-
根据国内历年来气象统计数据以及电网冰雪灾害统计调研结果表明:我国电网在预防雨雪冰冻灾害方面形势严峻,在雨雪冰冻天气环境下,很多输电线路和电力设施出现冰雪覆盖的情况,线路断路器跳闸、线路杆塔倒塌等现象频繁发生,使得输电网的安全可靠运行受到严重的威胁,造成电力中断,损失惨重。自从2008年以来,我们国家从北至南发生了大范围的冰冻雨雪气象情况,使得输电电网的大量设施覆冰雪严重,许多设施由此受到不同程度的损坏。据统计,在2008年的冰灾时期,仅湖南省电网区域就有28条500 kV输电线路发生了冰山故障现象,占比同等级电压输电线路总数量的87.5%,220 kV及以下输电线路发生覆冰闪络故障的线路数量则超过百条;全省的500 kV输电线路发生的跳闸次数高达89条次,14条回路、174座基塔发生了倒塔断线情况。可见冰灾天气对电网造成的损害范围之大、数量之多、后果之严重[1]。
输电线路覆冰不仅危及电力系统的安全稳定运行性,而且对国民生产生活造成巨大影响。线路覆冰增加了导线、杆塔和金具的荷载,当覆冰达到一定程度时,实际荷载超越了设计荷载,就会导致杆倒塌、线路断线等情况发生,进一步造成输电网架的大范围停电事故[2]。同时,线路覆冰雪造成的停电事故发生在严冬季节,由于大雪封山封路,交通极为不便,从而使得故障抢修十分艰难,无法做到及时抢修,也就导致了长时间停电,给社会的生产、生活造成极大的影响,给国民经济造成重大损失。为了避免此类冰雪灾害事故的重演,必须加强该重要输电通道的抵御冰雪灾害的能力,以保证外送通道的安全运行。其中直流融冰装置是一种行之有效且近年来应用广泛的防冰装置。
输电线路在正常运行工况下,线路杆塔两侧受到的架空导、地线所产生的张力是基本保持平衡的。然而在冬季雨雪天气下,由于线路上覆冰不均匀,杆塔的这种平衡受力状态被破坏,引起张力差;当张力差增大到一定程度时,杆塔由于承受不住张力便会发生倾斜、弯曲现象。当发生输电线路覆冰雪现象时,如果输电线路的设备设施诸如导地线、线路金具、绝缘子等所承受的荷载超出其设计承受能力时,就会导致导地线拉断、金具脱落、绝缘子破损等情况的发生,从而进一步导致线路杆塔折断、倒塌。
架空地线又称避雷线,简称地线,主要用于保护架空输电线路免遭雷闪袭击,提高线路运行的安全性,是高压输电线路结构的重要组成部分。在冰雪天气情况下,虽然架空地线和输电导线一样都处在同样的环境中,但是输电导线由于自身带有负荷电流发热可以提高抗覆冰能力,而架空地线却没有导线这样的优势,所以对于架空地线来说,相较于导线其抗覆冰能力更差,即其线上覆冰厚度会远远超过输电导线。当架空地线上的覆冰荷载值超出其设计承受值时,就会发生弧垂不足而对线路放电或者直接断裂。同时,现在大部分输电线路的架空地线都复合了电力通信网,架空地线断裂也会导致电力通信通道中断,使得电力控制系统的安全运行受到严重影响。
Overview on Technology of New Model DC Ice-melting Device for Phase Wire and Ground Wire of Transmission Line
-
摘要:
[目的] 在雨雪冰冻气候环境下,为了避免输电线路冰雪灾害事故的发生,需对输电线路进行融冰以加强其抵御冰雪灾害的能力,直流融冰装置是一种近年来应用广泛且行之有效的融冰装置。 [方法] 通过建立一种可行且有意义的技术来解决采用完全独立的两套融冰设备直流融冰装置设备投资大,占地面积增大,运维等费用成倍增加,整体经济性差的问题。提出一种可行的方法,即介绍了一种导线及地线复用新型直流直流融冰装置的主电路拓扑结构,可以一套装置实现导线和地线复用直流融冰的功能。 [结果] 获得的结果证明了这种技术是可行的和有效的。 [结论] 这项技术为进一步研究解决输电线路导线和地线覆冰、降低直流融冰装置投资、提高输电系统抵御自然灾害的能力具有重要参考意义。 Abstract:[Introduction] In the freezing rain and snow climate environment, it is necessary to heat the transmission line to strengthen its ability of resisting accident caused by snow and ice disaster. DC ice-melting device has been using widely and effectively current years. [Method] This paper aimed to establish a feasible and meaningful technology to solve the problem of DC ice-melting device which adopted two independently sets of ice melting equipment, doubled the O & M cost, had worse economy, and need more investment and floor space. Wherefore, this paper proposed a feasible method which a main circuit topology of new model ice-melting device used for ice-melting and snow on both phase wire and ground wire, then it was introduced in this essay. [Result] The results we obtained prove that this technique is feasible and effective. [Conclusion] This technology provides great significance for further study on solving the problem of snow and ice overage on phase wire and ground wire, in reducing the investment on DC ice-melting device and in improving the capability of transmission system to resist the natural disaster. -
