-
磁场发生装置是一种产生一定区域均匀磁场的线圈结构,在线圈上通入电流可产生所需要的磁场,可用于受磁场干扰的器件的抗扰度测试,在生物医学[1],传感器[2]、核聚变装置[3]以及其他场合的应用。
为了计算方便,对均匀磁场区域内部参数引入以下参数:
1)均匀区域尺寸(2s,m):正方形均匀区域的边长。
2)最小磁感应强度(Bmin,mT):均匀区域内磁场感应强度的最小值。
3)最大磁感应强度(Bmax,mT):均匀区域内磁场感应强度的最大值。
4)磁场均匀性(η):最大和最小磁感应强度的比值。
$$ \eta = \dfrac{{{B_{\max }}}}{{{B_{\min }}}} $$ (1) 产生均匀磁场的装置结构很多,常用的有螺线管线圈[4]、Helmholtz线圈[5]和Maxwell线圈[6],螺线管线圈是均匀磁场最理想的一种产生方式,其均匀度质量一般都很高,但是线圈尺寸有限,极大地限制了发展;Helmholtz线圈结构简单,但是均匀磁场区域较小[7];Maxwell线圈是Helmholtz线圈的一种升级结构,均匀度较好,但是结构略复杂[8-9];其他方式主要有多线圈组结构[10],比如文献[11]提出使用半径相同的3组圆形线圈组;文献[12]提出了半径相同的4圆形线圈组;文献[13]提出了半径相同的8圆形线圈组;文献[14]对此类线圈进行综合分析,方法多种多样,也各有优劣。
由于方形结构在大型设备的制造和焊接过程中比圆形结构具有更多优势[15-16],因此IEC(国际电工委员会)在磁场抗扰度试验中推荐了方形结构。本文着重对于Helmholtz线圈和Maxwell线圈两种方形线圈以及相应的优化结构进行分析计算,设计出更为合理的高均匀性磁场发生装置。
-
Helmholtz正方形线圈由同轴的两个正方形线圈组成。在文献[5]中对Helmholtz线圈及其优化结构进行了非常详细的分析,并以此为基础详细分析了误差因素的影响,但是仍然只是针对两线圈在磁场均匀度1.1~1.4范围内的研究,更多范围并没有延伸的分析。
Helmholtz线圈的距离是正方形线圈边长的0.544 5倍,其在中心2s×2s×2s测试区域产生的磁场均匀度为1.1,最小磁感应强度为250 mT的条件下,所用材料及空间体积是否最小,此时并不能判断。所以对此结构进行优化分析,将结果进行对比来确定最优结构。
首先建立Helmholtz正方形线圈结构模型,如图1所示。磁场均匀区域位于坐标轴中心,边长为2s,正方形线圈边长为2a,两线圈的距离为2h,每组线圈的安匝数为NI(匝数为N,电流为I)。
根据磁场叠加原理,得到线圈在测试区域任一点P(x, y,
$ z $ )上产生的轴向磁场为:$$ \begin{gathered} {B_z} = {B_z}\left( {x,y,z} \right) = \dfrac{{{\mu _0}NI}}{{4\text{π}}} \times \\ \left( \begin{gathered} \mathop \sum \limits_{i = 0}^1 \mathop \sum \limits_{j = 0}^1 \frac{{\left[ {{{\left( { - 1} \right)}^i}x + a} \right]\left[ {{{\left( { - 1} \right)}^j}y + a} \right]}}{{\sqrt {{{\left[ {{{\left( { - 1} \right)}^i}x + a} \right]}^2} + {{\left[ {{{\left( { - 1} \right)}^j}y + a} \right]}^2} + {{\left( {z - h} \right)}^2}} }} \times \\ \left[ {\frac{1}{{{{\left[ {{{\left( { - 1} \right)}^i}x + a} \right]}^2} + {{\left[ {z - h} \right]}^2}}} + \frac{1}{{{{\left[ {{{\left( { - 1} \right)}^j}y + a} \right]}^2} + {{\left( {z - h} \right)}^2}}}} \right] + \\ \mathop \sum \limits_{i = 0}^1 \mathop \sum \limits_{j = 0}^1 \frac{{\left[ {{{\left( { - 1} \right)}^i}x + a} \right]\left[ {{{\left( { - 1} \right)}^j}y + a} \right]}}{{\sqrt {{{\left[ {{{\left( { - 1} \right)}^i}x + a} \right]}^2} + {{\left[ {{{\left( { - 1} \right)}^j}y + a} \right]}^2} + {{\left( {z{\text{ + }}h} \right)}^2}} }} \times \\ \left[ {\frac{1}{{{{\left[ {{{\left( { - 1} \right)}^i}x + a} \right]}^2} + {{\left( {z{\text{ + }}h} \right)}^2}}} + \frac{1}{{{{\left[ {{{\left( { - 1} \right)}^j}y + a} \right]}^2} + {{\left( {z{\text{ + }}h} \right)}^2}}}} \right] \\ \end{gathered} \right) \\ \end{gathered} $$ (2) 式中:
μ0——真空磁导率;
$$ \left| x \right| \leqslant s,\;\left| y \right| \leqslant s,\left| z \right| \leqslant s。$$ 为简化计算,将测试区域归一化,即令:
$$ \left\{ \begin{gathered} u = {x \mathord{\left/ {\vphantom {x s}} \right. } s} \\ v = {y \mathord{\left/ {\vphantom {y s}} \right. } s} \\ w = {z \mathord{\left/ {\vphantom {z s}} \right. } s} \\ \end{gathered} \right. $$ (3) 代入式(2),有:
$$ \begin{gathered} {B_z} = {B_z}\left( {u,v,w} \right) = \frac{{{\mu _0}}}{{4\text{π}}} \times \dfrac{{NI}}{s} \times \\ \left( \begin{gathered} \mathop \sum \limits_{i = 0}^1 \mathop \sum \limits_{j = 0}^1 \dfrac{{\left[ {{{\left( { - 1} \right)}^i}u + \dfrac{a}{s}} \right]\left[ {{{\left( { - 1} \right)}^j}v + \dfrac{a}{s}} \right]}}{{\sqrt {{{\left[ {{{\left( { - 1} \right)}^i}u + \dfrac{a}{s}} \right]}^2} + {{\left[ {{{\left( { - 1} \right)}^j}v + \dfrac{a}{s}} \right]}^2} + {{\left( {w - \dfrac{h}{s}} \right)}^2}} }} \times\\ \left[ \begin{gathered} \dfrac{1}{{{{\left[ {{{\left( { - 1} \right)}^i}u + \dfrac{a}{s}} \right]}^2} + {{\left( {w - \dfrac{h}{s}} \right)}^2}}} + \\ \dfrac{1}{{{{\left[ {{{\left( { - 1} \right)}^j}v + \dfrac{a}{s}} \right]}^2} + {{\left( {w - \dfrac{h}{s}} \right)}^2}}} \\ \end{gathered} \right] +\\ \mathop \sum \limits_{i = 0}^1 \mathop \sum \limits_{j = 0}^1 \dfrac{{\left[ {{{\left( { - 1} \right)}^i}u + \dfrac{a}{s}} \right]\left[ {{{\left( { - 1} \right)}^j}v + \dfrac{a}{s}} \right]}}{{\sqrt {{{\left[ {{{\left( { - 1} \right)}^i}u + \dfrac{a}{s}} \right]}^2} + {{\left[ {{{\left( { - 1} \right)}^j}v + \dfrac{a}{s}} \right]}^2} + {{\left( {w + \dfrac{h}{s}} \right)}^2}} }} \times\\ \qquad\qquad \left[ \begin{gathered} \dfrac{1}{{{{\left[ {{{\left( { - 1} \right)}^i}u + \dfrac{a}{s}} \right]}^2} + {{\left( {w + \dfrac{h}{s}} \right)}^2}}} + \\ \dfrac{1}{{{{\left( {{{\left[ { - 1} \right)}^j}v + \dfrac{a}{s}} \right]}^2} + {{\left( {w + \dfrac{h}{s}} \right)}^2}}} \\ \end{gathered} \right] \\ \end{gathered} \right) \\ \end{gathered} $$ (4) 式中:
$$ \left| u \right| \leqslant 1,\;\left| v \right| \leqslant 1,\left| w \right| \leqslant 1。 $$ 在测试区域内,磁感应强度最大值、最小值以及磁场均匀度是关于a/s、h/s、NI/s的函数,即
