• 匿名盲审
  • 学术期刊非营利性
  • 全球免费开放获取全文
  • 最新科研成果提供绿色通道

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双分裂小截面导线在覆冰改造工程中的应用分析

林继亮 王子瑾 温作铭 王咏 袁志磊

林继亮,王子瑾,温作铭等.双分裂小截面导线在覆冰改造工程中的应用分析[J].南方能源建设,2021,08(增刊1):26-32. doi:  10.16516/j.gedi.issn2095-8676.2021.S1.004
引用本文: 林继亮,王子瑾,温作铭等.双分裂小截面导线在覆冰改造工程中的应用分析[J].南方能源建设,2021,08(增刊1):26-32. doi:  10.16516/j.gedi.issn2095-8676.2021.S1.004
LIN Jiliang,WANG Zijin,WEN Zuoming,et al.Application Analysis of Two Split Small Section Conductor in Icing Reconstruction Project[J].Southern Energy Construction,2021,08(增刊1):26-32. doi:  10.16516/j.gedi.issn2095-8676.2021.S1.004
Citation: LIN Jiliang,WANG Zijin,WEN Zuoming,et al.Application Analysis of Two Split Small Section Conductor in Icing Reconstruction Project[J].Southern Energy Construction,2021,08(增刊1):26-32. doi:  10.16516/j.gedi.issn2095-8676.2021.S1.004

双分裂小截面导线在覆冰改造工程中的应用分析

doi: 10.16516/j.gedi.issn2095-8676.2021.S1.004
详细信息
    作者简介:

    林继亮(通信作者)1984-,男,上海人,电力系统硕士,工程师,主要从事架空输电线路设计工作(e-mail)2815@ecepdi.com

  • 中图分类号: TM7

Application Analysis of Two Split Small Section Conductor in Icing Reconstruction Project

  • LIN Jiliang,WANG Zijin,WEN Zuoming,et al.Application Analysis of Two Split Small Section Conductor in Icing Reconstruction Project[J].Southern Energy Construction,2021,08(增刊1):26-32.
  • 摘要:   目的  冰灾发生后为保证电网供电安全可靠性,需要对受灾地区电网进行抢修或重建以满足电网安全可靠性要求,但受外界因素制约所涉电网设施并能够完全现行满足规程规范要求,双回路杆塔发生冰灾更会增加电网抢修或重建难度。为了最大限度地降低冰灾发生后杆塔覆冰静态和动态荷载,提出直接减少子导线数量以提升杆塔整体抗冰能力。  方法  结合已建500 kV同塔双回路工程发生冰灾后通过拆除其中一回路并通过新建单回路方式绕开覆冰事故段,另一回路在原双回路六回横担上通过每个横担挂两根子导线、每两个横担构成一回路排列的挂线方式进行改造。  结果  所提方案不仅能够提高杆塔主斜材抗冰能力,而且对横担抗冰能力有极大的提高并且满足国网差异化设计要求。  结论  双分裂小截面导线会引起电气性能发生变化,这种变化在森林覆盖率高、地形复杂、通视条件恶劣等重覆冰无人特定地区认为是可以接受的。
  • 图  1  四分裂变双分裂相序调整

    Fig.  1  Phase sequence adjustment from four splits to two splits

    图  2  耐张金具串调整

    Fig.  2  Adjustment of tensile hardware string

    图  3  悬垂金具串调整

    Fig.  3  Adjustment of hanging hardware string

    图  4  四分裂变两分裂线长变化示意图

    Fig.  4  Schematic diagram of line length change from four splits to two splits

    图  5  无线电干扰曲线

    Fig.  5  Radio interference curve

    图  6  可听噪声曲线

    Fig.  6  Audible noise curve

    图  7  工频电场强度曲线

    Fig.  7  Power frequency electric field intensity curve

    表  1  起晕场强计算

    Tab.  1.   Calculation of halo field strength

    边界条件起晕场强E0/(kV·cm-1表面场强Em/(kV·cm-1Em/E0
    海拔 0 mA相30.5924.1660.79
    B相28.1430.92
    C相26.0020.85
    海拔 500 mA相29.9124.2270.79
    B相28.4150.93
    C相26.0220.85
    海拔 1 000 mA相29.2224.2530.79
    B相28.3430.93
    C相26.0060.85
    下载: 导出CSV

