-
在本文中,类矩形桩靴基础最大截面尺寸为A×B =14.65 m×9.45 m,底部长轴倾角为159.5°,短轴倾角为148.7°。建模过程中,桩靴基础设置为刚体,最小网格尺寸取B/20[18]。
三桶导管架基础由三个薄壁吸力桶构成,正三角形分布,参考点RP位于正三角形形心处,与表层土体高度一致。其中,各吸力桶之间的形心距离为30 m;薄壁吸力桶壁厚t = 0.045 m;直径D = 11.8 m;埋深为10.8 m;泥面高度为0.5 m。在建模过程中,为提高计算精度,仅建立1/2模型,并将薄壁吸力桶等效为实体桶,并设置为刚体,同样的,网格尺寸取B/20[18]。
本文中土体强度分布如表1所示。
表 1 土层材料特性
Table 1. Soil properties
土体 性质 su0/kPa γ/(kN·m−3) Soil#1 均质黏土 20 6 Soil#2 非均质黏土 1+z 6 为准确模拟土体材料的非线性关系,黏土采用NGI – ADP土体模型,以考虑土体的非线性变形响应,其非线性应力应变关系如式(1)所示:
$$ {\gamma }^{{\mathrm{t}}}={\gamma }^{{\mathrm{e}}}+{\gamma }^{{\mathrm{p}}}=\dfrac{\dfrac{\tau }{{s}_{{\mathrm{u}}0}}}{\dfrac{{G}_{\text{max}}}{{s}_{{\mathrm{u}}0}}}+{\gamma }^{{\mathrm{p}}} $$ (1) 式中:
γ t ——土体剪应变(无量纲);
γ e ——弹性剪应变(无量纲);
γ p ——塑性剪应变(无量纲);
Gmax/su0 ——剪切模量刚度,本研究中取为定值,Gmax/su0= 250(无量纲);
τ/su0 ——当前剪应力与土体抗剪强度的比值,由式(2)决定(无量纲):
$$ \dfrac{\tau }{{s}_{{\mathrm{u}}0}}=2\dfrac{\sqrt{\dfrac{{\gamma }^{{\mathrm{p}}}}{{\gamma }_{f}^{{\mathrm{p}}}}}}{1+\dfrac{{\gamma }^{{\mathrm{p}}}}{{\mathrm{\gamma }}_{f}^{\mathrm{p}}}} $$ (2) 式中:
γ p ——土体当前塑性剪应变(无量纲);
$ {\gamma }_{f}^{{\mathrm{p}}} $ ——土体破坏时塑性剪应变,本研究中取为定值,${\gamma }_{f}^{{\mathrm{p}}} $= 0.2(无量纲)。
考虑到大变形计算十分耗时,而本文所涉及的模型具有对称性,因此土体仅建立1/4模型。在建模过程中,土体采用欧拉域建模,为确保土体能够在区域内流通,避免边界效应的影响,空气层厚度为20 m,土体厚度为40 m,土体长轴向长度为10A,短轴向宽度为10B。并对桩靴和三桶导管架基础周围土体进行局部加密,加密区域为3A×3B,加密尺寸取B/20[18]。
“桩靴-土体-三桶导管架系统”之间的位置关系由桩靴边缘与吸力桶边缘之间的距离,即净间距L决定,本节以L/B = 0.2工况为例进行建模,装配后具体模型如图1所示。
在模型中,接触行为有:(1)桩靴基础与土体之间的接触行为设置为光滑接触;(2)吸力桶与土体之间的接触行为设置为罚接触,摩擦系数取0.6,并允许接触后分离。
在模型中,约束行为有:(1)对土体各对称面设置相应的速度约束,并将各侧面和底面固定;(2)对三桶导管架基础的参考点施加沿y向的对称约束,即y向的速度和转角约束为0; (3)对桩靴基础贯入速度取0.2 m/s[19]。
-
前人[20]研究结果表明,CEL大变形技术对解决桩靴基础贯入这一问题具有极好的实用性。在本文中,为验证本文所取的最小网格尺寸1/20B和贯入深度0.2 m/s的准确性,使用本文所涉及的土体材料,计算最终的承载力系数Nc,并与Hossain[21]的结果进行对比,计算结果如图2所示。
本文通过CEL技术在均质黏土和非均质黏土中模拟得到的桩靴贯入承载力系数最终均收敛于12.5,介于11.3 ~ 13.1。本文所取的贯入速度和网格尺寸满足要求。
-
由于在本文中,涉及到土体软化工况和无软化工况,相较于无软化工况,软化工况要对划分出相应的完全软化区域(桩靴足迹)和部分软化区域(桩靴足迹周围土体),因此其网格划分情况更为复杂。本文以soil#1中L/B = 0.2工况为例,介绍本文所涉及的小变形模型。
如图3所示在小变形模型中,根据模型对称性,建立1/2模型,参考点位于泥面高度处。其中,吸力桶基础为薄壁桶,不进行抗弯刚度等效,设置为弹性体。土体最大范围为5D×5D×10D,沿邻近桶桶壁和桶底处,最小网格尺寸取0.02D[22],并划分出相应的完全和部分软化区域,其具体范围须由大变形模拟结果确定,详细描述见章节3部分。
-
Liu等[23]将参考点设置到桶底高度处,模拟了长径比为0.5的吸力桶在均质黏土中的各向单轴承载力系数。本节依据文献的设置,进行了模拟。结果如表2所示,模型结果与文献的最大误差仅为7.85%。
表 2 小变形验证结果
Table 2. Validation results of small deformation
文献 承载力系数 水平向/NcH 弯矩向/NcM 竖向/NcV Liu等[23] 4.50 1.63 10.75 本模型 4.37 1.51 10.55 误差/% 2.90 7.85 1.90 -
土体的软化效应是指土体在外部荷载下,土体中产生累积塑性应变,其抗剪强度发生降低的现象。针对完全软化区域,强度衰减系数取灵敏度的倒数,即β = 0.25;针对部分软化区域,强度衰减系数β表达式如式(3)[25]所示。
$$ \beta ={s}_{{\mathrm{u}}}/{s}_{\text{u}\text{0}}={\delta }_{{\mathrm{rem}}}+\left(1-{\delta }_{{\mathrm{rem}}}\right){e}^{\tfrac{-3\xi }{{\xi }_{95}}} $$ (3) 式中:
β ——强度衰减系数(无量纲);
su ——土体强度(kPa);
δrem ——灵敏度St的倒数(无量纲);
ξ ——土体累积塑性应变(无量纲);
ξ95 ——土体延展性系数,一般介于10 – 50[26]之间(无量纲)。
为获得较大的塑性应变,本文$ {\xi }_{95} $取10,从而产生显著的软化效应,以确保安装过程的安全性。
