-
现有的余热利用技术主要包括烟气余热回收、循环水余热回收、空气源余热回收。各个余热利用技术的余热来源与余热源温度如表1所示。
表 1 余热回收技术对比
Table 1. Comparison of waste heat recovery technologies
烟气余热回收的热源为锅炉尾部排放的120~150 ℃左右的烟气,通过换热器加热冷流体从而达到余热回收的目的。通过烟气余热回收技术理论上可以使得锅炉热效率在原有基础上提升15%左右[12],但由于烟气的腐蚀性,需要定期对换热设备进行防腐处理。
循环水余热回收利用的是循环冷却水的热量,通过热泵加热热网系统的回水,然后通过热网加热器供给热用户,循环水余热回收技术回收了需要通过冷却塔散失的热量,这表明采用余热回收后循环水不需要冷却塔的冷却,减少了循环水的蒸发损失。同时,若采用弃风电为热泵供电则可节水3.64 t/MWh,提升全厂的能源利用效率[13]。
空气源余热回收技术的主要热源为0~60 ℃的烟气,通过空压机将烟气中的热量提取出来用于预热锅炉的循环水,达到余热回收的目的[14]。
余热锅炉本质上是一个气–水/蒸汽的换热器,利用高温烟气余热、化学反应余热、可燃气体余热及高温产品余热等,生产蒸汽或热水,用于工艺流程或进入管网供热[15]。
吸收式制冷技术遵循“发生(解析)—冷凝—蒸发—吸收(吸附)”的循环过程,以溴化锂水溶液为工质的吸收式制冷系统应用广泛,该技术采用低品位热能为驱动力,但是实际应用时其性能系数COP远低于压缩式制冷系统。并且,如果制冷系统的工质采用的天然制冷剂是具有显著的环保效益的。
对于工业中大量废弃的200 ℃,甚至300 ℃以下的低温余热,目前无法利用蒸汽/热水闪蒸系统进行有效回收,更适宜采用经济可行的有机朗肯循环余热发电技术。这是因为工质温度与低温热源换热平均温差大,则不可逆损失较大。为了减小换热不可逆损失,提出了改进的方法,如Kalina循环等。Kalina循环是以氨水混合物为工质的循环系统,最简单的热力循环是一级蒸馏循环,一定浓度的氨水溶液经过水泵加压、预热器升温之后,进入余热锅炉蒸发,形成过热氨水蒸汽进入透平膨胀做功,然后利用复杂的蒸馏冷却子系统解决氨水混合物冷凝问题,使透平乏汽重新形成一定浓度的工质溶液,再到达给水泵,完成一个循环。
简化的余热回收系统示意图如图1所示,一个基础的余热系统一般由凝汽器、热泵、蒸发器和换热器组成[15],余热回收系统回收烟气、循环水或其他热源的余热并与换热工质进行热交换,并将重新加热的工质送入炉膛或热网水中,无法再利用的废热则排出至环境中。
-
目前对余热回收技术评价参数主要包括性能评价、经济性评价以及系统参数关联评价。其中性能评价包括除尘效率、除湿效率、排烟温度、烟气中氧含量、烟气中液气比、烟气中硫含量等;经济性评价包括锅炉效率、热耗、发电煤耗等;系统参数关联价包括热效率、㶲效率、能级等。评价参数与余热回收技术对应情况如表2所示。
表 2 余热回收技术种类及其评价参数
Table 2. Waste heat recovery technology types and their evaluation parameters
例如,张翼等[10]以单位装机容量为1 MW的风电功率为最小计算单元,观察抽凝机组每分钟为数据点的变化特性,采用风电特性进行评价时,可以发现,风电功率的特点为其变化范围可从几乎为零开始到全功率运行。因此可以证明,为进一步降低抽凝机组的能量消耗更多地需考虑对风电的消纳能力。李美军等[21]采用脱硫技术和低氧燃烧技术对烟气余热回收系统中的余热源进行余热回收,通过烟气中硫含量和氧含量为评价参数进行研究,发现降低硫含量和氧含量后,设备上提高金属璧温降低液态水析出,将烟气低温露点腐蚀破坏程度降到最低,对于余热回收有很大的帮助。
Research Progress of Coupled Waste Heat Utilization Technology for Coal-Fired Power Generating Units
-
摘要:
目的 为实现燃煤发电机组进一步扩大其热电比的需求,结合原有机组特点耦合余热利用技术成为了有效方式之一。现有余热利用技术的适应特点以及调节能力具有较大差异。 方法 综合评述了几种余热回收利用方式,同时对比了其原理、优缺点,并通过介绍常用的评价指标进一步评述了当下余热回收技术的关注点。 结果 对于余热回收利用技术方式,目前主要有烟气余热回收,循环水余热回收,空气源余热回收,工业废气回收等方式。其温度区间分别为120~150 ℃、15~35 ℃、0~60 ℃、300 ℃以下。耦合余热利用技术的评价方法主要包括通过性能评价、经济性评价以及系统参数关联评价,其中以热耗、热效率等评价参数为主。 结论 文章给出了余热回收利用技术的发展方向及相关建议。耦合余热回收利用技术目前主要应用于热泵系统,在未来更高热电比需求下,采用冷端余热供热的低压缸改造技术将成为一大发展重点。 Abstract:Introduction To realize the demand of further expanding the thermal power ratio of coal-fired power generating units, coupled waste heat utilization technology combined with the characteristics of the original units has become one of the effective ways. There are great differences in the adaptive characteristics and regulation capacity of the existing waste heat utilization technology. Method Several waste heat recovery and utilization methods were comprehensively reviewed and their principles, advantages and disadvantages were compared. Then the current focus of waste heat recovery technology was further reviewed by introducing common evaluation indicators. Result For waste heat recovery and utilization