    表  2  电阻损耗计算

    Tab.  2.   Calculation of resistance loss

    导线分裂根数20 ℃时单根导线电阻/(Ω·km-170 ℃长期运行时导线阻/(Ω·km-1电流/A电阻功率损耗/(kW·km-1
    LGJ-630/4520.046 330.060 61 047797.2
    全年电能损耗/(kW·h·km-1)×103
    τ=3 000 hτ=3 500 hτ=4 000 hτ=4 500 h
    2 391.62 790.23 188.83 587.4
    下载: 导出CSV

    表  3  电晕损耗计算

    Tab.  3.   Calculation of two-split corona loss

    边界条件晴天雪天雨天雾凇天
    第1回/(kW·km-1A相2.195.7437.9776.37
    B相3.529.8449.1496.36
    C相1.604.5132.6367.80
    合计7.3020.08119.74240.53
    第2回/(kW·km-1A相2.185.7437.9676.35
    B相3.519.8149.0996.26
    C相1.634.5732.9768.30
    合计7.3220.12120.02240.91
    地线/(kW·km-110.070.181.142.28
    20.020.060.381.20
    合计0.080.241.523.48
    合计/(kW·km-114.7140.44241.28484.92
    下载: 导出CSV

    表  4  电晕损耗计算

    Tab.  4.   Calculation of four-split corona loss

    边界条件晴天雪天雨天雾凇天
    第1回/(kW·km-1A相0.371.565.7021.27
    B相0.492.038.5831.54
    C相0.321.424.5416.80
    合计1.185.0118.8369.62
    第2回/(kW·km-1A相0.371.565.7021.26
    B相0.492.038.5731.51
    C相0.321.424.6317.11
    合计1.185.0118.9069.89
    地线/(kW·km-111.071.9112.666.52
    20.100.271.903.90
    合计1.172.1714.5610.42
    合计/(kW·km-13.5312.1952.29149.93
    下载: 导出CSV

    表  5  电阻电晕损耗对比表

    Tab.  5.   Comparison table of resistance corona loss

    导线项目/损耗小时数τ=3 000τ=3 500τ=4 000τ=4 500备注
    LGJ-630/45(33.6 mm)全年电能损耗/(MWh·km-12 391.62 790.23 188.83 587.4双分裂
    全年电晕损耗/(MWh·km-1406.8406.8406.8406.8
    (电晕/电阻)/%17.014.612.811.3
    合计损耗/(kWh·km-12 798.43 1973 595.63 994.2
    全年电能损耗/(MWh·km-12 391.62 790.23 188.83 587.4四分裂
    全年电晕损耗/(MWh·km-189.389.389.389.3
    (电晕/电阻)/%3.8%3.2%2.8%2.4%
    合计损耗/(MWh·km-12 480.92 879.53 278.13 676.7
    损耗增加/%112.8111.0109.7108.6双分裂相相对于四分裂导线
    下载: 导出CSV
  • [1] 侯慧,尹项根,陈庆前,等. 南方部分500 kV主网架2008年冰雪灾害中受损分析与思考 [J]. 电力系统自动化,2008,32(11):12-15+38.

    HOUH,YINX G,CHENQ Q,et al. Analysis and thinking on the damage of part of the 500 kV main grid in the south during the ice and snow disaster in 2008 [J]. Automation of Electric Power Systems,2008,32(11):12-15+38.
    [2] 麻闽政,潘春平. 绞合型碳纤维复合芯导线在新建线路中的应用研究 [J]. 南方能源建设,2017,4(4):82-87.

    MAM Z,PANC P. Application research on aluminium conductor multi-strand carbon-fiber core cable in new power transmission lines [J]. Southern Energy Construction,2017,4(4):82-87.
    [3] 宋宏佺. 输电线路导线及地线复用新型直流融冰装置技术研究综述 [J]. 南方能源建设,2018,5(3):72-76.

    SONGH Q. Overview on technology of new model dc ice-melting device for phase wire and ground wire of transmission line [J]. Southern Energy Construction,2018,5(3):72-76.
    [4] 中华人民共和国国家质量监督检验检疫总局. 圆线同心绞架空导线:GB/T 1179—2017 [S]. 北京:中国标准出版社,2017.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Round wire concentric stranded overhead wire: GB/T 1179—2017 [S]. Beijing:China Standard Press,2017.
    [5] 国家电网有限公司. 铝合金芯高导电率绞线: Q/GDW 10815—2017 [S]. 北京:国家电网有限公司,2017.

