-
多个接地极注入同极性电流与异极性电流时,对参数影响较大,本次研究分别计算两处接地极同极性运行和异极性运行的组合情况。
根据极址测量的土壤电阻率,接地极允许最大跨步电势为11.31 V。
-
分别计算乌东德和牛从受端共用两个垂直型接地极极环独立运行,和滇西北采用深井接地极独立运行时的跨步电势,再与乌东德和牛从共用两个垂直型接地极、滇西北采用深井接地极同时运行时的跨步电势做对比,同极性和异极性计算结果分别见表1和表2。
表 1 接地极同极性运行工况下计算结果
Table 1. Calculation results of the grounding electrode under the operating conditions with the same polarity
运行工况 垂直接地极共用 深井接地极独立运行 接地极共用 注入电流 乌东德+牛从
6 400 A滇西北3 821 A 乌东德+牛从
6 400 A滇西北
3821 A垂直接地极共
用跨步电势8.84 V — 9.08 V 深井跨步电势 — 1.1 V 1.82 V 表 2 接地极异极性运行工况下计算结果
Table 2. Calculation results of the grounding electrode under the operating conditions with different polarity
运行工况 垂直接地极共用 深井接地极独立运行 接地极共用 注入电流 乌东德+牛从
6 400 A滇西北3 821 A 乌东德+牛从
6 400 A滇西北
−3 821 A垂直接地极共
用跨步电势8.84 V — 9.03 V 深井跨步电势 — 1.1 V 2.72 V 无论是同极性还是异极性运行,接地极同时运行时均存在相互影响,使得跨步电势相对于独立运行值有差异。深井接地极相比于垂直接地极能极大改善跨步电势分布,减小最大跨步电势。两种不同的运行工况,其跨步电势均未超出允许值,且有较大裕度,最大跨步电势为9.08 V。
-
如表3所示,3个换流站共用两个垂直型接地极极环,跨步电势均未超允许值,最大跨步电势为9.14 V,有较大裕度。
表 3 共用接地极计算结果
Table 3. Calculation results of the shared grounding electrode
运行工况 接地极共用 注入电流 最大为牛从两回额定电流之和6 400 A 滇西北垂直接地极跨步电势 9.14 V 乌东德垂直接地极跨步电势 8.23 V -
如表4和表5所示,方案三中两种不同的运行工况,其跨步电势均未超出允许值,最大跨步电势为10.67 V,安全裕度已较小。
表 4 接地极同极性运行工况下计算结果
Table 4. Calculation results of the grounding electrode under the operating conditions with the same polarity
运行工况 滇西北垂直接
地极独立运行深井接地极独立运行 接地极共用 注入电流 滇西北
3821 A乌东德+
牛从6400 A乌东德+牛从
6 400 A滇西北
3821 A滇西北垂直接
地极跨步电势10.17 V — 10.67 V 深井跨步电势 — 0.66 V 2.15 V 表 5 接地极异极性运行工况下计算结果
Table 5. Calculation results of the grounding electrode under the operating conditions with different polarity
运行工况 滇西北垂直接
地极独立运行深井接地极独立运行 接地极共用 注入电流 滇西北
3821 A乌东德+
牛从6 400 A乌东德+牛从
6 400 A滇西北
−3 821 A滇西北垂直接
地极跨步电势10.17 V 10.05 V 深井跨步电势 0.66 V 3.02 V
Research on the Scheme of Shared Grounding Electrode for Four-Circuit HVDC System
-
摘要:
目的 为解决接地极选址困难问题,采用共用接地极的方案,共用接地极可由独立接地极改造而来。四回直流共用接地极情况较为少见,其共用方案需要谨慎研究。 方法 结合实际工程,针对现存独立接地极情况,提出了极址3种接地极共用方案,通过仿真,研究垂直接地极和深井接地极跨步电压和电极分流。 结果 多个接地极同时运行时,由于导体间的屏蔽效应,其电气特征相比于独立运行有所区别,同极性运行时,无论是垂直接地极还是深井接地极,跨步电势相比于其独立运行时都有所增大,电极电流分布更不均匀。 结论 3种可行方案下,跨步电压均未超过限值,但方案一下跨步电压最小,垂直接地极电极电流分布差异不大。 Abstract:Introduction To address the difficulty in selecting the grounding electrode location, a shared grounding electrode scheme is adopted. The shared grounding electrode can be transformed from an independent grounding electrode. It is relatively uncommon for a four-circuit DC system to share a grounding electrode, so its sharing scheme needs to be carefully studied. Method Based on the actual project and the existing situation of independent grounding electrodes, three schemes of grounding electrode sharing at the electrode location were proposed. Through simulation, the step voltage and current distribution of vertical grounding electrodes and deep well grounding electrodes were studied. Result When multiple grounding