally benign nonaqueous solution: a combined NMR and molecular dynamics simulation study [J]. Energy & fuels, 2019, 33(1): 474-483. DOI: 10.1021/acs.energyfuels.8b03448. [10] SINGH A, STÉPHENNE K. Shell cansolv CO2 capture technology: achievement from first commercial plant [J]. Energy procedia, 2014, 63: 1678-1685. DOI: 10.1016/j.egypro.2014.11.177. [11] RABENSTEINER M, KINGER G, KOLLER M, et al. Pilot plant study of aqueous solution of piperazine activated 2-amino-2-methyl-1-propanol for post combustion carbon dioxide capture [J]. International journal of greenhouse gas control, 2016, 51: 106-117. DOI: 10.1016/j.ijggc.2016.04.035. [12] IDEM R, WILSON M, TONTIWACHWUTHIKUL P, et al. Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the university of regina CO2 capture technology development plant and the boundary dam CO2 capture demonstration plant [J]. Industrial & engineering chemistry research, 2006, 45(8): 2414-2420. DOI: 10.1021/ie050569e. [13] OCHEDI F O, YU J L, YU H, et al. Carbon dioxide capture using liquid absorption methods: a review [J]. Environmental chemistry letters, 2021, 19(1): 77-109. DOI: 10.1007/s10311-020-01093-8. [14] SMITH K, XIAO G K, MUMFORD K, et al. Demonstration of a concentrated potassium carbonate process for CO2 capture [J]. Energy & fuels, 2014, 28(1): 299-306. DOI: 10.1021/ef4014746. [15] 李小端, 赵兴雷, 叶舣, 等. 基于电渗析技术的CO2吸收剂再生过程研究 [J]. 发电技术, 2022, 43(4): 593-599. DOI: 10.12096/j.2096-4528.pgt.22019. LI X D, ZHAO X L, YE Y, et al. Study on reclamation process of CO2 absorbent based on electrodialysis technology [J]. Power generation technology, 2022, 43(4): 593-599. DOI: 10.12096/j.2096-4528.pgt.22019. [16] 张欢, 汪丽, 叶舣, 等. 乙二烯三胺与三乙醇胺混合胺溶液CO2吸收剂研究 [J]. 发电技术, 2022, 43(4): 609-617. DOI: 10.12096/j.2096-4528.pgt.22002. ZHANG H, WANG L, YE Y, et al. Study on CO2 absorbent of DETA and TEA mixed amine solution [J]. Power generation technology, 2022, 43(4): 609-617. DOI: 10.12096/j.2096-4528.pgt.22002. [17] 林海周, 杨晖, 罗海中, 等. 烟气二氧化碳捕集胺类吸收剂研究进展 [J]. 南方能源建设, 2019, 6(1): 16-21. DOI: 10.16516/j.gedi.issn2095-8676.2019.01.003. LIN H Z, YANG H, LUO H Z, et al. Research progress on amine absorbent for CO2 capture from flue gas [J]. Southern energy construction, 2019, 6(1): 16-21. DOI: 10.16516/j.gedi.issn2095-8676.2019.01.003. [18] WANG Q, LUO J Z, ZHONG Z Y, et al. CO2 capture by solid adsorbents and their applications: current status and new trends [J]. Energy & environmental science, 2011, 4(1): 42-55. DOI: 10.1039/C0EE00064G. [19] WAWRZYŃCZAK D, MAJCHRZAK-KUCĘBA I, SROKOSZ K, et al. The pilot dual-reflux vacuum pressure swing adsorption unit for CO2 capture from flue gas [J]. Separation and purification technology, 2019, 209: 560-570. DOI: 10.1016/j.seppur.2018.07.079. [20] LIU B, YE L Q, WANG R, et al. Phosphorus-doped graphitic carbon nitride nanotubes with amino-rich surface for efficient CO2 capture, enhanced photocatalytic activity, and product selectivity [J]. ACS applied materials & interfaces, 2018, 10(4): 4001-4009. DOI: 10.1021/acsami.7b17503. [21] WANG L, YANG Y, SHEN W L, et al. CO2 capture from flue gas in an existing coal-fired power plant by two successive pilot-scale VPSA units [J]. Industrial & engineering chemistry research, 2013, 52(23): 7947-7955. DOI: 10.1021/ie4009716. [22] 宗杰, 马庆兰, 陈光进, 等. 