$$ \left\{ {\begin{array}{*{20}{c}} {{B_{{\rm{max}}}} = {f_1}\left( {\dfrac{a}{s},\dfrac{h}{s},\dfrac{{NI}}{s}} \right)} \\ {{B_{{\rm{min}}}} = {f_2}\left( {\dfrac{a}{s},\dfrac{h}{s},\dfrac{{NI}}{s}} \right)} \\ {\eta = f\left( {\dfrac{a}{s},\dfrac{h}{s}} \right)} \end{array}} \right. $$ (5) 通过数值计算分析,得到磁场均匀性η关于线圈尺寸参数a/s、h/s的分布,如图2所示。从图中可以看出,不同均匀度下的曲线均存在一个a/s最小点,此时线圈尺寸最小,耗材最少,结构最优。将这些a/s最小点连接成线(如图2所示直线),通过数值计算,进行曲线拟合,得到a/s、h/s关于η的近似表达式;再将Bmin=250 mT代入式(5)中,拟合出NI/s关于η的近似表达式,结果如下:
$$ \left\{ \begin{gathered} \frac{a}{s} = 1.941 + 6.217 \times {10^5}{{\rm{e}}^{ - 12.640\eta }} \\ \frac{h}{s} = 1.013 + 3.011 \times {10^5}{{\rm{e}}^{ - 12.470\eta }} \\ \frac{{NI}}{s} = 6.206 \times {10^5} + 4.391 \times {10^{11}}{{\rm{e}}^{ - 13.482\eta }} \\ \end{gathered} \right. $$ (6) 同时得到h关于a的近似表达式:
$$ h = 0.581a - 0.114s $$ (7) 绘制最优结构与Helmholtz结构(a=0.544 5h)时的a/s、h/s、NI/s与磁场均匀度的曲线分布,如图3、图4、图5所示。
从图中可以看出,在1 m×1 m×1 m测试空间内磁场均匀度η≥1.07时,优化结构相对于Helmholtz结构,尺寸更小,所需安匝数也更少。本文计算的结果忽略了截面效应,在后续研究中会继续深入分析,此处暂不考虑。
当η=1.1、Bmin=250 mT、s=0.5 m,计算得到Helmholtz结构与最优结构时的a、h、NI的值;再考虑输入电源电流I≤10 kA,求得两线圈的最小整数安匝比,如表1所示。可以看出,优化结构的体积更小,输入的电流也更小,成本更低。
表 1 Helmholtz与优化结构的参数比较
Table 1. Parameter comparison between Helmholtz and optimized structure
参数 Helmholtz结构 优化结构 η 1.1 1.1 Bmin/mT 250 250 a/m 1.265 1.255 h/m 0.689 0.675 I/kA 9.93 9.76 N 40∶40 40∶40 -
Maxwell正方形线圈由同轴的三个正方形线圈组成,结构模型如图6所示,需要利用泰勒展开式来确定Maxwell正方形线圈参数比例。
计算得到线圈组在点P(x, y, z)上产生的轴向磁场为:
$$ \begin{gathered} {B_z} = {B_z}\left( {x,y,z} \right) = \\ \frac{{{\mu _0}NI}}{{4\text{π} }}\mathop \sum \limits_{i = 0}^1 \mathop \sum \limits_{j = 0}^1 \frac{{\left[ {{{\left( { - 1} \right)}^i}x + a} \right]\left[ {{{\left( { - 1} \right)}^j}y + a} \right]}}{{\sqrt {{{\left[ {{{\left( { - 1} \right)}^i}x + a} \right]}^2} + {{\left[ {{{\left( { - 1} \right)}^j}y + a} \right]}^2} + {z^2}} }} \times\\ \left[ {\frac{1}{{{{\left[ {{{\left( { - 1} \right)}^i}x + a} \right]}^2} + {z^2}}} + \frac{1}{{{{\left[ {{{\left( { - 1} \right)}^j}y + a} \right]}^2} + {z^2}}}} \right] {\text{ + }}\\ \frac{{{\mu _0}{N_1}I}}{{4\text{π} }}\mathop \sum \limits_{i = 0}^1 \mathop \sum \limits_{j = 0}^1 \frac{{\left[ {{{\left( { - 1} \right)}^i}x + {a_1}} \right]\left[ {{{\left( { - 1} \right)}^j}y + {a_1}} \right]}}{{\sqrt {{{\left[ {{{\left( { - 1} \right)}^i}x + {a_1}} \right]}^2} + {{\left[ {{{\left( { - 1} \right)}^j}y + {a_1}} \right]}^2} + {{\left( {z{\text{ - }}h} \right)}^2}} }} \times\\ \left[ {\frac{1}{{{{\left[ {{{\left( { - 1} \right)}^i}x + {a_1}} \right]}^2} + {{\left( {z{\text{ - }}h} \right)}^2}}} + \frac{1}{{{{\left[ {{{\left( { - 1} \right)}^j}y + {a_1}} \right]}^2} + {{\left( {z{\text{ - }}h} \right)}^2}}}} \right] {\text{ + }}\\ \frac{{{\mu _0}{N_1}I}}{{4\text{π} }}\mathop \sum \limits_{i = 0}^1 \mathop \sum \limits_{j = 0}^1 \frac{{\left[ {{{\left( { - 1} \right)}^i}x + {a_1}} \right]\left[ {{{\left( { - 1} \right)}^j}y + {a_1}} \right]}}{{\sqrt {{{\left[ {{{\left( { - 1} \right)}^i}x + {a_1}} \right]}^2} + {{\left[ {{{\left( { - 1} \right)}^j}y + {a_1}} \right]}^2} + {{\left( {z{\text{ + }}h} \right)}^2}} }} \times\\ \left[ {\frac{1}{{{{\left[ {{{\left( { - 1} \right)}^i}x + {a_1}} \right]}^2} + {{\left( {z{\text{ + }}h} \right)}^2}}} + \frac{1}{{{{\left[ {{{\left( { - 1} \right)}^j}y + {a_1}} \right]}^2} + {{\left( {z{\text{ + }}h} \right)}^2}}}} \right] \\ \end{gathered} $$ (8) 根据上式,得到Z轴轴线上的磁场分布为
$$ \begin{array}{l}B(z)={B}_{z}\left(0,0,z\right)=\dfrac{{\mu }_{0}NI}{2\text{π} }\dfrac{{a}^{2}}{\left({a}^{2}+{z}^{2}\right)\sqrt{2{a}^{2}+{z}^{2}}} +\\\dfrac{{\mu }_{0}{N}_{1}I}{2\text{π} }\dfrac{{a}_{1}{}^{2}}{\left[ {a}^{2}+{\left(z-h\right)}^{2} \right]\sqrt{2{a}^{2}+{\left(z-h\right)}^{2}}} +\\\dfrac{{\mu }_{0}{N}_{1}I}{2\text{π} }\dfrac{{a}_{1}{}^{2}}{\left[ {a}_{1}{}^{2}+{\left(z+h\right)}^{2} \right]\sqrt{2{a}_{1}{}^{2}+{\left(z+h\right)}^{2}}}\end{array} $$ (9) Bz关于z=0对称,故当k为奇数时有Bk(0)=0,其在z=0处的泰勒展开式为:
$$ {B_z} = B(0){\text{ + }}\sum\limits_{k = 1}^\infty {{B^{2k}}(0)} \frac{{{z^{2k}}}}{{(2k)!}} $$ (10) 要产生理想的均匀磁场,则要求B(z)=B(0),即要求B2k(0)=0,计算得到:
$$ \left\{ \begin{split} &{a_1} = 0.611\;2a \\ &h = 0.621\;6a \\ &{N_1}I = 0.422\;2NI \\ \end{split} \right. $$ (11) 将式(11)代入式(8)中,计算当η=1.1时,a=1.196 m;且计算当Bmin=250 mT时,NI=346.9 kA,N1I=146.5 kA。因为I≤10 kA,所以N≥35,N1≥15,绘制磁场均匀度关于N、N1的分布,如图7所示,其中黑色区域的磁场均匀度在1.1范围内。
图 7 Helmholtz线圈磁场均匀度关于N、N1的分布
Figure 7. Magnetic field uniformity with respect to N and N1 for Helmholtz
从图7中可以看出,当N=38,N1=16时,匝数值最小。此时磁场均匀度η=1.1,Bmin=250 mT时的输入电流I=9.33 kA。
与Helmholtz结构类似,同样对Maxwell线圈进行进一步优化,得出磁感应强度最值与磁场均匀度关于变量参数的关系如下:
$$ \left\{ {\begin{array}{*{20}{l}} {{B_{{\rm{max}}}} = {f_1}\left( {a,{a_1},h,NI,{N_1}I} \right)} \\ {{B_{{\rm{min}}}} = {f_2}\left( {a,{a_1},h,NI,{N_1}I} \right)} \\ {\eta = f\left( {a,{a_1},h,{N \mathord{\left/ {\vphantom {N {{N_1}}}} \right. } {{N_1}}}} \right)} \end{array}} \right. $$ (12) 优化的目的是使得在η=1.1的情况下,线圈结构尺寸最小。由于变量较多,很难直接求解,本文可以选择坐标轮换法对参数进行优化。
坐标轮换法每次只搜索一个变量,可将多维问题转化为一维问题,基本思路如下:
1)选择初始点X0=[x10, x20,
$\cdots $ , xn0],选择迭代方向e1=[1, 0,$ \cdots $ , 0]T,e2=[0, 1,$ \cdots $ , 0]T,$ \cdots $ ,en=[0, 0,$ \cdots $ , 1]T。2)选择迭代公式
$$ {\boldsymbol{X}}_i^k = {\boldsymbol{X}}_{i - 1}^k + \alpha _i^k{{\boldsymbol{e}}_i} $$ (13) 式中:
K——迭代序号。
3)判断公式
$$ \left| {{\boldsymbol{X}}_n^k{\text{ - }}{\boldsymbol{X}}_0^k} \right| \leqslant \varepsilon $$ (14) 式中:
$\varepsilon $ ——精度。若满足式(14)的要求,停止迭代,输出最优解;若不满足,返回继续求解直至收敛为止。
本文设计的线圈,由于a决定中间最大线圈的尺寸,属于优先级最高的优化对象;a1决定外侧两线圈的尺寸,属于次优先级的优化对象;h决定线圈的轴向尺寸,属于次次优先级的优化对象。
在η=1.1的情况下,先对a进行坐标轮换法求得其最小值;此时a1、h、N/N1的解可能是一组也可能是多组,所以继续以a1为对象进行坐标轮换法求得其最小值;同样h、N/N1的解未定,继续以h为对象进行坐标轮换法求得其最小值;最后求得安匝比N/N1,其中精度选择
$\varepsilon {\text{ = }}0.001$ 。通过上述计算得到a=1.165 m,a1=0.738 m,h=0.718 m,N/N1=0.4。代入式(12),计算当Bmin=250 mT时,NI=340.1 kA,N1I=136.1 kA,所以N≥35,N1≥14,绘制磁场均匀度关于N、N1的分布,如图8所示。
图 8 Maxwell线圈磁场均匀度关于N、N1的分布
Figure 8. Magnetic field uniformity with respect to N and N1 for Maxwell
从图8中可以看出,当N=37,N1=15时,匝数值最小。此时磁场均匀度η=1.1,Bmin=250 mT时的输入电流I=9.32 kA。
从表2可以看出,优化结构的体积更小,输入电流相同的情况下匝数更少,成本更低。
表 2 Maxwell与Maxwell优化结构的参数比较
Table 2. Distribution of axial magnetic field parameter comparison between Maxwell and Maxwell optimized structure
参数 Maxwell结构 优化结构 η 1.1 1.1 Bmin/mT 250 250 a/m 1.196 1.165 a1/m 0.731 0.738 h/m 0.743 0.718 I/kA 9.33 9.35 N 16:38:16 15:37:15 对比表1和表2可知,Maxwell优化结构线圈相对于其他结构而言,体积最小,输入电流更小,并且匝数更少,所以本文设计选择此结构作为最终结构。
-
线圈采用铝排结构,实际系统使用自然风冷进行散热,在热负荷的考虑上不能过高,实际演算后取电流密度1.56 A/mm2,导体截面取(10 kA)/(1.56 A/mm2)=6 410.3 mm2;而线圈匝数很多,为了保证轴向长度不至于过长,同时考虑到导体强度,取轴向长度为20 mm,另一边长为(6 410.3 mm2)/(20 mm)≈320 mm;导体间距在考虑绝缘安全,取3 mm即可。建立有限元模型,如图9所示。
仿真计算中心1 m×1 m×1 m区域的轴向磁场分布,如图10所示。
仿真结果与解析计算进行对比,如表3所示。可以看出,仿真结果相对于解析计算,均匀度更好,主要是因为每匝线圈在轴向均匀分布,对于磁场均匀度有一定的改善作用,但是在达到Bmin=250 mT的条件下,所需要的电流相应地有所增加。整体而言,误差在可接受范围内,设计方案效果良好。
表 3 有限元法与解析计算优化结构的参数比较
Table 3. Comparison between analytical method and structural parameter optimization method