    State Grid Co. Ltd. Aluminum alloy core high conductivity stranded wire:Q/GDW 10815—2017 [S]. Beijing:State Grid Co. Ltd,2017.
    [6] 黄彭,莫娟,万建成,等. 架空输电线路节能导线应用技术经济分析 [J]. 中国电力,2013,46(7):153-157.

    HUANGP,MOJ,WANJ C,et al. Technical and economic analysis of energy-saving conductors for overhead transmission lines [J]. China Electric Power,2013,46(7):153-157.
    [7] 王荣鹏,王干军,吴毅江. 侧向横风作用下角钢输电塔的动力响应研究 [J]. 南方能源建设,2015,2(1):88-91.

    WANGR P,WANGG J,WUY J. Research on dynamic responses of a transmission tower with angle section members under lateral wind loadings [J]. Southern Energy Construction,2015,2(1):88-91.
    [8] 张伟. 高压、超高压交流输电线路电磁环境的研究 [J]. 水利电力机械,2007(1):47-50+63.

    ZHANGW. Research on the electromagnetic environment of high-voltage and ultra-high voltage AC transmission lines [J]. Water Conservancy and Electric Power Machinery,2007(1):47-50+63.
    [9] 谢静. 输电线路电磁环境计算方法的研究 [D]. 武汉:华中科技大学,2009.

    XIEJ. Research on calculation methods of electromagnetic environment of transmission lines [D]. Wuhan:Hua Zhong University of Science and Technology,2009.
    [10] 邱国斌,汪晶毅,梁盼望,等. 同走廊内多回交流线路对在建线路的感应电压电流影响研究 [J]. 南方能源建设,2017,4(4):76-81.

    QIUG B,WANGJ Y,LIANGP W,et al. Influence research on induced voltage and current of multi AC transmission lines to the power line under construction in the same corridor [J]. Southern Energy Construction,2017,4(4):76-81.
    [11] 李敏生,王振华. 中国输电线路规范的风荷载计算比较 [J]. 南方能源建设,2018,5(3):89-93.

    LIM S,WANGZ H. Comparison of wind load calculation for China transmission codes [J]. Southern Energy Construction,2018,5(3):89-93.
    [12] 何小宝,严波,伍川,等. 双分裂导线尾流诱发振荡数值模拟研究 [J]. 振动与冲击,2017,36(4):59-65+98.

    HEX B,YANB,WUC,et al. Numerical simulation study on wake induced oscillation of double-split conductors [J]. Vibration and Shock,2017,36(4):59-65+98.
    [13] 刘云鹏,尤少华,万启发,等. 特高压交流单回试验线段雨天电晕损失研究 [J]. 中国电机工程学报,2010,30(19):114-119.

    LIUY P,YOUS H,WANQ F,et al. Study on rainy day corona loss of UHV AC single-circuit test line [J]. Proceedings of the Chinese Electrical Engineering,2010,30(19):114-119.
    [14] 曾庆禹. 特高压输电线路电气和电晕特性研究 [J]. 电网技术,2007(19):1-8.

    ZENGQ Y. Research on electrical and corona characteristics of UHV transmission lines [J]. Power System Technology,2007(19):1-8.
    [15] 刘文勋,赵全江,张瑚,等. 1 000 kV特高压交流输电线路电晕损耗估算方法 [J]. 电力建设,2011,32(10):27-29.