二氧化碳分离捕集研究进展 [J]. 现代化工, 2016, 36(11): 56-60. DOI: 10.16606/j.cnki.issn0253-4320.2016.11.013. ZONG J, MA Q L, CHEN G J, et al. Progress of the separation and capture of CO2 [J]. Modern chemical industry, 2016, 36(11): 56-60. DOI: 10.16606/j.cnki.issn0253-4320.2016.11.013. [23] WON Y, KIM J Y, PARK Y C, et al. Post-combustion CO2 capture process in a circulated fluidized bed reactor using 200 kg potassium-based sorbent: the optimization of regeneration condition [J]. Energy, 2020, 208: 118188. DOI: 10.1016/j.energy.2020.118188. [24] HORNBOSTEL M. Pilot-scale evaluation of an advanced carbon sorbent-based process for post-combustion carbon capture [R]. Menlo Park: SRI International, 2016. [25] 高腾飞, 常超, 杨阳, 等. 碳捕集变压吸附技术工艺及吸附材料研究进展 [J]. 辽宁化工, 2020, 49(11): 1389-1394. DOI: 10.3969/j.issn.1004-0935.2020.11.018. GAO T F, CHANG C, YANG Y, et al. Research progress of pressure swing adsorption technology and adsorption materials for carbon capture [J]. Liaoning chemical industry, 2020, 49(11): 1389-1394. DOI: 10.3969/j.issn.1004-0935.2020.11.018. [26] 张心悦. 层状复合金属氧化物中温吸附CO2的性能研究 [D]. 北京: 北京化工大学, 2018. DOI: 10.7666/d.Y3390266. ZHANG X Y. Study on CO2 adsorption of mixed metal oxide under medium temperature [D]. Beijing: Beijing University of Chemical Technology, 2018. DOI: 10.7666/d.Y3390266. [27] 陈琦, 张荣荣, 韩宝航. 基于氧化偶联聚合制备的共轭多孔聚咔唑及相关性能研究进展 [J]. 高分子通报, 2018(6): 1-8. DOI: 10.14028/j.cnki.1003-3726.2018.06.001. CHEN Q, ZHANG R R, HAN B H. Conjugated porous polycarbazoles via oxidative coupling polymerization from preparation to properties [J]. Chinese polymer bulletin, 2018(6): 1-8. DOI: 10.14028/j.cnki.1003-3726.2018.06.001. [28] GAO W, LIANG S, WANG R, et al. Industrial carbon dioxide capture and utilization: state of the art and future challenges [J]. Chemical society reviews, 2020, 49(23): 8584-8686. DOI: 10.1039/D0CS00025F. [29] RAO L L, MA R, LIU S F, et al. Nitrogen enriched porous carbons from D-glucose with excellent CO2 capture performance [J]. Chemical engineering journal, 2019, 362: 794-801. DOI: 10.1016/j.cej.2019.01.093. [30] KONG Y X, JIN L, QIU J. Synthesis, characterization, and CO2 capture study of micro-nano carbonaceous composites [J]. Science of the total environment, 2013, 463-464: 192-198. DOI: 10.1016/j.scitotenv.2013.05.050. [31] QIAN D, LEI C, HAO G P, et al. Synthesis of hierarchical porous carbon monoliths with incorporated metal-organic frameworks for enhancing volumetric based CO2 capture capability [J]. ACS applied materials & interfaces, 2012, 4(11): 6125-6132. DOI: 10.1021/am301772k. [32] CHAI S H, LIU Z M, HUANG K, et al. Amine functionalization of microsized and nanosized mesoporous carbons for carbon dioxide capture [J]. Industrial & engineering chemistry research, 2016, 55(27): 7355-7361. DOI: 10.1021/acs.iecr.6b00823. [33] SEVILLA M, FUERTES A B. Sustainable porous carbons with a superior performance for