technology, there are mainly flue gas waste heat recovery, recycling water waste heat recovery, air source waste heat recovery, industrial waste gas recovery, and so on. The temperature ranges are 120~150 ℃, 15~35 ℃, 0~60 ℃, and below 300 ℃, respectively. The evaluation methods of coupled waste heat utilization technology mainly include performance evaluation, economic evaluation, and system parameter correlation evaluation, among which the evaluation parameters such as heat consumption and thermal efficiency are the main ones. Conclusion The development direction and relevant suggestions of waste heat recovery and utilization technology are pointed out. At present, coupled waste heat recovery and utilization technology is mainly used in the heat pump system. Under the demand for a higher thermal power ratio in the future, the low-pressure cylinder transformation technology using cold end waste heat heating will become a major development focus. -
表 1 余热回收技术对比
Tab. 1. Comparison of waste heat recovery technologies
-
[1] 国家电网报. 国家电网公司发布“碳达峰、碳中和”行动方案 [N]. 国家电网报, 2021-03-02 (001). State Grid News. State Grid Corporation of China released an action plan on peaking carbon dioxide emissions and carbon neutrality [N]. State Grid News, 2021-03-02 (001). [2] 裴玥瑶, 杜欣慧, 李钢, 等. 考虑需求响应和风电供热的电热联合优化调度 [J]. 太原理工大学学报, 2020, 51(6): 867-873. DOI: 10.16355/j.cnki.issn1007-9432tyut.2020.06.013. PEI Y Y, DU X H, LI G, et al. Optimal dispatch of combined heat and power systems considering demand response and wind power heating [J]. Journal of Taiyuan University of Technology, 2020, 51(6): 867-873. DOI: 10.16355/j.cnki.issn1007-9432tyut.2020.06.013. [3] 袁春峰, 刘锴慧, 张帆, 等. 火电机组一次调频技术研究进展综述 [J/OL]. 南方能源建设: 1-9. (2022-02-17) [2022-04-04]. https://www.energychina.press/cn/article/j.gedi.issn2095-8676.2022.03.001. YUAN C F, LIU K H, ZHANG F, et al. Review on the research progress of primary frequency modulation technology for thermal power units [J/OL]. Southern Energy Construction: 1-9. (2022-02-17) [2022-04-04]. https://www.energychinapress/cn/article/j.gedi.issn2095-8676.2022.03.001. [4] 方旭, 彭雪风, 张凯, 等. 燃煤热电联产系统冷端余能供热改造研究进展 [J]. 华电技术, 2021, 43(3): 48-56. DOI: 10.3969/j.issn.1674-1951.2021.03.008. FANG X, PENG X F, ZHANG K, et al. Development of heating retrofit using waste heat from coal-fired CHP system cold end [J]. Huadian Technology, 2021, 43(3): 48-56. DOI: 10.3969/j.issn.1674-1951.2021.03.008. [5] 王力, 陈永辉, 李波, 等. 300 MW机组高背压供热改造方案及试验分析 [J]. 汽轮机技术, 2018, 60(5): 385-388. DOI: 10.3969/j.issn.1001-5884.2018.05.019. WANG L, CHEN Y H, LI B, et al. Reconstruction scheme and test analysis for heating supply with high back pressure of a 300 MW unit [J]. Turbine Technology, 2018, 60(5): 385-388. DOI: 10.3969/j.issn.1001-5884.2018.05.019. [6] 汪可, 田亮. 供热机组低压缸零出力工况下热经济性分析 [J/OL]. 