    LIUW X,ZHAOQ J,ZHANGH,et al. Corona loss estimation method for 1 000 kV UHV AC transmission lines [J]. Electric Power Construction,2011,32(10):27-29.
  • [1] 罗贤勇, 李斌, 林燕, 向魁, 朱光涛.  热核聚变发电岛三回路参数优化研究 . 南方能源建设, 2024, 11(3): 126-136. doi: 10.16516/j.ceec.2024.3.14
    [2] 丁伟, 孔志达, 谌阳.  特高压直流换流站导线融冰主接线方案 . 南方能源建设, 2024, 11(S1): 65-73. doi: 10.16516/j.ceec.2024.S1.10
    [3] 吴小刚, 何锐.  全桥MMC型直流融冰装置关键参数及装置容量解耦分析研究 . 南方能源建设, 2023, 10(5): 72-79. doi: 10.16516/j.gedi.issn2095-8676.2023.05.010
    [4] 闵光云, 赵鑫, 刘小会.  架空覆冰输电线路舞动研究进展 . 南方能源建设, 2023, 10(5): 116-128. doi: 10.16516/j.gedi.issn2095-8676.2023.05.015
    [5] 王晓峰, 胡宗宝, 周涛, 徐誉玮, 黄立波.  冰蓄冷工程智慧工地安全管理系统运用研究 . 南方能源建设, 2023, 10(S1): 105-109. doi: 10.16516/j.gedi.issn2095-8676.2023.S1.017
    [6] 庄志翔, 郭剑, 张珏, 鲍自然.  ±500 kV直流线路工程多冰区与结构工程量关系研究 . 南方能源建设, 2022, 9(1): 96-102. doi: 10.16516/j.gedi.issn2095-8676.2022.01.014
    [7] 庄志翔, 孙墨林, 张珏.  500 kV双回路直线角钢塔杆件控制工况研究 . 南方能源建设, 2022, 9(S2): 106-111. doi: 10.16516/j.gedi.issn2095-8676.2022.S2.017
    [8] 庄志翔, 张珏, 唐峦, 王丙乾.  500 kV双回路复合横担直线塔设计方案研究 . 南方能源建设, 2022, 9(S1): 112-118. doi: 10.16516/j.gedi.issn2095-8676.2022.S1.017
    [9] 池代波, 肖国锋.  基于CFD模拟的某柔直换流站户内启动回路场自然通风方案研究 . 南方能源建设, 2021, 8(4): 123-129. doi: 10.16516/j.gedi.issn2095-8676.2021.04.016
    [10] 黄翔, 冯国聪, 宋云奎, 莫剑峰, 赵磊.  大型企业级云平台跨域资源调度与容灾模型 . 南方能源建设, 2020, 7(S2): 11-17. doi: 10.16516/j.gedi.issn2095-8676.2020.S2.002
    [11] 庄志翔, 赵雪灵, 熊静进, 王志强, 何运祥.  220 kV单回路复合杆塔关键技术研究 . 南方能源建设, 2019, 6(2): 77-83. doi: 10.16516/j.gedi.issn2095-8676.2019.02.014
    [12] 宋宏佺.  输电线路导线及地线复用新型直流融冰装置技术研究综述 . 南方能源建设, 2018, 5(3): 72-76. doi: 10.16516/j.gedi.issn2095-8676.2018.03.011
    [13] 吴子怡, 周唯.  滇西北至广东特高压直流送端换流站融冰方案技术经济分析 . 南方能源建设, 2017, 4(3): 131-135. doi: 10.16516/j.gedi.issn2095-8676.2017.03.024
    [14] 蒋伟, 李根富, 王正华, 叶德意.  高土壤电阻率地区多回路变电站接地设计研究 . 南方能源建设, 2016, 3(4): 54-59. doi: 10.16516/j.gedi.issn2095-8676.2016.04.011
    [15] 陈璨.  架空线路OPGW融冰技术研究 . 南方能源建设, 2016, 3(2): 82-87. doi: 10.16516/j.gedi.issn2095-8676.2016.02.016
    [16] 邓宏伟.  核电厂二回路管道应对流动加速腐蚀机理研究 . 南方能源建设, 2015, 2(1): 51-54,61. doi: 10.16516/j.gedi.issn2095-8676.2015.01.010
    [17] 王荣鹏, 王干军, 吴毅江.  侧向横风作用下角钢输电塔的动力响应研究 . 南方能源建设, 2015, 2(1): 88-91. doi: 10.16516/j.gedi.issn2095-8676.2015.01.017
    [18] 袁杨, 朱辉良, 郭琳.  输电塔抗风能力的实用评估方法 . 南方能源建设, 2015, 2(S1): 80-82,9. doi: 10.16516/j.gedi.issn2095-8676.2015.S1.017
    [19] 陈廷君, 聂卫平.  ±500 kV双回路直流耐张塔真型试验分析 . 南方能源建设, 2015, 2(S1): 55-59. doi: 10.16516/j.gedi.issn2095-8676.2015.S1.012
    [20] 戚永乐, 万海涛.  核岛侧常规岛主厂房山墙抗倒塌能力分析 . 南方能源建设, 2014, 1(1): 70-74. doi: 10.16516/j.gedi.issn2095-8676.2014.01.013
  • 加载中
图(8) / 表 (5)
计量
  • 文章访问数:  460
  • HTML全文浏览量:  175
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-16
  • 修回日期:  2021-06-10
  • 刊出日期:  2021-07-30