CO2 capture [J]. Energy & environmental science, 2011, 4(5): 1765-1771. DOI: 10.1039/c0ee00784f. [34] LIU F Q, LI W, ZHAO J, et al. Covalent grafting of polyethyleneimine on hydroxylated three-dimensional graphene for superior CO2 capture [J]. Journal of materials chemistry A, 2015, 3(23): 12252-12258. DOI: 10.1039/c5ta01536g. [35] WANG H, WANG H, LIU G S, et al. In-situ pyrolysis of Taihu blue algae biomass as appealing porous carbon adsorbent for CO2 capture: role of the intrinsic N [J]. Science of the total environment, 2021, 771: 145424. DOI: 10.1016/J.SCITOTENV.2021.145424. [36] GAN F L, WANG B D, JIN Z H, et al. From typical silicon-rich biomass to porous carbon-zeolite composite: a sustainable approach for efficient adsorption of CO2 [J]. Science of the total environment, 2021, 768: 144529. DOI: 10.1016/j.scitotenv.2020.144529. [37] ZUKAL A, SHAMZHY M, KUBŮ M, et al. The effect of pore size dimensions in isoreticular zeolites on carbon dioxide adsorption heats [J]. Journal of CO2 utilization, 2018, 24: 157-163. DOI: 10.1016/j.jcou.2017.12.016. [38] CHEN S J, ZHU M, TANG Y C, et al. Molecular simulation and experimental investigation of CO2 capture in a polymetallic cation-exchanged 13X zeolite [J]. Journal of materials chemistry A, 2018, 6(40): 19570-19583. DOI: 10.1039/C8TA05647A. [39] CALLEJA G, PAU J, CALLES J A. Pure and multicomponent adsorption equilibrium of carbon dioxide, ethylene, and propane on ZSM-5 zeolites with different Si/Al ratios [J]. Journal of chemical & engineering data, 1998, 43(6): 994-1003. DOI: 10.1021/je9702100. [40] WANG S, BAI P, SUN M Z, et al. Fabricating mechanically robust binder-free structured zeolites by 3D printing coupled with zeolite soldering: a superior configuration for CO2 capture [J]. Advanced science, 2019, 6(17): 1901317. DOI: 10.1002/advs.201901317. [41] YANG H D, FANG X Q, LI Z Y, et al. Copper-doped small pore zeolites for CO2 capture by honeycomb rotor with low temperature regeneration [J]. ACS sustainable chemistry & engineering, 2022, 10(5): 1759-1764. DOI: 10.1021/acssuschemeng.1c08347. [42] LIANG W Q, HUANG J H, XIAO P, et al. Amine-immobilized HY zeolite for CO2 capture from hot flue gas [J]. Chinese journal of chemical engineering, 2022, 43: 335-342. DOI: 10.1016/j.cjche.2022.02.004. [43] ALINEZHAD H, ABARGHOUEI M F, TAJBAKHSH M, et al. Application of MEA, TEPA and morpholine grafted NaY zeolite as CO2 capture [J]. Iranian journal of chemistry and chemical engineering, 2021, 40(2): 581-592. DOI: 10.30492/IJCCE.2020.37861. [44] LIU Z, WANG L, KONG X M, et al. Onsite CO2 capture from flue gas by an adsorption process in a coal-fired power plant [J]. Industrial & engineering chemistry research, 2012, 51(21): 7355-7363. DOI: 10.1021/ie3005308. [45] WANG L, YANG Y, SHEN W L, et al. Experimental evaluation of adsorption technology for CO2 capture from flue gas in an existing coal-fired power plant [J]. Chemical engineering science, 2013, 101: 615-619. DOI: 10.1016/j.ces.2013.07.028. [46] GE K, YU Q C, CHEN S H, et al. Modeling CO2 adsorption dynamics within solid amine