在部分软化区域范围内,可通过土体平均累积塑性应变值PEEQav来获得土体的强度衰减系数。土体的平均累积塑性应变值PEEQav由土体单位的体积分数EVF和PEEQ共同决定,即将各单元的EVF乘以相应PEEQ,然后加总求和得到总体值,再除以总的EVF。需要指出的是,当PEEQ = 0.5确定,此时对应的β = 90%,可忽略不计。
土体的软化范围测定如图8所示,通过该方法可以获得各方向的土体软化范围。
考虑到土体软化将影响桩靴拔出后的吸力桶服役性能,在本节中,选取桩靴完全拔出的深度确定相应的土体软化区域和程度,如表3所示。
表 3 土体部分软化区域和软化程度
Table 3. Softening zone and degree of soil
土体 软化程度 软化区域 备注 PEEQav βav x/B y/B (z−zp)/B soil#1 5.75 0.38 1.3 1.2 0.6 zp = 20 m Soil#2 7.75 0.32 1.5 1.5 0.3 -
为分析桩靴拔出后土体软化对吸力桶各向单轴承载力的影响,本文选取L/B = 0.2和1两种边界工况,采用位移加载法研究了邻近桶的水平向极限承载力Hult、弯矩极限承载力Mult和竖向极限承载力Vult;并提出了各向承载力折减系数α,其可被量化为考虑土体软化与未考虑土体软化的两个承载力比值,介于0~1。
表4详细展示了不考虑土体软化及考虑土体软化(L/B = 0.2 与L/B = 1)3个工况下的极限承载力,包括水平向极限承载力Hult,弯矩极限承载力Mult和竖向极限承载力Vult。L/B = 0.2与L/B = 1两个工况下的各向承载力折减系数α可被评估并展示在表中,以L/B = 0.2的水平向极限承载力Hult为例,承载力折减系数 α,α = 4.2/5.1 = 0.82。以soil#1为例,L/B = 1时各向承载力折减系数均大于94%,被认为当桩靴与桶间距满足L/B ≥ 1时,插拔桩对邻近桶的影响可被忽略。L/B = 0.2时,插拔桩后的邻近桶基水平、弯矩和竖向承载力分别衰减了18%,22%以及27%。各向承载力折减机理可通过对比考虑土体软化与否承载力破坏机理的差异性进行解释。
表 4 邻近桶各向单轴极限承载力及折减系数
Table 4. Uniaxial ultimate bearing capacity and reduction factor near each cylinder
土体 工况 极限承载力 Hult/(MN) Mult/(MNm) Vult/(MN) soil#1 无软化 5.1 37.9 10.4 L/B = 0.2 4.2 29.7 8.2 L/B = 1 4.8 36.4 9.8 承载力折减系数α (0.82;0.96) (0.78;0.96) (0.73;0.94) soil#2 无软化 1.9 15.3 7.6 L/B = 0.2 1.5 11.5 5.5 L/B = 1 1.7 14.5 7.1 承载力折减系数α (0.79;0.89) (0.75;0.95) (0.72;0.93) 注:表中强度折减系数α=(a;b)分别对应工况(L/B = 0.2;L/B = 1) 图9展示了未考虑与考虑插拔桩后土体软化的邻近桶基各向承载力破坏模式的对比。为方便对比,将达到无软化下极限承载力时的土体最大位移定义为Umax,无量纲化后的土体位移为U/Umax = 0~1。从图中可以看出,L/B = 0.2工况下,相对于无软化情况,考虑土体软化后的桶基弯矩和水平向极限承载力土体破坏区域与无软化工况相类似,20%的承载力衰减反应了土体强度的衰减程度。而在竖向荷载作用下,桶周围竖向最大位移仅达到0.67Umax即到达极限承载力(破坏区域较无软化区域发生缩减),这导致了考虑土体软化后的竖向极限承载力更为明显的衰减(27%的衰减)。
Research on the Influence of Pile Shoe Insertion and Removal on the Neighboring Three-Cylinder Jacket Foundation in Clay
-
摘要:
目的 移动式平台进场安装海上风机的插拔桩施工过程风险大,易影响邻近基础结构的工作性能,甚至导致其失稳破坏。 方法 为厘清桩靴插拔过程对临近基础的影响机理,文章针对类矩形桩靴,采用CEL大变形方法,开展了其在均质和非均质黏土中插拔过程模拟,重点分析了插桩过程对邻近导管架基础产生的附加倾覆角演变机理;并基于大变形模拟结果,利用小变形进一步研究了桩靴拔出后土体软化效应对邻近桶各向极限承载力的影响。 结果 研究结果表明,在桩靴挤土作用下,三桶导管架基础均会发生先顺后逆的转动位移,且随着净间距的增加而逐渐减小。同时,挤土导致的土体软化会使邻近桶各向承载力降低。 结论 受插拔桩靴的影响,非均质土中的三桶导管架的倾覆角度更大,所对应的贯入深度更深。插拔桩靴所造成的软化区域影响范围在均质黏土中水平方向延伸较大,深度方向较小。在均质黏土中,平均强度损失较小,三桶导管架的水平向、转角向的承载力损失较少。在均质和非均质黏土中,竖向承载力折减明显,最大折减系数可达0.72。 Abstract:Introduction The construction process of pile insertion and removal for installing offshore wind turbines on mobile platforms is risky, which can easily affect the working performance of adjacent infrastructure, and even lead to its instability and failure. Method In order to clarify the mechanism of the influence of pile shoe insertion and removal on adjacent foundation, this paper used CEL large deformation method to simulate the insertion and removal process of similar rectangular pile shoe in homogeneous and heterogeneous clay, and focused on the analysis of the evolution mechanism of additional overturning angle caused