双分裂小截面导线在覆冰改造工程中的应用分析

doi: 10.16516/j.gedi.issn2095-8676.2021.S1.004
    作者简介: 林继亮(通信作者)1984-,男,上海人,电力系统硕士,工程师,主要从事架空输电线路设计工作(e-mail)2815@ecepdi.com

  • 中图分类号: TM7

摘要:   目的  冰灾发生后为保证电网供电安全可靠性,需要对受灾地区电网进行抢修或重建以满足电网安全可靠性要求,但受外界因素制约所涉电网设施并能够完全现行满足规程规范要求,双回路杆塔发生冰灾更会增加电网抢修或重建难度。为了最大限度地降低冰灾发生后杆塔覆冰静态和动态荷载,提出直接减少子导线数量以提升杆塔整体抗冰能力。  方法  结合已建500 kV同塔双回路工程发生冰灾后通过拆除其中一回路并通过新建单回路方式绕开覆冰事故段,另一回路在原双回路六回横担上通过每个横担挂两根子导线、每两个横担构成一回路排列的挂线方式进行改造。  结果  所提方案不仅能够提高杆塔主斜材抗冰能力,而且对横担抗冰能力有极大的提高并且满足国网差异化设计要求。  结论  双分裂小截面导线会引起电气性能发生变化,这种变化在森林覆盖率高、地形复杂、通视条件恶劣等重覆冰无人特定地区认为是可以接受的。

English Abstract

林继亮,王子瑾,温作铭等.双分裂小截面导线在覆冰改造工程中的应用分析[J].南方能源建设,2021,08(增刊1):26-32. doi:  10.16516/j.gedi.issn2095-8676.2021.S1.004
引用本文: 林继亮,王子瑾,温作铭等.双分裂小截面导线在覆冰改造工程中的应用分析[J].南方能源建设,2021,08(增刊1):26-32. doi:  10.16516/j.gedi.issn2095-8676.2021.S1.004
LIN Jiliang,WANG Zijin,WEN Zuoming,et al.Application Analysis of Two Split Small Section Conductor in Icing Reconstruction Project[J].Southern Energy Construction,2021,08(增刊1):26-32. doi:  10.16516/j.gedi.issn2095-8676.2021.S1.004
Citation: LIN Jiliang,WANG Zijin,WEN Zuoming,et al.Application Analysis of Two Split Small Section Conductor in Icing Reconstruction Project[J].Southern Energy Construction,2021,08(增刊1):26-32. doi:  10.16516/j.gedi.issn2095-8676.2021.S1.004
  • OA:https://www.energychina.press/

    开放科学(资源服务)二维码:

    2095-8676 © 2021 Energy China GEDI. Publishing services by Energy Observer Magazine Co.,Ltd. on behalf of Energy China GEDI. This is an open access article under the CC BY-NC license (https://creativecommons.org/licenses/by-nc/4.0/).

    冰灾是一种极端恶劣的天气,对电网、农作物、交通等设施有着巨大的危害。对于易覆冰区电网,由于架空线路所处地形复杂、环境恶劣,容易受冰灾的影响造成架空线路覆冰和积雪,引起倒塔、绝缘子闪络、通信中断、线路跳闸、断线、导线舞动等事故。中国、美国、俄罗斯、日本、加拿大等国家都曾因为线路覆冰破坏电网安全稳定运行,造成巨大的经济损失。我国是冰灾造成电网覆冰最严重的国家之一,目前国内电网已遭受多次输电线路冰灾事故1-2

    2019年1月,受持续低温雨雪凝冻天气影响,全国电网特别是安徽、湖南电网供电区域内输变电设施相继出现覆冰险情,先后导致多条超高压及以上线路、变电站停运。本次冰灾是继2008、2011年之后电网遭遇的又一次特重冰灾。冰灾发生后为保证电网供电安全可靠性,需要对受灾地区电网进行抢修或重建以满足电网安全可靠性要求,但受外界因素制约抢修或重建的电网设施并不能够完全现行满足规程规范要求。

    • 冰灾发生后为保证电网供电安全可靠性,需要对受灾地区电网进行抢修或重建以满足电网安全可靠性要求。抢修一般针对受损部位进行更换加强,受抢修时间、物资库存、环境条件等综合因素影响,抢修后电网一般不能完全满足现行相关规程规范要求3