华北电力大学学报(自然科学版): 1-7. (2022-01-13) [2022-04-04]. http://kns.cnki.net/kcms/detail/13.1212.tm.20220112.1724.004.html. WANG K, TIAN L. Thermal economy analysis of heating unit under zero-output condition of low pressure cylinder [J/OL]. Journal of North China Electric Power University (Natural Science Edition): 1-7. (2022-01-13) [2022-04-04]. http://kns.cnki.net/kcms/detail/13.1212.tm.20220112.1724.004.html. [7] WANG J D, ZHOU Z G, ZHAO J N, et al. Improving wind power integration by a novel short-term dispatch model based on free heat storage and exhaust heat recycling [J]. Energy, 2018(160): 940-953. DOI: 10.1016/j.energy.2018.07.018. [8] 陈云峰. 燃煤电厂烟气余热利用节能及环保技术研究 [D]. 北京: 华北电力大学(北京), 2017. DOI: 10.7666/d.Y3263175. CHEN Y F. Research on the use of energy-saving and environmental protection technologies for flue gas waste heat in coal-fired power plants [D]. Beijing: North China Electric Power University, 2017. DOI: 10.7666/d.Y3263175. [9] 刘彦. 低温循环水余热回收供暖技术 [J]. 煤炭与化工, 2014, 37(7): 129-131. LIU Y. Low-temperature circulating water waste heat recovery heating technology [J]. Coal and Chemical Industry, 2014, 37(7): 129-131. [10] 张翼, 魏书洲, 任学武, 等. 风电-抽凝机组耦合系统供暖方案研究 [J]. 热力发电, 2021, 50(11): 54-60+67. DOI: 10.19666/j.rlfd.202106111. ZHANG Y, WEI S Z, REN X W, et al. Heat supply schemes for a coupling system of condensing unit and wind power [J]. Thermal Power Generation, 2021, 50(11): 54-60+67. DOI: 10.19666/j.rlfd.202106111. [11] 连红奎, 李艳, 束光阳子, 等. 我国工业余热回收利用技术综述 [J]. 节能技术, 2011, 29(2): 123-128. DOI: 10.3969/j.issn.1002-6339.2011.02.006. LIAN H K, LI Y, SHU G Y Z, et al. An overview of domestic technologies for waste heat utilization [J]. Energy Conservation Technology, 2011, 29(2): 123-128. DOI: 10.3969/j.issn.1002-6339.2011.02.006. [12] 张群力, 张秋月, 曹明凯, 等. 燃气锅炉烟气余热回收利用技术研究 [J]. 建筑科学, 2016, 32(6): 133-141. DOI: 10.13614/j.cnki.11-1962/tu.2016.06.22. ZHANG Q L, ZHANG Q Y, CAO M K, et al. Research on technologies for the recovery of the flue gas waste heat in gas boilers [J]. Building Science, 2016, 32(6): 133-141. DOI: 10.13614/j.cnki.11-1962/tu.2016.06.22. [13] 高智溥, 万逵芳, 刘岩, 等. 耦合弃风和循环水余热的供热系统 [J]. 分布式能源, 2017, 2(3): 1-7. DOI: 10.16513/j.cnki.10-1427/tk.2017.03.001. GAO Z P, WAN K F, LIU Y, et al. Heat supply system coupling wind curtailment with waste energy in cooling water [J]. Distributed Energy, 2017, 2(3): 1-7. DOI: 10.16513/j.cnki.10-1427/tk.2017.03.001. [14] 原宇豪. 浅谈几种余热回收系统及其应用 [J]. 能源与节能, 2019(12): 53-55+58. DOI: 10.16643/j.cnki.14-1360/td.2019.12.023. YUAN Y H. Discussion on several waste heat recovery systems and the application [J]. Energy and Conservation, 2019(12): 53-55+58. DOI: 10.16643/j.cnki.14-1360/td.2019.12.023. [15] 李彦峰, 马晓菲. 供热系统烟气余热及循环水余热回收方案设计 [J]. 