-
与大尺度的季风环流背景相比,风电场区域尺度相对较小,通常属于微尺度范畴。复杂地形风电场区域,地形不再像平原、戈壁滩那样单一,而是山脊、山谷交错,地势起伏明显,海拔高差较大,同时局地的山谷风[1]及海陆风[2]的影响也比较显著。因此,复杂地形风电场区域的风流场的特征与平坦地区存在明显的差异,不同区域的主导风向可能也不相同。微观选址是风电场风能资源评估工作的重要组成部分,对风机排布方案的确定有着决定性的作用。蔡彦枫[3]等利用再分析数据,模拟了风向对广东海上风电场风机布置的影响,许昌[4]、彭秀芳[5]、魏慧荣[6]等对复杂地形风电场中机位优化、尾流等问题进行了理论研究,为微观选址工作起到了一定的参考作用。然而,通过对实际项目资料整理和现场实地勘察发现,复杂地形风电场微观选址过程中还存在着不少的问题。本文从实际项目出发,对风电场微观选址过程中可能遇到的测风塔、等高线和限制因素等问题进行了详尽阐述,提出了相应的解决方法。
Discuss on the Work Practice of Wind Farm Micro-sitting in Complex Terrain Region
-
摘要:
[目的] 相对于平坦地形风电场,复杂地形风电场内的风速、风向表现出显著的区域性差异,给机组选型、风机排布、发电量评估等工作带来了不小的挑战。旨在解决复杂地形风电场微观选址过程中可能出现的测风塔、等高线、限制因素等问题。 [方法] 基于收集到的风电场项目资料,结合作者工作经验,分别对其进行了详尽阐述,举例说明了限制因素对风电场发电量的显著影响。 [结果] 通过现场勘察,核实了测风塔确切位置、标记了场区范围内的限制因素位置和范围;利用3D矢量数据生成立体高程网格,结合等高线数值对比分析,检验了地形图中等高线值的准确性。 [结论] 准确的测风塔位置和较高质量的测风数据对风能资源评估有决定性作用;限制因素区域的标识,缩短了制定风机排布方案所需的时间,提高了工作效率;结合准确无误的等高线地形图可以较准确地模拟风电场及周边区域的风能资源情况,为投资者提供优质的评估成果。 Abstract:[Introduction] With respect to the flat topography wind farm, wind speed and wind direction present significant regional difference in complex terrain region, which bring great challenges to the selection of generator, wind turbine layout, production assessment. To solve these problems that may occur during micro-sitting in complex terrain region such as wind measurement mast, contour, restricted factors. [Method] This paper detailedly analysed and discussed these problems based on the collected wind data, associated with the author′s work experience, and illustrated the significant influence of restricted factors on the generation of wind farm. [Result] Confirming the accurate location of the wind measurement mast, marking the restricted areas at the topographic map via field investigation. Checking the accuracy of the contour value by creating elevation grid from 3D vector data, making contrast analysis with the value of the contour lines. [Conclusion] Practice has proved that accurate site of the mast and high-quality wind data play an important role during wind energy resource assessment, the identification of restricted areas can shorten the time required to develop a layout plan and improve the work efficiency. With accurate topographic map, wind resources in the wind farm and surrounding areas can be accurately simulated, which can provide quality assessment results for investors. -
Key words:
- complex terrain /
- wind measurement mast /
- contour /
- restricted factors
-
-
[1] 席世平,寿绍文,郑世林,等. 复杂地形下山谷风的数值模拟 [J].气象与环境科学,2007,30(3): 41-44. XI S P, SHOU S W, ZHENG S L,et al. Numerical simulation of mountain-valley wind in the complex terrain [J]. Meteorological and Environmental Sciences,2007,30(3): 41-44. [2] 晏红明,杨辉,王灵,等. 印度半岛热力变化对亚洲季风环流异常的影响 [J]. 高原气象,2010,29(6): 1452-1463. YAN H M, YANG H, WANG L,et al. The impact of surface thermal variation over Indian peninsula on Asian monsoon circulation anomaly [J]. Plateau Meteorology,2010,29(6): 1452-1463. [3] 蔡彦枫,王海龙,周川,等. 风向对广东海上风电场风机布置的影响 [J]. 南方能源建设,2016,3(4): 113-118. CAI Y F, WANG H L, ZHOU C,et al. Effects of complex wind direction on offshore wind farm layout optimization in Guangdong [J]. Southern Energy Construction,2016,3(4): 113-118. [4] 许昌,杨建川,李辰奇,等. 复杂地形风电场微观选址优化 [J]. 中国电机工程学报,2013,33(31): 58-64+7. XU C, YANG J C, LI C Q,et al. Optimization of wind farm layout in complex terrain [J]. Proceedings of the CSEE,2013,33(31): 58-64+7. [5] 彭秀芳. 风电场微观选址及数值模拟 [D]. 天津:天津大学,2009. [6] 魏慧荣. 风电场微观选址的数值模拟 [D]. 北京:华北电力大学,2007. [7] 中华人民共和国国家质量监督检验检疫总局. 风电场风能资源测量方法:GB/T 18709—2002 [S]. 北京:中国标准出版社,2002. [8] 王红光,何永安. 关于复杂地形区域分散式风电项目建设的探讨 [J]. 能源与节能,2018(149): 52-53+80. WANG H G, HE Y A. Discussion on the construction of decentralized wind power project in complex terrain region [J]. Energy and Energy Conservation,2018(149): 52-53+80. [9] 刘志远,彭秀芳. 风电场测风塔测风数据浅析 [J]. 水力发电,2015,41(11): 110-113. [10] 环境保护部. 声环境质量标准:GB 3096—2008 [S]. 北京:中国环境科学出版社,2008. [11] 王跃华. 风电场噪声、光影环境防护距离的研究 [D]. 沈阳:东北大学,2011.