结构 方法 η Bmin/mT Bmax/mT I/kA Helmholtz
原结构解析法 1.100 250.0 275.0 9.93 有限元法 1.075 251.0 269.8 10.10 误差 2.28% 0.40% 1.89% 1.71% Helmholtz
优化结构解析法 1.100 250.0 275.0 9.76 有限元法 1.078 250.2 269.6 9.95 误差 2.04% 0.08% 1.96% 1.95% Maxwell
原结构解析法 1.100 250.0 275.0 9.33 有限元法 1.068 251.3 268.3 9.57 误差 2.94% 0.52% 2.44% 2.52% Maxwell
优化结构解析法 1.100 250.0 275.0 9.35 有限元法 1.069 250.3 267.6 9.59 误差 2.81% 0.12% 2.69% 2.57%
Optimization of High Uniformity Steady-State Magnetic Field Generator
-
摘要:
目的 为了考核电力与电子设备的抗磁场干扰能力,需要进行相应的磁场抗扰度测试,其中高均匀性稳态磁场发生装置是稳态测试装置的核心部件。 方法 以常规Helmholtz和Maxwell方形线圈为研究对象,通过数值计算进行参数优化,解析得出能够产生高性能磁场的线圈结构,并使用有限元法建立模型进行计算,验证了结果的正确性。 结果 通过数值分析得出线圈参数的一般通用计算公式,并对比两种线圈型式,选择尺寸和功耗较小的优化型Maxwell方形线圈作为最终结构。 结论 为高均匀性稳态磁场发生装置提供了详细的计算过程和设计参考,可以给电气行业的相应设备设计提供理论依据。 Abstract:Introduction To evaluate the anti magnetic interference ability of electrical and electronic devices, it is necessary to carry out the corresponding magnetic field immunity test, in which the high uniformity steady-state magnetic field generator is the core component of a steady-state test device. Method Taking the conventional Helmholtz and Maxwell square coil as the research object, the parameters were optimized through numerical calculation, and the coil structure that can produce high-performance magnetic field was obtained analytically. The finite element method was used to establish a model for calculation, and the correctness of the results was verified. Result The general calculation formula of coil parameters is obtained through numerical analysis, and the two coil types are compared. The optimized Maxwell square coil with small size and power consumption is selected as the final structure. Conclusion The research of this paper provides a detailed calculation process and design reference for the high uniformity steady-state magnetic field generator, and can provide a theoretical basis for the design of corresponding equipment in the electrical industry. -
表 1 Helmholtz与优化结构的参数比较
Tab. 1. Parameter comparison between Helmholtz and optimized structure
参数 Helmholtz结构 优化结构 η 1.1 1.1 Bmin/mT 250 250 a/m 1.265 1.255 h/m 0.689 0.675 I/kA 9.93 9.76 N 40∶40 40∶40 表 2 Maxwell与Maxwell优化结构的参数比较
Tab. 2. Distribution of axial magnetic field parameter comparison between Maxwell and Maxwell optimized structure