electrodes operate simultaneously, due to the shielding effect between conductors, their electrical characteristics differ from those of independent operation. When operating with the same polarity, regardless of whether it is a vertical grounding electrode or a deep well grounding electrode, the step potential increases compared to when it operates independently, and the electrode current distribution is more uneven. Conclusion Under the three feasible schemes, the step voltage does not exceed the limit value, but the step voltage is the smallest under scheme I, and there is no significant difference in the current distribution of the vertical grounding electrode. -
Key words:
- HVDC /
- grounding electrode /
- share /
- vertical grounding electrode /
- deep well grounding electrode
-
表 1 接地极同极性运行工况下计算结果
Tab. 1. Calculation results of the grounding electrode under the operating conditions with the same polarity
运行工况 垂直接地极共用 深井接地极独立运行 接地极共用 注入电流 乌东德+牛从
6 400 A滇西北3 821 A 乌东德+牛从
6 400 A滇西北
3821 A垂直接地极共
用跨步电势8.84 V — 9.08 V 深井跨步电势 — 1.1 V 1.82 V 表 2 接地极异极性运行工况下计算结果
Tab. 2. Calculation results of the grounding electrode under the operating conditions with different polarity
运行工况 垂直接地极共用 深井接地极独立运行 接地极共用 注入电流 乌东德+牛从
6 400 A滇西北3 821 A 乌东德+牛从
6 400 A滇西北
−3 821 A垂直接地极共
用跨步电势8.84 V — 9.03 V 深井跨步电势 — 1.1 V 2.72 V 表 3 共用接地极计算结果
Tab. 3. Calculation results of the shared grounding electrode
运行工况 接地极共用 注入电流 最大为牛从两回额定电流之和6 400 A 滇西北垂直接地极跨步电势 9.14 V 乌东德垂直接地极跨步电势 8.23 V 表 4 接地极同极性运行工况下计算结果
Tab. 4. Calculation results of the grounding electrode under the operating conditions with the same polarity
运行工况 滇西北垂直接
地极独立运行深井接地极独立运行 接地极共用 注入电流 滇西北
3821 A乌东德+
牛从6400 A乌东德+牛从
6 400 A滇西北
3821 A滇西北垂直接
地极跨步电势10.17 V — 10.67 V 深井跨步电势 — 0.66 V 2.15 V 表 5 接地极异极性运行工况下计算结果
Tab. 5. Calculation results of the grounding electrode under the operating conditions with different polarity
运行工况 滇西北垂直接
地极独立运行深井接地极独立运行 接地极共用 注入电流 滇西北
3821 A乌东德+
牛从6 400 A乌东德+牛从
6 400 A滇西北
−3 821 A滇西北垂直接
地极跨步电势10.17 V 10.05 V 深井跨步电势 0.66 V 3.02 V -
[1] 张富春, 郭婷, 黎晓辰, 等. ±800 kV与±500 kV换流站共用接地极时入地电流对极址附近电位分布的影响 [J]. 电力建设, 2014, 35(7): 115-120. DOI: 10.3969/j.issn.1000-7229.2014.07.020. ZHANG F C, GUO T, LI X C, et al. Influence of ground-return current of ±800 kV and ±500 kV converter stations sharing a common grounding electrode on potential distribution [J]. Electric power construction, 2014, 35(7): 115-120. DOI: 10.3969/j.issn.1000-7229.2014.07.020. [2] 孙冰, 罗忠游, 于永军, 等. ±1 100 kV昌吉换流站与±800 kV天山换流站共同作用的直流偏磁问题研究 [J]. 高压电器, 2020, 56(8): 121-127. DOI: 10.13296/j.1001-1609.hva.2020.08.019. SUN B, LUO Z Y, YU Y J, et al. Study on the DC magnetic bias of the ±1 100 kV Changji converter station and the ±800 kV Tianshan converter station [J]. High voltage apparatus, 2020, 56(8): 121-127. DOI: 10.13296/j.1001-1609.hva.2020.08.019. [3] 曾富, 樊艳芳, 耿山. 