by pile insertion process on adjacent jacket foundation; based on the simulation results of large deformation, the influence of soil softening effect on the ultimate bearing capacity of adjacent buckets after pile shoe removal was further studied by using small deformation. Result The results show that under the action of pile shoe compaction, the rotational displacement of the three-cylinder jacket foundation will take place, and it will decrease gradually with the increase of net spacing. At the same time, the soil softening caused by compaction will reduce the bearing capacity of adjacent cylinder. Conclusion The overturning angle of three-cylinder jacket in heterogeneous soil is larger and the corresponding penetration depth is deeper due to the influence of pile shoe insertion and removal. The affected area of softening area caused by pile shoe insertion and removal is larger in horizontal direction and smaller in depth direction in homogeneous clay. In homogeneous clay, the average strength loss is small, and the horizontal and angular bearing capacity loss of the three-cylinder jacket is small. In homogeneous and heterogeneous clays, the vertical bearing capacity is reduced obviously, and the maximum reduction factor can reach 0.72. -
Key words:
- pile shoe /
- large deformation /
- small deformation /
- softening effect /
- overturning /
- bearing capacity
-
表 1 土层材料特性
Tab. 1. Soil properties
土体 性质 su0/kPa γ/(kN·m−3) Soil#1 均质黏土 20 6 Soil#2 非均质黏土 1+z 6 表 2 小变形验证结果
Tab. 2. Validation results of small deformation
文献 承载力系数 水平向/NcH 弯矩向/NcM 竖向/NcV Liu等[23] 4.50 1.63 10.75 本模型 4.37 1.51 10.55 误差/% 2.90 7.85 1.90 表 3 土体部分软化区域和软化程度
Tab. 3. Softening zone and degree of soil
土体 软化程度 软化区域 备注 PEEQav βav x/B y/B (z−zp)/B soil#1 5.75 0.38 1.3 1.2 0.6 zp = 20 m Soil#2 7.75 0.32 1.5 1.5 0.3 表 4 邻近桶各向单轴极限承载力及折减系数
Tab. 4. Uniaxial ultimate bearing capacity and reduction factor near each cylinder
土体 工况 极限承载力 Hult/(MN) Mult/(MNm) Vult/(MN) soil#1 无软化 5.1 37.9 10.4 L/B = 0.2 4.2 29.7 8.2 L/B = 1 4.8 36.4 9.8 承载力折减系数α (0.82;0.96) (0.78;0.96) (0.73;0.94) soil#2 无软化 1.9 15.3 7.6 L/B = 0.2 1.5 11.5 5.5 L/B = 1 1.7 14.5 7.1 承载力折减系数α (0.79;0.89) (0.75;0.95) (0.72;0.93) 注:表中强度折减系数α=(a;b)分别对应工况(L/B = 0.2;L/B = 1) -
[1] 宋础, 刘汉中. 海上风力发电场开发现状及趋势 [J]. 电力勘测设计, 2006(2): 55-58. DOI: 10.3969/j.issn.1671-9913.2006.02.014. SONG C, LIU H Z. The development and trend of wind power plant at sea [J]. Electric power survey & design, 2006(2): 55-58. DOI: 10.3969/j.issn.1671-9913.2006.02.014. [2] HOSSAIN M S, HU Y, RANDOLPH M F, et al. Limiting cavity depth for spudcan foundations penetrating clay [J]. Géotechnique, 2005, 55(9): 679-690. DOI: 10.1680/geot.2005.55.9.679. [3] HOSSAIN M S, RANDOLPH M F. New mechanism-based design approach for spudcan foundations on single layer clay [J]. Journal of geotechnical and geoenvironmental engineering, 2009, 135(9): 1264-1274. DOI: 10.1061/(ASCE)GT.1943-5606.000 0054. [4] MARTIN C M, HOULSBY G T. Combined loading of spudcan foundations on clay: laboratory tests [J]. Géotechnique, 2000, 50(4): 325-338. DOI: 10.1680/geot.2000.50.4.325. [5] 潘泽华, 刘博, 刘东华. 