[1]
|
BOGDANOV D, RAM M, AGHAHOSSEINI A, et al. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability [J]. Energy, 2021, 227: 120467. DOI: 10.1016/j.energy.2021.120467. |
[2]
|
蔡绍宽. 双碳目标的挑战与电力结构调整趋势展望 [J]. 南方能源建设, 2021, 8(3): 8-17. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.002.
CAI S K. Challenges and prospects for the trends of power structure adjustment under the goal of carbon peak and neutrality [J]. Southern energy construction, 2021, 8(3): 8-17. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.002. |
[3]
|
黄海泉,黄晓巍,姜望,等. 新型配电网分布式储能系统方案及配置研究综述 [J]. 南方能源建设,2024,11(4):42-53. DOI: 10.16516/j.ceec.2024.4.05.
HUANG H Q, HUANG X W, JIANG W, et al. A review of distributed energy storage system solutions and configurations for new distribution grids [J]. Southern energy construction, 2024, 11(4): 42-53. DOI: 10.16516/j.ceec.2024.4.05. |
[4]
|
IEA. Global methane tracker 2022 [R/OL]. (2022-02-23) [2023-05-16]. https://www.iea.org/reports/global-methane-tracker-2022. |
[5]
|
舒印彪, 谢典, 赵良, 等. 碳中和目标下我国再电气化研究 [J]. 中国工程科学, 2022, 24(3): 195-204. DOI: 10.15302/J-SSCAE-2022.03.020.
SHU Y B, XIE D, ZHAO L, et al. Re-electrification in China under the carbon neutrality goal [J]. Strategic study of CAE, 2022, 24(3): 195-204. DOI: 10.15302/J-SSCAE-2022.03.020. |
[6]
|
王放放,杨鹏威,赵光金,等. 新型电力系统下火电机组灵活性运行技术发展及挑战 [J]. 发电技术, 2024, 45(2): 189-198. DOI: 10.12096/j.2096-4528.pgt.23079.
WANG F F, YANG P W, ZHAO G J, et al. Development and challenge of flexible operation technology of thermal power units under new power system [J]. Power generation technology, 2024, 45(2): 189-198. DOI: 10.12096/j.2096-4528.pgt.23079. |
[7]
|
于沛东, 郑印伟, 何晓迪, 等. “双碳”背景下火电企业转型升级与发展对策及路径 [J]. 能源研究与管理, 2022, 14(3): 20-25. DOI: 10.16056/j.2096-7705.2022.03.004.
YU P D, ZHENG Y W, HE X D, et al. Countermeasures and paths for transformation and upgrading and development of thermal power enterprises under the background of "double carbon" [J]. Energy research and management, 2022, 14(3): 20-25. DOI: 10.16056/j.2096-7705.2022.03.004. |
[8]
|
罗海中, 吴大卫, 范永春, 等. 碳中和背景下CCUS技术发展及广东离岸封存潜力评估 [J]. 南方能源建设, 2023, 10(6): 1-13. DOI: 10.16516/ j.gedi.issn2095-8676.2023.06.001.
LUO H Z, WU D W, FAN Y C, et al. Development of CCUS technology in the context of carbon neutrality and assessment of the potential for offshore storage in Guangdong Province [J]. Southern energy construction, 2023, 10(6): 1-13. DOI: 10.16516/ j.gedi.issn2095-8676.2023.06.001. |
[9]
|
袁春峰, 刘锴慧, 张帆, 等. 火电机组一次调频技术研究进展综述 [J]. 南方能源建设, 2022, 9(3): 1-8. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.001.
YUAN C F, LIU K H, ZHANG F, et al. Review on the research progress of primary frequency modulation technology for thermal power units [J]. Southern energy construction, 2022, 9(3): 1-8. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.001. |
[10]
|
卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战 [J]. 电力系统自动化, 2021, 45(9): 171-191. DOI: 10.7500/AEPS20200922001.
ZHUO Z Y, ZHANG N, XIE X R, et al. Key technologies and developing challenges of power system with high proportion of renewable energy [J]. Automation of electric power systems, 2021, 45(9): 171-191. DOI: 10.7500/AEPS20200922001. |
[11]
|
李维聪, 胡玉涛, 李伟. 基于大数据平台的智能电厂数据及系统集成方案研究 [J]. 南方能源建设, 2022, 9(4): 143-149. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.018.