参数 Maxwell结构 优化结构 η 1.1 1.1 Bmin/mT 250 250 a/m 1.196 1.165 a1/m 0.731 0.738 h/m 0.743 0.718 I/kA 9.33 9.35 N 16:38:16 15:37:15 表 3 有限元法与解析计算优化结构的参数比较
Tab. 3. Comparison between analytical method and structural parameter optimization method
结构 方法 η Bmin/mT Bmax/mT I/kA Helmholtz
原结构解析法 1.100 250.0 275.0 9.93 有限元法 1.075 251.0 269.8 10.10 误差 2.28% 0.40% 1.89% 1.71% Helmholtz
优化结构解析法 1.100 250.0 275.0 9.76 有限元法 1.078 250.2 269.6 9.95 误差 2.04% 0.08% 1.96% 1.95% Maxwell
原结构解析法 1.100 250.0 275.0 9.33 有限元法 1.068 251.3 268.3 9.57 误差 2.94% 0.52% 2.44% 2.52% Maxwell
优化结构解析法 1.100 250.0 275.0 9.35 有限元法 1.069 250.3 267.6 9.59 误差 2.81% 0.12% 2.69% 2.57% -
[1] BASAR M R, AHMAD M Y, CHO J, et al. An improved wearable resonant wireless power transfer system for biomedical capsule endoscope [J]. IEEE Transactions on Industrial Electronics, 2018, 65(10): 7772-7781. DOI: 10.1109/TIE.2018.2801781. [2] PANG H Y, DUAN L H, QUAN W, et al. Design of highly uniform three dimensional spherical magnetic field coils for atomic sensors [J]. IEEE Sensors Journal, 2020, 20(19): 11229-11236. DOI: 10.1109/JSEN.2020.2997800. [3] 黄亚. ITER大口径均匀强磁兼容测试装备研制 [D]. 合肥: 中国科学技术大学, 2021. DOI: 10.27517/d.cnki.gzkju.2021.000074. HUANG Y. The development of the large-caliber uniform high intensity magnetic compatibility test equipment for ITER [D]. University of Science and Technology of China, 2021. DOI: 10.27517/d.cnki.gzkju.2021.000074. [4] HANSON R J, PIPKIN F M. Magnetically shielded solenoid with field of high homogeneity [J]. Review of Scientific Instruments, 1965, 36(2): 179-188. DOI: 10.1063/1.1134178. [5] YANG Y, SONG Z Q, JIANG L, et al. An improved two-coil configuration for low-frequency magnetic field immunity tests and its field inhomogeneity analysis [J]. IEEE Transactions on Industrial Electronics, 2018, 65(10): 8204-8214. DOI: 10.1109/TIE.2018.2807420. [6] 宋新昌. 亥姆霍兹线圈及麦克斯韦线圈磁场分布及均匀性比较 [J]. 磁性材料及器件, 2016, 47(5): 16-18+77. DOI: 10.3969/j.issn.1001-3830.2016.05.004. SONG X C. Comparison of magnetic field distribution and uniformity between Helmholtz coil and Maxwell coil [J]. Journal of Magnetic Materials and Devices, 2016, 47(5): 16-18+77. DOI: 10.3969/j.issn.1001-3830.2016.05.004. [7] ROBERT A, SCHILL J R, KARIN H. Characterizing and