      发生冰灾区域覆冰厚度一般会达到重冰区覆冰值,对于重覆冰区域线路一般按照单回路设计,若原设计杆塔为双回路便会增加电网抢修或重建难度。覆冰发生后为最大限度地降低静态和动态荷载以提升杆塔抗冰能力,最有效的方法是冰灾段电网全部重建,但所需周期长且投资大。最简单方法是减少子导线数量,若每相分裂数保持不变仅减少整体回路数,仅能提高塔身抗冰能力对于横担抗冰能力并未有效提高。

      为有效降低杆塔横担覆冰荷载并有效提升其抗冰能力可通过减少子导线根数,对于单回路输电线路工程,为满足输送容量要求必须增大子导线截面。对于双回路输电线路工程,可在不增加子导线截面情况下通过不同横担分担同一相导线方式以提高横担抗冰能力。每个回路子导线数量虽然保持不变,但每相子导线根数减少会引起电气性能变化,这种变化在森林覆盖率高、地形复杂、通视条件恶劣等重覆冰无人特定地区认为是可以接受的4-7

      本文通过对某500 kV同塔双回路发生冰灾后拟通过在不增加子导线截面情况下,对覆冰段杆塔进行四分裂变两分裂方式以提高杆塔抗冰能力,可仅对覆冰段杆塔导线进行调整可最大限度的降低工程投资并节约施工周期。

    • 某已建500 kV同塔双回路为皖电东送重要输电通道,由于地处皖南重覆冰无人山区,地形地貌比较复杂且森林覆盖率很高,2019年2月发生覆冰舞动导致杆塔横担受损,间隔棒断裂,导线线夹断裂子导线落地等故障。原导线采用四分裂LGJ-630/45钢芯铝绞线,为提高覆冰段杆塔抗冰能力并最大限度的节约投资,拟把原同塔双回路其中一回通过新建单回路绕开覆冰事故段,另一回路在原双回路六回横担上通过每个横担挂两根子导线、每两个横担构成一回路方式排列挂线。这种改造方式不仅能够提高杆塔主斜材抗冰能力,而且对横担抗冰能力有极大的提高并且满足国网差异化设计要求。虽然原双回路杆塔杆件不需要更换调整,但需对现有金具、线长、相序排列、均压环等进行调整,改造段架空线路机械特性和电气性能均发生了变化8-11

    • 图1所示通过分支换相塔把左侧一回路接入新建单回路,另一回路通过分支换相塔把导线从四分裂过渡成两分裂布置,双分裂导线可水平和垂直布置,为减少双分裂子导线产生的离子风使导线产生振荡,水平和垂直布置导线均加装间隔棒12

      图  1  四分裂变双分裂相序调整

      Figure 1.  Phase sequence adjustment from four splits to two splits

    • 为最大限度地利用原工程金具以节省投资,原工程金具串仅通过更换高压侧零件实现四分裂到双分裂的过渡。

      开断点分支换相塔四分裂导线侧耐张串金具不做调整,双分裂导线侧耐张串金具由于需要分别引向下一基塔同一高度的不同侧横担,在分支换相塔侧存在受力偏移,需把图2耐张金具图中件4角联板换成3角联板,高压端采用碗头挂板-三角联板-直角挂板/平行挂板-三角联板-连接金具-耐张线夹,通过选择直角挂板或平行挂板来调整垂直或水平排列,均压屏蔽环安装在三角联板上。

      图  2  耐张金具串调整

      Figure 2.  Adjustment of tensile hardware string

      为配合导线耐张串四变双分裂调整并保证受力均衡,需把图3悬垂金具图中件⑨四分裂联板换成两分裂联板,采用碗头挂板—三角联板—ZBD挂板-垂直双分裂悬垂线夹,均压环安装在三角联板上。

      图  3  悬垂金具串调整

      Figure 3.  Adjustment of hanging hardware string

    • 耐张金具串在四变双分裂过程中由于金具调整改变了原先500 kV金具结构,需要根据调整后金具重新设计均压环以保证均压效果。

    • 图4所示双回路分支换相塔在四变双分裂过程中由于两侧横担长度、方位不同会引起两侧线长变化,可通过调整双分裂侧耐张串金具串金具或者绝缘子数量进行调整,也可通过接续管调整线长。

      图  4  四分裂变两分裂线长变化示意图

      Figure 4.  Schematic diagram of line length change from four splits to two splits