LI W C, HU Y T, LI W. Research on data and system integration of intelligent power plant based on big data platform [J]. Southern energy construction, 2022, 9(4): 143-149. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.018. |
[12]
|
GAO D W, WANG Q, ZHANG F, et al. Application of AI techniques in monitoring and operation of power systems [J]. Frontiers in energy, 2019, 13(1): 71-85. DOI: 10.1007/s11708-018-0589-4. |
[13]
|
中华人民共和国国务院. 新一代人工智能发展规划 [EB/OL]. (2017-07-20) [2022-03-05]. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm.
The State Council of the People's Republic of China. Artificial intelligence [EB/OL]. (2017-07-20) [2022-03-05]. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm. |
[14]
|
姚建国, 余涛, 杨胜春, 等. 提升电网调度中人工智能可用性的混合增强智能知识演化技术 [J]. 电力系统自动化, 2022, 46(20): 1-12. DOI: 10.7500/AEPS20220110004.
YAO J G, YU T, YANG S C, et al. Knowledge evolution technology based on hybrid-augmented intelligence for improving practicability of artificial intelligence in power grid dispatch [J]. Automation of electric power systems, 2022, 46(20): 1-12. DOI: 10.7500/AEPS20220110004. |
[15]
|
王川, 张杰, 李伟, 等. 人工智能技术在电力调度自动化系统中的应用分析 [J]. 科技创新与应用, 2021, 11(12): 149-151.
WANG C, ZHANG J, LI W, et al. Application analysis of artificial intelligence technology in power dispatching automation system [J]. Technology innovation and application, 2021, 11(12): 149-151. |
[16]
|
CAI G L, WANG G C, GUAN C L, et al. Based on clustering algorithm expert system of self-learning rule base [C]//2022 34th Chinese Control and Decision Conference, Hefei, China, August 15-17, 2022. Hefei: IEEE, 2022: 1563-1566. DOI: 10.1109/CCDC55256.2022.10033463. |
[17]
|
袁丁, 郝威, 张可可, 等. AI技术在电力调度自动化中的应用 [J]. 电子技术与软件工程, 2021(22): 119-121.
YUAN D, HAO W, ZHANG K K, et al. Application of AI technology in power dispatching automation [J]. Electronic technology and software engineering, 2021(22): 119-121. |
[18]
|
WANG X L, LU M X, CAI D D, et al. The applications of information visualization in power systems [J]. Applied mechanics and materials, 2014, 721: 703-706. DOI: 10.4028/www.scientific.net/AMM.721.703. |
[19]
|
ZHU G R, ZHANG Y H, CHENG F, et al. Research on prediction of electric quantity based on artificial neural network [J]. IOP conference series: materials science and engineering, 2018, 452(3): 032110. DOI: 10.1088/1757-899X/452/3/032110. |
[20]
|
赵晋泉, 夏雪, 徐春雷, 等. 新一代人工智能技术在电力系统调度运行中的应用评述 [J]. 电力系统自动化, 2020, 44(24): 1-10. DOI: 10.7500/AEPS20200720009.
ZHAO J Q, XIA X, XU C L, et al. Review on application of new generation artificial intelligence technology in power system dispatching and operation [J]. Automation of electric power systems, 2020, 44(24): 1-10. DOI: 10.7500/AEPS20200720009. |
[21]
|
BARRETO N E M, RODRIGUES R, SCHUMACHER R, et al. Artificial neural network approach for fault detection and identification in power systems with wide area measurement systems [J]. Journal of control, automation and electrical systems, 2021, 32(6): 1617-1626. DOI: 10.1007/s40313-021-00785-y. |
[22]
|
ZHU Z W. Research on the protection of power system based on artificial intelligence [J]. Journal of residuals science & technology, 2016, 13(5): 413-422. |
[23]
|
ZHAO X Y, ZHANG X Y. Artificial intelligence applications in power system [C]//Proceedings of the 2016 2nd International Conference on Artificial Intelligence and Industrial Engineering (AIIE 2016). 2016: 158-161. |
[24]
|
周元哲. 电力一次设备在线监测与故障诊断 [D]. 济南: 山东大学, 2016.
ZHOU Y Z. On line monitoring and fault diagnosis of power primary equipment [D]. Ji'nan: Shandong University, 2016. |
[25]
|
叶利军. 基于人工智能的通信自动控制系统 [J]. 自动化技术与应用, 2022, 41(9): 36-39. DOI: 10.20033/j.1003-7241(2022)09-0036-04.