应用能源技术, 2015(7): 16-20. DOI: 10.3969/j.issn.1009-3230.2015.07.005. LI Y F, MA X F. Scheme design of heat recovery of flue gas waste heat and circulating water in heating system [J]. Applied Energy Technology, 2015(7): 16-20. DOI: 10.3969/j.issn.1009-3230.2015.07.005. [16] 张诗宜. 烟气净化及余热回收系统优化与评价研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018. DOI: 10.27061/d.cnki.ghgdu.2018.000657. ZHANG S Y. Study on optimization and evaluation of flue gas purification and waste heat recovery system [D]. Harbin: Harbin Institute of Technology, 2018. DOI: 10.27061/d.cnki.ghgdu.2018.000657. [17] 刘永林, 屈杰, 周科, 等. 烟气余热回收利用系统节能效果试验研究 [J]. 热能动力工程, 2017, 32(4): 76-79. DOI: 10.16146/j.cnki.rndlgc.2017.04.011. LIU Y L, QU J, ZHOU K, et al. Experimental study on the energy-saving of flue gas waste heat utilization systems [J]. Journal of Engineering for Thermal Energy and Power. 2017, 32(4): 76-79. DOI: 10.16146/j.cnki.rndlgc. 2017.04.011. [18] 刘哲毅. 燃煤烟气余热回收用于集中供热的系统分析 [D]. 大连: 大连理工大学, 2019. DOI: 10.26991/d.cnki.gdllu.2019.003032. LIU Z Y. System analysis of coal-fired flue gas waste heat recovery for central heating [D]. Dalian: Dalian University of Technology, 2019. DOI: 10.26991/d.cnki.gdllu.2019.003032. [19] 徐承美, 谢英柏, 弓学敏. 燃煤锅炉烟气余热利用途径分析 [J]. 热能动力工程, 2020, 35(8): 151-157. DOI: 10.16146/j.cnki.rndlgc.2020.08.020. XU C M, XIE Y B, GONG X M. Analysis on utilization of waste heat from flue gas of coal-fired boiler [J]. Thermal Power Engineering, 2020, 35(8): 151-157. DOI: 10.16146/j.cnki.rndlgc.2020.08.020. [20] 侯岩, 高杰, 任向东, 等. 烟气余热回收中节能设备的应用 [J]. 石油和化工设备, 2021, 248(1): 96-98. DOI: 10.3969/j.issn.1674-8980.2021.01.028. HOU Y, GAO J, REN X D, et al. Application of energy saving equipment in flue gas waste heat recovery [J]. Petroleum and Chemical Equipment, 2021, 248(1): 96-98. DOI: 10.3969/j.issn.1674-8980.2021.01.028. [21] 李美军. 燃煤工业锅炉余热利用技术及原则概述 [J]. 工业炉, 2021, 43(1): 6-10+16. DOI: 10.3969/j.issn.1001-6988.2021.01.002. LI M J. Overview of waste heat utilization technology and principles of coal-fired industrial boilers [J]. Industrial Boilers, 2021, 43(1): 6-10+16. DOI: 10.3969/j.issn.1001-6988.2021.01.002. [22] 王铁民, 郭朋. 钢铁企业余热利用优化运行实践与探索 [J]. 冶金动力, 2019(12): 6-9. DOI: 10.13589/j.cnki.yjdl.2019.12.003. WANG T M, GUO P. Practice and exploration of optimizing operation of waste heat utilization in steel enterprises [J]. Metallurgical Power, 2019(12): 6-9. DOI: 10.13589/j.cnki.yjdl.2019.12.003. [23] 甄浩然, 冯文亮, 王帅. 热水储热技术在烟气余热回收中的应用效果分析 [J]. 区域供热, 2020(5): 150-153+158. DOI: 10.16641/j.cnki.cn11-3241/tk.2020.05.023. ZHEN H R, FENG W L, WANG S. Analysis of application effect of hot water storage technology in flue gas waste heat recovery [J]. District Heating, 2020(5): 150-153+158. DOI: 10.16641/j.cnki.cn11-3241/tk.2020.05.023. [24] OUYANG T C, WANG Z P, ZHAO Z K, et al. An advanced marine engine waste heat utilization scheme: electricity-cooling cogeneration system integrated with heat storage device [J]. Energy Conversion and Management, 2021(235): 113955. DOI: 10.1016/j.enconman.2021.113955. [25] 郭璞维, 彭跃, 邓靖敏, 等. 