    • 新建一单回线路后,原走廊运行线路只剩一回,为减少原双回路铁塔所承受的荷载以提高铁塔整体抗冰能力,拆除每相两根子导线按照六个横担挂点分别挂两根子导线,使每两个横担挂点组成一相的架线方式。此种挂线方式可显著减小每个横担荷载,且杆塔在正常工况下荷载左右对称平衡,在投资最小施工周期紧张情况下可最大限度的提升杆塔整体抗冰能力6

    • 电气特性主要表现在工频电场强度、表面场强与起晕场强比、无线电干扰、可听噪声、电晕等8-912。采用LGJ-630/45双分裂导线垂直排列布置电气特性计算如下13-15

    • 通过表1计算导线表面电场强度E与全面起晕强度比大于现行规程规范限制值(0.8~0.85),输电线路的导线、绝缘子及金具零件发生电晕和放电的概率会增大。

      表 1  起晕场强计算

      Table 1.  Calculation of halo field strength

      边界条件起晕场强E0/(kV·cm-1表面场强Em/(kV·cm-1Em/E0
      海拔 0 mA相30.5924.1660.79
      B相28.1430.92
      C相26.0020.85
      海拔 500 mA相29.9124.2270.79
      B相28.4150.93
      C相26.0220.85
      海拔 1 000 mA相29.2224.2530.79
      B相28.3430.93
      C相26.0060.85
    • 图5为下导线对地距离11 m情况下无线电干扰曲线。

      图  5  无线电干扰曲线

      Figure 5.  Radio interference curve

      海拔不超过1 000 m时,对地距离11 m计算边界条件下距输电线路边相导线投影外20 m处且离地2 m高且频率为0.5 MHz时,无线电干扰计算值为65 dB(V/m),大于限制值55 dB(V/m)。在森林覆盖率高、地形复杂、通视条件恶劣等重覆冰无人特定地区,无线电干扰虽然超过规程规范值但随着距离增加衰减很快,目前环保验收对无线电干扰并未做强制要求,若线路附近未有对无线电干扰有强制要求设施,对于此种特定情况下无线电干扰可不做强制要求。

    • 图6为下导线对地距离11 m情况下可听噪声曲线。

      图  6  可听噪声曲线

      Figure 6.  Audible noise curve

      海拔不超过1 000 m时,对地距离11 m计算边界条件下距输电线路边相导线投影外20 m处湿导线条件下的可听噪声计算值为61 dB,大于限制值55 dB。

      可听噪声仅对3类区域有限制要求,对山区少人居住地区并未有强制要求,一般情况下限制值可达70 dB,在森林覆盖率高、地形复杂、通视条件恶劣等重覆冰无人特定地区可听噪声可不做强制要求。

    • 图7为下导线对地距离11 m情况下工频电场强度曲线。

      图  7  工频电场强度曲线

      Figure 7.  Power frequency electric field intensity curve

      虽然每个横担按照双分裂导线方式挂线,但整个单回路子导线数量保持不变,整体空间场强并未发生根本变化且满足现行规程规范离对于地面1.5 m处的未畸变电场不得超过4 kV/m的要求。

    • 双分裂导线架设方式下电阻损耗计算如表2所示,双分裂导线架设方式下导线对地距离11 m情况下电晕损耗如表3所示,四分裂导线架设方式下导线对地距离11 m情况下电晕损耗如表4所示。

      表 2  电阻损耗计算

      Table 2.  Calculation of resistance loss

      导线分裂根数20 ℃时单根导线电阻/(Ω·km-170 ℃长期运行时导线阻/(Ω·km-1电流/A电阻功率损耗/(kW·km-1
      LGJ-630/4520.046 330.060 61 047797.2
      全年电能损耗/(kW·h·km-1)×103
      τ=3 000 hτ=3 500 hτ=4 000 hτ=4 500 h
      2 391.62 790.23 188.83 587.4

      表 3  电晕损耗计算

      Table 3.  Calculation of two-split corona loss

      边界条件晴天雪天雨天雾凇天
      第1回/(kW·km-1A相2.195.7437.9776.37
      B相3.529.8449.1496.36
      C相1.604.5132.6367.80
      合计7.3020.08119.74240.53
      第2回/(kW·km-1A相2.185.7437.9676.35
      B相3.519.8149.0996.26
      C相1.634.5732.9768.30
      合计7.3220.12120.02240.91
      地线/(kW·km-110.070.181.142.28
      20.020.060.381.20
      合计0.080.241.523.48
      合计/(kW·km-114.7140.44241.28484.92