YE L J. Research on communication automatic control system based on artificial intelligence [J]. Techniques of automation and applications, 2022, 41(9): 36-39. DOI: 10.20033/j.1003-7241(2022)09-0036-04. |
[26]
|
陈学伟, 王伟, 田新成, 等. 基于AI技术的电力生产管理自动化系统研究 [J]. 电工技术, 2022(16): 24-26,29. DOI: 10.19768/j.cnki.dgjs.2022.16.007.
CHEN X W, WANG W, TIAN X C, et al. Research on automation system of electric power production management based on AI technology [J]. Electric engineering, 2022(16): 24-26,29. DOI: 10.19768/j.cnki.dgjs.2022.16.007. |
[27]
|
WANG S, LI B, LI G Z, et al. Short-term wind power prediction based on multidimensional data cleaning and feature reconfiguration [J]. Applied energy, 2021, 292: 116851. DOI: 10.1016/j.apenergy.2021.116851. |
[28]
|
ZHU L P, LU C, DONG Z Y, et al. Imbalance learning machine-based power system short-term voltage stability assessment [J]. IEEE transactions on industrial informatics, 2017, 13(5): 2533-2543. DOI: 10.1109/TII.2017.2696534. |
[29]
|
LI N, LI B L, GAO L. Transient stability assessment of power system based on XGBoost and factorization machine [J]. IEEE access, 2020, 8: 28403-28414. DOI: 10.1109/ACCESS.2020.2969446. |
[30]
|
杨博, 陈义军, 姚伟, 等. 基于新一代人工智能技术的电力系统稳定评估与决策综述 [J]. 电力系统自动化, 2022, 46(22): 200-223. DOI: 10.7500/AEPS20220114001.
YANG B, CHEN Y J, YAO W, et al. Review on stability assessment and decision for power systems based on new-generation artificial intelligence technology [J]. Automation of electric power systems, 2022, 46(22): 200-223. DOI: 10.7500/AEPS20220114001. |
[31]
|
郭梦轩, 管霖, 苏寅生, 等. 基于改进边图卷积网络的电力系统小干扰稳定评估模型 [J]. 电网技术, 2022, 46(6): 2095-2103. DOI: 10.13335/j.1000-3673.pst.2021.0855.
GUO M X, GUAN L, SU Y S, et al. Small-signal stability assessment model based on improved edge graph convolutional networks of power system [J]. Power system technology, 2022, 46(6): 2095-2103. DOI: 10.13335/j.1000-3673.pst.2021.0855. |
[32]
|
李常刚, 李华瑞, 刘玉田, 等. 大电网动态安全风险智能评估系统 [J]. 电力系统自动化, 2019, 43(22): 67-75. DOI: 10.7500/AEPS20190507003.
LI C G, LI H R, LIU Y T, et al. Intelligent assessment system for dynamic security risk of large-scale power grid [J]. Automation of electric power systems, 2019, 43(22): 67-75. DOI: 10.7500/AEPS20190507003. |
[33]
|
XIE J, SUN W. A transfer and deep learning-based method for online frequency stability assessment and control [J]. IEEE access, 2021, 9: 75712-75721. DOI: 10.1109/ACCESS.2021.3082001. |
[34]
|
王海超. 基于深度学习的智能电网电压稳定性评估研究 [D]. 北京: 华北电力大学(北京), 2020. DOI: 10.27140/d.cnki.ghbbu.2020.001275.
WANG H C. Smart grid voltage stability evaluation research based on deep learning [D]. Beijing: North China Electric Power University (Beijing), 2020. DOI: 10.27140/d.cnki.ghbbu.2020.001275. |
[35]
|
朱林, 张健, 陈达, 等. 面向暂态电压稳定评估的卷积神经网络输入特征构建方法 [J]. 电力系统自动化, 2022, 46(1): 85-93. DOI: 10.7500/AEPS20201126003.
ZHU L, ZHANG J, CHEN D, et al. Construction method for input features of convolutional neural network for transient voltage stability assessment [J]. Automation of electric power systems, 2022, 46(1): 85-93. DOI: 10.7500/AEPS20201126003. |
[36]
|
张子扬, 张宁, 杜尔顺, 等. 双高电力系统频率安全问题评述及其应对措施 [J]. 中国电机工程学报, 2022, 42(1): 1-24. DOI: 10.13334/j.0258-8013.pcsee.211425.