Key words:
- DC ice-melting /
- power electronics /
- rectifier transformer /
- rectifier valve
-
-
[1] 刘文涛,和识之,陈亦平,等. 基于直流融冰的电网大面积冰灾防御策略 [J]. 电力系统自动化,2012,36(11): 102-107. LIU W T, HE S Z, CHEN Y P,et al. Defensive strategy for wide area ice disaster of power grid based on deicer [J].Automation of Electric Power Systems,2012,36(11): 102-107. [2] 张迅,曾华荣,文贤馗,等. 直流融冰装置常见问题及对策研究 [J]. 贵州电力技术,2012,15(2): 8-9+39. ZHANG X, ZENG H R, WEN X K,et al. The common problems of the DC de-icer and its countermeasures [J]. Guizhou Electric Power Technology,2012,15(2): 8-9+39. [3] 许树楷,赵杰. 电网冰灾案例及抗冰融冰技术综述 [J]. 南方电网技术,2008,2(2): 1-5. XU S K, ZHAO J. Review of ice storm cases impacted seriously on power systems and de-icing technology [J]. Southern Power System Technology,2008,2(2): 1-5. [4] 黄新波,刘家兵,蔡伟,等. 电力架空线路覆冰雪的国内外研究现状 [J]. 电网技术,2008,32(4): 23-28. HUANG X B, LIU J B, CAI W,et al. Present research situation of icing and snowing of overhead transmission lines in China and foreign countries [J]. Power System Technology,2008,32(4): 23-28. [5] 申国华. 直流融冰装置的工作原理及融冰方式探讨 [J]. 贵州电力技术,2011,14(7): 26-28. SHEN G H. Discussion on the principies of DC ice-melting device and ice-melting methods [J]. Guizhou Electric Power Technology,2011,14(7): 26-28. [6] 王敩青,张厚荣,罗望春,等. 强寒潮下超高压输电线路直流融冰效果差异分析[J]. 广东电力,2016,29(12): 110-114. WANG X Q, ZHANG H R, LUO W C, et al. Analysis on differences in DC de-icing effects on EHV power trans mission lines under strong cold wave weather[J]. Guangdong Electric Power,2016,29(12): 110-114. [7] 武守远,荆平.输电线路直流融冰关键技术 [M]. 北京,中国电力出版社,2014:10-15. WU S Y, JING P. Key technologies of DC ice melting for transmission line [M]. Beijing:China Electric Power Press,2014:10-15. [8] 赵国帅,李兴源,傅闯,等. 线路交直流融冰技术综述 [J]. 电力系统保护与控制, 2011,39(14): 148-154. ZHAO G S, LI X Y, FU C,et al. Overview of de-icing technology for transmission lines [J]. Power System Protection and Contorl,2011,39(14): 148-154. [9] 姚致清,刘涛,张爱玲,等. 直流融冰技术的研究及应用 [J]. 电力系统保护与控制,2010,38(21): 57-62. YAO Z Q, LIU T, ZHANG A L,et al. Research & application on DC de-icing technology [J]. Power System Protection and Control,2010,38(21): 57-62. [10] 陈璨. 架空线路中PGW融冰技术的研究 [J]. 南方能源建设,2016,3(2): 82-87. CHEN C. Research on overhead line OPGW ice-melting technology [J]. Southern Energy Construction,2016,3(2): 82-87. [11] Risk Management solution Inc. The 1998 ice storm:10-year retrospective [R/OL]. U.S.A:RMS Special Report, 2008.http://www.rms.com/Publications/1998_Ice_Storm_Retrospective.pdf. [12] 孙栩,王明新. 交流输电线路大容量固定式直流融冰装置的设计方案 [J]. 电力自动化设备,2010,30(12): 102-105. SUN X, WANG M X. Design scheme of large-capacity fixed DC de-icing device for AC transmission lines [J]. Electric Power Automation Equipment,2010,30(12): 102-105.