      表 4  电晕损耗计算

      Table 4.  Calculation of four-split corona loss

      边界条件晴天雪天雨天雾凇天
      第1回/(kW·km-1A相0.371.565.7021.27
      B相0.492.038.5831.54
      C相0.321.424.5416.80
      合计1.185.0118.8369.62
      第2回/(kW·km-1A相0.371.565.7021.26
      B相0.492.038.5731.51
      C相0.321.424.6317.11
      合计1.185.0118.9069.89
      地线/(kW·km-111.071.9112.666.52
      20.100.271.903.90
      合计1.172.1714.5610.42
      合计/(kW·km-13.5312.1952.29149.93

      电晕损耗按晴天7 372 h、雪天182 h、雨天1 206 h统计,本工程按照双分裂架设对地距离最小11 m条件计算电晕损耗为式(1)8-10

      =(7 372×14.71+182×40.44+1 206×241.28) kW/km=406.8×103 kW/km ((1))

      按照4分裂架设对地距离最小11 m条件计算电晕损耗为式(2)

      =(7 372×3.53+182×12.19+1 206×52.29) kW/km=89.3×103 kW/km ((2))

      在不同损耗小时数情况下四分裂和双分裂导线电阻电晕损耗对比如表5所示。

      表 5  电阻电晕损耗对比表

      Table 5.  Comparison table of resistance corona loss

      导线项目/损耗小时数τ=3 000τ=3 500τ=4 000τ=4 500备注
      LGJ-630/45(33.6 mm)全年电能损耗/(MWh·km-12 391.62 790.23 188.83 587.4双分裂
      全年电晕损耗/(MWh·km-1406.8406.8406.8406.8
      (电晕/电阻)/%17.014.612.811.3
      合计损耗/(kWh·km-12 798.43 1973 595.63 994.2
      全年电能损耗/(MWh·km-12 391.62 790.23 188.83 587.4四分裂
      全年电晕损耗/(MWh·km-189.389.389.389.3
      (电晕/电阻)/%3.8%3.2%2.8%2.4%
      合计损耗/(MWh·km-12 480.92 879.53 278.13 676.7
      损耗增加/%112.8111.0109.7108.6双分裂相相对于四分裂导线

      子导线截面保持不变,双分裂导线相对于四分裂导线电晕电阻损耗均会增加,电阻电晕损耗随着损耗小时数增加而增加,损耗小时数越大增幅越小。

    • 通过拆除每相两根子导线按照六个横担挂点分别挂两根子导线,使每两个横担挂点组成一相的架线方式不仅降低了杆塔主辅材荷载,而且提高了每个横担的抗冰能力,保证了杆塔在正常工况下荷载对称平衡型,经济性最优情况下可最大限度地提升杆塔整体抗冰能力,但整体电气性能发生变化而且加大了线路损耗。

      导线表面电场强度E与全面起晕强度的E0比值若大于0.8~0.85,输电线路的导线、绝缘子及金具零件由于表面场强增大致使发生电晕和放电的概率会增大。电晕不仅产生电晕损耗而且会产生含有许多高次谐波高频脉冲电流,加大无线电干扰;使空气局部游离,产生的臭氧和氧化氮等会腐蚀金属设备;产生可闻噪声(嗤嗤的放电声);产生的离子风容易使导线产生振荡5

      目前已建运行500 kV采用双分裂导线截面至少为720 m2,采用更小截面导线后势必会增大线路电阻电晕损耗,而且电磁环境不满足现行规程规范要求。但对于森林覆盖率高、地形复杂、通视条件恶劣等重覆冰无人特定地区,无线电干扰和可听噪声可不作为控制条件;电晕损耗属于经济性分析,对于覆冰抢险工程可不做考虑;唯一需要关注的是导线表面电场强度E与全面起晕强度的E0比值增大后所带来的电晕影响。

      如果原工程采用四分裂720 m2导线,调整为双分裂720 m2导线,则满足电磁环境要求,方案成立,具有推广应用价值,630 m2及以下截面导线由于电磁环境不满足规程要求,目前不建议推荐使用。电晕产生的离子风使导线产生振荡、产生的臭氧和氧化氮等会腐蚀金属设备可通过对金具材料或组装型式开展研究,若能解决此类问题,未来在小截面导线应用应该具有一定的应用前景。

  • 林继亮,王子瑾,温作铭等.双分裂小截面导线在覆冰改造工程中的应用分析[J].南方能源建设,2021,08(增刊1):26-32.
  • 参考文献 (15)

    目录

      /

      返回文章
      返回