ZHANG Z Y, ZHANG N, DU E S, et al. Review and countermeasures on frequency security issues of power systems with high shares of renewables and power electronics [J]. Proceedings of the CSEE, 2022, 42(1): 1-24. DOI: 10.13334/j.0258-8013.pcsee.211425. |
[37]
|
马宁宁, 谢小荣, 唐健, 等. “双高”电力系统宽频振荡广域监测与预警系统 [J]. 清华大学学报(自然科学版), 2021, 61(5): 457-464. DOI: 10.16511/j.cnki.qhdxxb.2021.21.014.
MA N N, XIE X R, TANG J, et al. Wide-area measurement and early warning system for wide-band oscillations in "double-high" power systems [J]. Journal of Tsinghua University (science and technology), 2021, 61(5): 457-464. DOI: 10.16511/j.cnki.qhdxxb.2021.21.014. |
[38]
|
周念成, 廖建权, 王强钢, 等. 深度学习在智能电网中的应用现状分析与展望 [J]. 电力系统自动化, 2019, 43(4): 180-191. DOI: 10.7500/AEPS20180323002.
ZHOU N C, LIAO J Q, WANG Q G, et al. Analysis and prospect of deep learning application in smart grid [J]. Automation of electric power systems, 2019, 43(4): 180-191. DOI: 10.7500/AEPS20180323002. |
[39]
|
HUANG Q H, HUANG R K, HAO W T, et al. Adaptive power system emergency control using deep reinforcement learning [J]. IEEE transactions on smart grid, 2020, 11(2): 1171-1182. DOI: 10.1109/TSG.2019.2933191. |
[40]
|
冯双, 陈佳宁, 汤奕, 等. 基于SPWVD图像和深度迁移学习的强迫振荡源定位方法 [J]. 电力系统自动化, 2020, 44(17): 78-87. DOI: 10.7500/AEPS20191225001.
FENG S, CHEN J N, TANG Y, et al. Location method of forced oscillation source based on SPWVD image and deep transfer learning [J]. Automation of electric power systems, 2020, 44(17): 78-87. DOI: 10.7500/AEPS20191225001. |
[41]
|
孙润稼, 刘玉田. 基于深度学习和蒙特卡洛树搜索的机组恢复在线决策 [J]. 电力系统自动化, 2018, 42(14): 40-47. DOI: 10.7500/AEPS20170930011.
SUN R J, LIU Y T. Online decision-making for generator start-up based on deep learning and Monte Carlo tree search [J]. Automation of electric power systems, 2018, 42(14): 40-47. DOI: 10.7500/AEPS20170930011. |
[42]
|
周艳真, 吴俊勇, 冀鲁豫, 等. 基于两阶段支持向量机的电力系统暂态稳定预测及预防控制 [J]. 中国电机工程学报, 2018, 38(1): 137-147. DOI: 10.13334/j.0258-8013.pcsee.162072.
ZHOU Y Z, WU J Y, JI L Y, et al. Two-stage support vector machines for transient stability prediction and preventive control of power systems [J]. Proceedings of the CSEE, 2018, 38(1): 137-147. DOI: 10.13334/j.0258-8013.pcsee.162072. |
[43]
|
田芳, 周孝信, 史东宇, 等. 基于卷积神经网络的电力系统暂态稳定预防控制方法 [J]. 电力系统保护与控制, 2020, 48(18): 1-8. DOI: 10.19783/j.cnki.pspc.191310.
TIAN F, ZHOU X X, SHI D Y, et al. A preventive control method of power system transient stability based on a convolutional neural network [J]. Power system protection and control, 2020, 48(18): 1-8. DOI: 10.19783/j.cnki.pspc.191310. |
[44]
|
高盛,许沛华,陈正洪. 基于机器学习的风电场风速多模式集合预报 [J]. 南方能源建设,2024,11(1):85-95. DOI: 10.16516/ j.ceec.2024.1.09.
GAO S, XU P H, CHEN Z H. Wind speed multi-mode ensemble forecasting for wind farms based on machine learning [J]. Southern energy construction, 2024, 11(1): 85-95. DOI: 10.16516/ j.ceec.2024.1.09. |
[45]
|
梁凌宇,赵翔宇,黄文琦,等. 融合多类人工智能模型的电力系统负荷短期预测技术研究 [J]. 电力大数据,2022,25(6):16-23. DOI: 10.19317/j.cnki.1008-083x.2022.06.004.
LIANG L Y, ZHAO X Y, HUANG W Q, et al. Research on power system load short-term forecasting technology integrating multiple artificial intelligence models [J]. Power systems and big data,2022,25(6):16-23. DOI: 10.19317/j.cnki.1008-083x.2022.06.004. |