-
“十二五”时期,我国新能源进入规模化发展阶段,海上风电是其中的重要领域。国家组织沿海各省(市)编制海上风电发展规划,推动试点示范项目建设,制定了海上风电标杆电价、全额保障收购等政策体系,积极推动海上风电发展。预计到2020年,海上风电开工建设规模可达到10 GW,累计并网容量达到5 GW以上,我国海上风电已经迎来快速增长期。风电机组设备是海上风电项目收益得到有效实现的最重要载体,国产大容量风电机组成熟度还有待检验,可靠性也有待提升。值此“互联网+”时代,通过智能物联网、大数据分析等先进技术,提早预判风电机组设备潜在故障点,可以最大限度提升项目的经济效益,也为风电机组设计、制造技术的持续进步创造了条件。
海上风电由于其特殊的地理条件,在设备运行的可靠性方面有较高的要求。与陆上风电场相比,海上风电场的运行维护更加困难,如风、浪、潮汐,让运维设施难以靠近风力发电机组,从而使机组不得不面临更长的停机时间及更低的可利用率。因而,考虑一种缩短停机时间、提高可利用率、提高收益的方式显得非常重要。通过风电机组的设备故障提前预警,提前发现问题,提前组合天气、出海保障、船只等条件,有计划地执行设备预防性维护,提高海上风电机组的运检安全性、可靠性、及时性。
海上风电设备的故障预警,提前预测设备可能存在的隐患,同时与设备维护系统的集成,优化现有保养、巡检任务流程,通过健康预警出来的隐患级别,自动形成优化的排查周期,使每次的设备保养、巡检都带着解决隐患的问题去,工作任务更加明确,达到真正的设备预防性维护效果。
Research on Intelligent Fault Warning System of Offshore Wind Turbines
-
摘要:
[目的] 随着海上风电机组装机容量的飞速发展,业主对海上风电机组的安全运行越来越重视,对风机设备可靠性的要求越来越高。传统的设备故障事后处理模式不仅不能保证发电设备运行的可靠性,而且海上风电运行维护的可达性差,被动的故障后维修无形中增加了巨大的电量损失,已完全不能满足海上风电的要求。设备故障早期智能预警系统可以提前预知设备存在的问题,把设备隐患消除在萌芽状态之内,真正做到“防患于未然”。 [方法] 通过对海上风电机组关键部件的数据采集,结合历史数据提取故障特征,利用神经网络等大数据算法,实现发电机温度异常、发电机轴承异常、齿轮箱散热异常、齿形带断裂警告等设备故障的提前预判。 [结果] 根据对设备早期故障的提前预判,可以综合考虑海上风电的气象、台风、海况、海事等维护特点,有计划地执行积极的预防性维护策略,能够有效地避免大部件故障的发生或风机整机失效情况的发生。 [结论] 研究成果可提高海上风电机组的可靠性和风电场整体发电效益。 Abstract:[Introduction] With the rapid development of offshore wind turbine installed capacity, the owner attaches more and more importance to safe operation of offshore wind turbines, and imposes more stringent requirements for reliability. The traditional after-fault trouble-shooting pattern cannot ensure reliability of offshore wind power equipment. Moreover, as the accessibility of the offshore wind power equipment is unfavorable, the passive trouble-shooting pattern leads to huge loss of outgoing power, which fails to meet the latest requirements of the modern offshore wind farm. The intelligent fault warning system can predict the abnormal conditions of equipment and eliminate the hidden danger at its very beginning stage, preventing it from further deterioration. [Method] The forecast of critical faults, such as generator temperature abnormal, generator bearing abnormal and gear box heat dissipation abnormal and cog belt rupture, can be achieved in advance, by collecting the data of wind turbine unit critical components, summing up the fault characteristics from historical data and employing the big data algorithm including neural network. [Result] In accordance with early warning of equipment faults, active and preventive maintenance strategy can be practiced in a planned manner, in combination with the OWF maintenance characteristics of meteorology, typhoon, oceanic and maritime conditions. Thus, large component faults and wind turbine unit failures can be effectively prevented. [Conclusion] The research results could enhance the wind turbine unit reliability and ensure the overall gains of the offshore wind farm. -
[1] 袁晓东. 机电设备安装与维护 [M]. 北京:北京理工大学出版社,2008. YUAN X D. Installation and maintenance of mechanical and electrical equipment [M]. Beijing:Beijing Institute of Technology Press,2008. [2] 夏虹. 设备故障诊断技术 [M]. 哈尔滨:哈尔滨工业大学出版社,2010. XIA H. Equipment fault diagnosis technology [M]. Harbin: Harbin Cartographic Publishing House,2010. [3] 王晶晶,吴晓铃. 风电齿轮箱的发展及技术分析[J]. 机械传动,2008,32(6):5-8. WANG J J,WU X L. Development and technical analysis of wind power gear box[J]. Mechanical Drive,2008,32(6):5-8. [4] 方永峰,陈建军,马红坡. 多种随机载荷下的结构动态可靠性计算[J]. 振动与冲击,2013,32(1):118-121. FANG Y F,CHEN J J,MA H P. Dynamic reliability calculation of structures under a variety of random loads[J]. Vibration and Shock,2013,32(1):118-121. [5] 王磊,高瑞珍,陈柳,等. 风电系统故障诊断与容错控制 [M]. 北京:科学出版社,2016. WANG L,GAO R Z,CHEN L,et al. Fault diagnosis and fault tolerance control of wind power system [M]. Beijing:Beijing Science Press,2016.