可移动自升式平台的桩靴沉放安装研究 [J]. 南方能源建设, 2023, 10(1): 48-56. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.006. PAN Z H, LIU B, LIU D H. Research on the penetration of spudcan foundation for mobile jack-up platform [J]. Southern energy construction, 2023, 10(1): 48-56. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.006. [6] ZHANG Y H, WANG D, CASSIDY M J, et al. Effect of installation on the bearing capacity of a spudcan under combined loading in soft clay [J]. Journal of geotechnical and geoenvironmental engineering, 2014, 140(7): 459-477. DOI: 10.1061/(ASCE)GT.1943-5606.0001126. [7] 王凯, 武宗豪, 韩若朗, 等. 砂土中桩靴贯入深度对自升式风电安装船水平承载特性影响的试验研究 [J]. 南方能源建设, 2023, 10(4): 1-10. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.001. WANG K, WU Z H, HAN R L, et al. Model test study on the influence of the spudcan penetration depth on the horizontal bearing characteristics of jack-up vessel for wind turbine installation in sandy soil [J]. Southern energy construction, 2023, 10(4): 1-10. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.001. [8] YUN G, BRANSBY M F. The horizontal-moment capacity of embedded foundations in undrained soil [J]. Canadian geotechnical journal, 2007, 44(4): 409-424. DOI: 10.1139/t06-126. [9] 肖忠. 深埋式大圆筒防波堤稳定性分析的极限平衡法 [C]//中国力学大会-2017暨庆祝中国力学学会成立60周年大会论文集(A), 北京, 2017-08-13. 北京: 中国力学学会, 2017: 1220-1229. XIAO Z. Stability analysis of deeply embedded large cylindrical breakwater based on limit equilibrium method [C]//Chinese Congress of Mechanics-2017 Proceedings of the Conference Celebrating the 60th Anniversary of the Founding of the Chinese Society of Mechanics (A), Beijing, August 13, 2017. Beijing: The Chinese Society of Theoretical and Applied Mechanics, 2017: 1220-1229. [10] FU D F, GAUDIN C, TIAN Y H, et al. Uniaxial capacities of skirted circular foundations in clay [J]. Journal of geotechnical and geoenvironmental engineering, 2017, 143(7): 04017022. DOI: 10.1061/(ASCE)GT.1943-5606.0001685. [11] HUNG L C, KIM S R. Evaluation of undrained bearing capacities of bucket foundations under combined loads [J]. Marine georesources & geotechnology, 2014, 32(1): 76-92. DOI: 10.1080/1064119x.2012.735346. [12] MANA D S K, GOURVENEC S, RANDOLPH M F. Experimental investigation of reverse end bearing of offshore shallow foundations [J]. Canadian geotechnical journal, 2013, 50(10): 1022-1033. DOI: 10.1139/cgj-2012-0428. [13] XIE Y. Centrifuge model study on spudcan-pile interaction [D]. Singapore: National University of Singapore, 2009. [14] THO K K, CHAN