sorbent based on the fundamental diffusion-reaction processes [J]. Chemical engineering journal, 2019, 364: 328-339. DOI: 10.1016/j.cej.2019.01.183. [47] AFONSO R, SARDO M, MAFRA L, et al. Unravelling the structure of chemisorbed CO2 species in mesoporous aminosilicas: a critical survey [J]. Environmental science & technology, 2019, 53(5): 2758-2767. DOI: 10.1021/acs.est.8b05978. [48] MIN K, CHOI W, KIM C, et al. Oxidation-stable amine-containing adsorbents for carbon dioxide capture [J]. Nature communications, 2018, 9(1): 726. DOI: 10.1038/s41467-018-03123-0. [49] KIM C, CHOI W, CHOI M. SO2-resistant amine-containing CO2 adsorbent with a surface protection layer [J]. ACS applied materials & interfaces, 2019, 11(18): 16586-16593. DOI: 10.1021/acsami.9b02831. [50] ANYANWU J T, WANG Y R, YANG R T. CO2 capture (including direct air capture) and natural gas desulfurization of amine-grafted hierarchical bimodal silica [J]. Chemical engineering journal, 2022, 427: 131561. DOI: 10.1016/J.CEJ.2021.131561. [51] LI K M, JIANG J G, YAN F, et al. The influence of polyethyleneimine type and molecular weight on the CO2 capture performance of PEI-nano silica adsorbents [J]. Applied energy, 2014, 136: 750-755. DOI: 10.1016/j.apenergy.2014.09.057. [52] MENG Y, JIANG J G, GAO Y C, et al. Comprehensive study of CO2 capture performance under a wide temperature range using polyethyleneimine-modified adsorbents [J]. Journal of CO2 utilization, 2018, 27: 89-98. DOI: 10.1016/j.jcou.2018.07.007. [53] LOU F J, ZHANG A F, ZHANG G H, et al. Enhanced kinetics for CO2 sorption in amine-functionalized mesoporous silica nanosphere with inverted cone-shaped pore structure [J]. Applied energy, 2020, 264: 114637. DOI: 10.1016/j.apenergy.2020.114637. [54] CHEN C, XU H F, JIANG Q B, et al. Rational design of silicas with meso-macroporosity as supports for high-performance solid amine CO2 adsorbents [J]. Energy, 2021, 214: 119093. DOI: 10.1016/j.energy.2020.119093. [55] LI K M, LU L, XU Y R, et al. The use of metal nitrate-modified amorphous nano silica for synthesizing solid amine CO2 adsorbents with resistance to urea linkage formation [J]. International journal of greenhouse gas control, 2021, 106: 103289. DOI: 10.1016/j.ijggc.2021.103289. [56] CHENG Y D, TAVARES S R, DOHERTY C M, et al. Enhanced polymer crystallinity in mixed-matrix membranes induced by metal-organic framework nanosheets for efficient CO2 capture [J]. ACS applied materials & interfaces, 2018, 10(49): 43095-43103. DOI: 10.1021/acsami.8b16386. [57] ANDERSON R, RODGERS J, ARGUETA E, et al. Role of pore chemistry and topology in the CO2 capture capabilities of MOFs: from molecular simulation to machine learning [J]. Chemistry of materials, 2018, 30(18): 6325-6337. DOI: 10.1021/acs.chemmater.8b02257. [58] 吴屹伟. 微纳结构镍和铬基金属-有机框架及其复合材料的电化学性能研究 [D]. 漳州: 闽南师范大学, 2020. DOI: 10.27726/d.cnki.gzzsf.2020.000216. WU Y W. Study on the electrochemical properties of Cr and Ni-based mofs and their composites [D]. Zhangzhou: Minnan Normal University, 2020. DOI: 10.27726/d.cnki.gzzsf.2020.000216. [59] RAMOS-FERNANDEZ E V, GRAU-ATIENZA A, FARRUSSENG D, et al. A water-based room temperature synthesis of ZIF-93 for CO2 adsorption [J]. Journal of materials chemistry A, 2018, 6(14): 5598-5602. DOI: 10.1039/c7ta09807C. [60] LIU X L, PANG H W, LIU X W, et al. Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions [J]. The innovation, 2021, 2(1): 100076. DOI: 10.1016/J.XINN.2021.100076. [61] ZHANG Y F, LIU H X, GAO F X, et al. Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment [J]. EnergyChem, 2022, 4(4): 100078. DOI: 10.1016/j.enchem.2022.100078. [62] DIVEKAR S, DASGUPTA S, ARYA A, et al. Improved CO2 recovery from flue gas by layered bed vacuum swing adsorption (VSA) [J]. Separation and purification technology, 2020, 234: 115594. DOI: 10.1016/j.seppur.2019.05.036. [63] EBNER A D, RITTER J A. Equilibrium theory analysis of dual reflux PSA for separation of a binary mixture [J]. Aiche journal, 2010, 50(10): 2418-2429. DOI: 10.1002/aic.10191. [64] 刘闯. 分离CO2的煤基活性炭制备研究 [D]. 徐州: 中国矿业大学, 2017. LIU C. Research on preparation of coal-based activated carbon for separating CO2 [D]. Xuzhou: China University of Mining and Technology, 2017. [65] BAHRUN M H V, BONO A, OTHMAN N, et al. Carbon dioxide removal from biogas through pressure swing adsorption-a review [J]. Chemical engineering research and design, 2022, 183: 285-306. DOI: 10.1016/J.CHERD.2022.05.012. [66] 刘应书, 郑新港, 刘文海, 等. 烟道气低浓度二氧化碳的变压吸附法富集研究 [J]. 现代化工, 2009, 29(7): 76-79. DOI: 10.16606/j.cnki.issn0253-4320.2009.07.017. LIU Y S, ZHENG X G, LIU W H, et al. Low concentration carbon dioxide enrichment from flue gas by pressure swing adsorption [J]. Modern chemical industry, 2009, 29(7): 76-79. DOI: 10.16606/j.cnki.issn0253-4320.2009.07.017. [67] GHANBARI T, ABNISA F, WAN DAUD W M A. A review on production of metal organic frameworks (MOF) for CO2 adsorption [J]. Science of the total environment, 2020, 707: 135090. DOI: 10.1016/j.scitotenv.2019.135090. [68] SHAH G, AHMAD E, PANT K K, et al. Comprehending the contemporary state of art in biogas enrichment and CO2 capture technologies via swing adsorption [J]. International journal of hydrogen energy, 2021, 46(9): 6588-6612. DOI: 10.1016/j.ijhydene.2020.11.116. [69] HARAOKA T, MOGI Y, SAIMA H. PSA system for the recovery of carbon dioxide from blast furnace gas in steel works the influence of operation conditions on CO2 separation [J]. Kagaku kogaku ronbunshu, 2013, 39(5): 439-444. DOI: 10.1252/kakoronbunshu.39.439. [70] QADER A, HOOPER B, INNOCENZI T, et al. Novel post-combustion capture technologies on a lignite fired power plant - results of the CO2CRC/H3 capture project [J]. Energy procedia, 2011, 4: 1668-1675. DOI: 10.1016/j.egypro.2011.02.039. [71] ISHIBASHI M, OTA H, AKUTSU N, et al. Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method [J]. Energy conversion and management, 1996, 37(6/8): 929-933. DOI: 10.1016/0196-8904(95)00279-0. [72] CHO S H, PARK J H, BEUM H T, et al. A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption [J]. Studies in surface science and catalysis, 2004, 153: 405-410. DOI: 10.1016/S0167-2991(04)80287-8.