特高压直流接地极优化选址研究 [J]. 高压电器, 2020, 56(10): 205-211. DOI: 10.13296/j.1001-1609.hva.2020.10.032. ZENG F, FAN Y F, GENG S. Research on optimal location of UHVDC grounding electrode [J]. High voltage apparatus, 2020, 56(10): 205-211. DOI: 10.13296/j.1001-1609.hva.2020.10.032. [4] 陈俊宇, 张卓杰. 南方电网直流工程共用接地极的风险及影响分析 [J]. 电工电气, 2021(11): 19-22,29. DOI: 10.3969/j.issn.1007-3175.2021.11.004. CHEN J Y, ZHANG Z J. Analysis on the risks and impact of common grounding electrodes in the DC project of China southern power grid [J]. Electrotechnics electric, 2021(11): 19-22,29. DOI: 10.3969/j.issn.1007-3175.2021.11.004. [5] 李瑞显, 胡上茂, 罗炜, 等. 鱼龙岭共用接地极线路检修对换流站内变压器及人身安全的影响 [J]. 南方电网技术, 2019, 13(7): 58-63. DOI: 10.13648/j.cnki.issn1674-0629.2019.07.008. LI R X, HU S M, LUO W, et al. Influence of Yulongling common grounding electrode line maintenance on transformers and personal safety in converter station [J]. Southern power system technology, 2019, 13(7): 58-63. DOI: 10.13648/j.cnki.issn1674-0629.2019.07.008. [6] 徐攀腾, 朱博, 喻文翔, 等. 乌东德与滇西北共用接地极线对直流输电系统影响研究 [J]. 电工技术, 2022(7): 49-53. DOI: 10.19768/j.cnki.dgjs.2022.07.014. XU P T, ZHU B, YU W X, et al. Research on the influence of the common ground electrode line between Wudongde and northwest Yunnan on the HVDC transmission system [J]. Electric engineering, 2022(7): 49-53. DOI: 10.19768/j.cnki.dgjs.2022.07.014. [7] 李坤泉, 李瑞芳, 杜浩, 等. 超高压直流输电线路共用接地极电气特性研究 [J]. 电工技术, 2021(16): 124-128. DOI: 10.19768/j.cnki.dgjs.2021.16.044. LI K Q, LI R F, DU H, et al. Research on characteristics of common grounding electrode in EHVDC transmission lines [J]. Electric engineering, 2021(16): 124-128. DOI: 10.19768/j.cnki.dgjs.2021.16.044. [8] 孔志达. 独立接地极改造为共用接地极方案研究 [J]. 南方能源建设, 2015, 2(3): 112-117. DOI: 10.16516/j.gedi.issn2095-8676.2015.03.022. KONG Z D. Research on the plan of independent earth electrode reconstructed to common earth electrode [J]. Southern energy construction, 2015, 2(3): 112-117. DOI: 10.16516/j.gedi.issn2095-8676.2015.03.022. [9] 卢毓欣, 赵晓斌, 李岩, 等. 共用接地极直流输电工程运行方式转换过程中换流站地网分流的影响及解决方案 [J]. 南方电网技术, 2022, 16(2): 103-110. DOI: 10.13648/j.cnki.issn1674-0629.2022.02.014. LU Y X, ZHAO X B, LI Y, et al. Influence and countermeasures of the shunt current of the grounding grid of the converter station in operation modes conversion for HVDC transmission project with common ground electrode [J]. Southern power system technology, 2022, 16(2): 103-110. DOI: 10.13648/j.cnki.issn1674-0629.2022.02.014. [10] 张涛, 谈小瑞, 黄悦华. 特高压直流共用接地极的暂态温升分析 [J]. 高电压技术, 2015, 41(11): 3672-3678. DOI: 10.13336/j.1003-6520.hve.2015.11.021. ZHANG T, TAN X R, HUANG Y H. Analysis on transient temperature rise of UHVDC common grounding electrode [J]. High voltage engineering, 2015, 41(11): 3672-3678. DOI: 10.13336/j.1003-6520.hve.2015.11.021.