N, PAISLEY J. Comparison of coupled and decoupled approaches to spudcan-pile interaction [C]//Frontiers in Offshore Geotechnics, London, 2015: 1317-1322. DOI: 10.1201/b18442-200. [15] ZHANG H Y, LIU R, YUAN Y. Influence of spudcan-pile interaction on laterally loaded piles [J]. Ocean engineering, 2019, 184: 32-39. DOI: 10.1016/j.oceaneng.2019.05.022. [16] FAN Y F, WANG J H, FENG S L. Effect of spudcan penetration on laterally loaded pile groups [J]. Ocean engineering, 2021, 221: 108505. DOI: 10.1016/j.oceaneng.2020.108505. [17] XIAO Z, LU Y M, WANG Y Z, et al. Investigation into the influence of caisson installation process on its capacities in clay [J]. Applied ocean research, 2020, 104: 102370. DOI: 10.1016/j.apor.2020.102370. [18] ZHANG Y H, BIENEN B, CASSIDY M J, et al. The undrained bearing capacity of a spudcan foundation under combined loading in soft clay [J]. Marine structures, 2011, 24(4): 459-477. DOI: 10.1016/j.marstruc.2011.06.002. [19] 戴笑如, 王建华, 范怡飞. 钻井船插桩CEL数值模拟中的若干问题分析 [J]. 岩土力学, 2018, 39(6): 2278-2286. DOI: 10.16285/j.rsm.2016.2142. DAI X R, WANG J H, FAN Y F. Issues of numerical simulation of the spudcan penetration based on CEL method [J]. Rock and soil mechanics, 2018, 39(6): 2278-2286. DOI: 10.16285/j.rsm.2016.2142. [20] THO K K, LEUNG C F, CHOW Y K, et al. Eulerian finite-element technique for analysis of jack-up spudcan penetration [J]. International journal of geomechanics, 2012, 12(1): 64-73. DOI: 10.1061/(asce)gm.1943-5622.0000111. [21] HOSSAIN M. New mechanism-based design approaches for spudcan foundations in clay [D]. Perth: The University of Western Australia, 2008. [22] 肖忠, 王琰, 王元战, 等. 桶间距对四桶吸力式基础各单向承载力的影响及最优间距的确定 [J]. 岩土力学, 2018, 39(10): 3603-3611. DOI: 10.16285/j.rsm.2017.2277. XIAO Z, WANG Y, WANG Y Z, et al. Effect of bucket separation distance on bearing capacity of tetrapod bucket foundations and determination of optimal separation distance [J]. Rock and soil mechanics, 2018, 39(10): 3603-3611. DOI: 10.16285/j.rsm.2017.2277. [23] LIU R, YUAN Y, FU D F, et al. Geotechnical capacities of large-diameter cylindric foundations in clay under general loadings [J]. Applied ocean research, 2021, 117: 102951. DOI: 10.1016/j.apor.2021.102951. [24] SNAME. Recommended practice for site specific assessment of mobile jack-up units [M]. New Jersey: Society of Naval Architects and Marine Engineers, Technical and Research Bulletin5-5A, 2008: 64-109. [25] EINAV I, RANDOLPH M F. Combining upper bound and strain path methods for evaluating penetration resistance [J]. International journal for numerical methods in engineering, 2005, 63(14): 1991-2016. DOI: 10.1002/nme.1350. [26] ZHOU H, RANDOLPH M F. Penetration of full-flow penetrometers in rate-dependent and strain-softening clay [J]. Géotechnique, 2009, 59(2): 79-86. DOI: 10.1680/geot.2007.00164.