calibrating a large Helmholtz coil at low AC magnetic filed levels with peak magnitudes below the earth's magnetic field [J]. Review of Scientific Instruments, 2001, 72(6): 2769-2776. DOI: 10.1063/1.1368853. [8] CAO Q L, HAN X T, ZHANG B, et al. Analysis and optimal design of magnetic navigation system using Helmholtz and Maxwell coils [J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 4401504-4401504. DOI: 10.1109/TASC.2011.2174583. [9] WANG L, LI G X, XU C L, et al. Effect of characteristic parameters on the magnetic properties of solenoid valve for high-pressure common rail diesel engine [J]. Energy Conversion & Management, 2016, 127: 656-666. DOI: 10.1016/j.enconman.2016.09.057. [10] GOTTARDI G, MESIRCA P, AGOSTINI C, et al. A four coil exposure system (tetracoil) producing a highly uniform magnetic field [J]. Bioelectromagnetics, 2003, 24(2): 125-133. DOI: 10.1002/bem.10074. [11] WANG J, SHE S X, ZHANG S J. An improved Helmholtz coil and analysis of its magnetic field homogeneity [J]. Review of Scientific Instruments, 2002, 73(5): 2175-2179. DOI: 10.1063/1.1471352. [12] KIRSCHVINK J L. Uniform magnetic fields and double-wrapped coil systems: improved techniques for the design of bioelectromagnetic experiments [J]. Bioelectromagnetics, 1992, 13(5): 401-411. DOI: 10.1002/bem.2250130507. [13] BARANOVA V E, BARANOV P F, MURAVYOV S V, et al. The production of a uniform magnetic field using a system of axial coils for calibrating magnetometers [J]. Measurement Techniques, 2015, 58(5): 550-555. DOI: 10.1007/s11018-015-0752-9. [14] 胡朝晖, 穆维维, 吴文峰, 等. 产生匀强磁场的圆柱形线圈组设计方法 [J]. 北京航空航天大学学报, 2018, 44(3): 454-461. DOI: 10.13700/j.bh.1001-5965.2017.0152. HU Z H, MU W W, WU W F, et al. Design method of cylindrical coil group generating uniform magnetic field [J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 454-461. DOI: 10.13700/j.bh.1001-5965.2017.0152. [15] ALLDRED J C, SCOLLAR I. Square cross section coils for the production of uniform magnetic fields [J]. Journal of Scientific Instruments, 1967, 44(9): 755-760. DOI: 10.1088/0950-7671/44/9/327. [16] MERRITT R, PURCELL C, STROINK G. Uniform magnetic field produced by three, four, and five square coils [J]. Review of Scientific Instruments, 1983, 54(7): 879-882. DOI: 10.1063/1.1137480.