烟气余热回收与储能技术耦合应用的可行性研究 [J]. 华电技术, 2021, 43(9): 62-68. DOI: 10.3969/j.issn.1674-1951.2021.09.008. GUO P W, PENG Y, DENG J M, et al. Feasibility study on the coupling application of flue gas waste heat recovery and energy storage technology [J]. Huadian Technology, 2021, 43(9): 62-68. DOI: 10.3969/j.issn.1674-1951.2021.09.008. [26] 刘媛媛, 隋军, 刘浩. 燃煤热电厂串并联耦合吸收式热泵供热系统研究 [J]. 中国电机工程学报, 2016, 36(22): 6148-6155. DOI: 10.13334/j.0258-8013.pcsee.160674. LIU Y Y, SUI J, LIU H. Research on heating system of serial-parallel coupling absorption heat pump for coal fired power plants [J]. Proceedings of the CSEE, 2016, 36(22): 6148-6155. DOI: 10.13334/j.0258-8013.pcsee.160674. [27] 刘海云, 李海英, 姬爱民. 煤矿多源耦合热泵进行余热回收方案的研究 [J]. 节能, 2015, 34(1): 26-29+2. DOI: 10.3969/j.issn.1004-7948.2015.01.006. LIU H Y, LI H Y, JI A M. Research on the multi coupled heat pump system in coal mine [J]. Energy Conservation, 2015, 34(1): 26-29+2. DOI: 10.3969/j.issn.1004-7948.2015.01.006. [28] 杨灿, 谢辉, 周奎, 等. 柴油机有机朗肯循环余热回收系统的耦合效应 [J]. 内燃机学报, 2017, 35(5): 452-459. DOI: 10.16236/j.cnki.nrjxb.201705063. YANG C, XIE H, ZHOU K, et al. Coupling effects between a diesel engine and a subordinate ORC exhaust heat recovery system [J]. Transacyions of Csice, 2017, 35(5): 452-459. DOI: 10.16236/j.cnki.nrjxb.201705063. [29] LIANG Y C, SHU G Q, TIAN H, et al. Investigation of a cascade waste heat recovery system based on coupling of steam Rankine cycle and NH3-H2O absorption refrigeration cycle [J]. Energy Conversion and Management, 2018(166): 697-703. DOI: 10.1016/j.enconman.2018.04.064. [30] TIMOTHY J. Waste heat recovery potential of advanced internal combustion engine technologies [J]. Journal of Energy Resources Technology, 2015, 137(4): 042004. DOI: 10.1115/1.4030108. [31] 齐震, 陈衡, 徐钢, 等. 二次再热机组烟气余热利用热力学分析及优化 [J]. 电力科技与环保, 2019, 35(2): 1-7. DOI: 10.3969/j.issn.1674-8069.2019.02.001. QI Z, CHEN H, XU G, et al. Thermodynamic analysis and optimization of flue gas waste heat utilization of secondary reheating unit [J]. Electric Power Environmental Protection, 2019, 35(2): 1-7. DOI: 10.3969/j.issn.1674-8069.2019.02.001. [32] MOLDGY A, PARAMESHWARAN R. Study on thermal energy storage properties of organic phase change material for waste heat recovery applications [J]. Materials Today: Proceedings, 2018, 5(8): 16840-16848. DOI: 10.1016/j.matpr.2018.05.137. [33] 王军御, 刘汉涛, 梁骁聪. 基于离子液体的烟气余热回收存储系统研究 [J]. 机械设计与制造工程, 2021, 50(4): 97-100. DOI: 10.3969/j.issn.2095-509X.2021.04.021. WANG J Y, LIU H T, LIANG X C. Research on waste heat recovery and storage system of flue gas based on ionic liquid [J]. Machine Design and Manufacturing Engineering, 2021, 50(4): 97-100. DOI: 10.3969/j.issn.2095-509X.2021.04.021. [34] 吴彦丽, 陈赞林, 赵子萱, 等. CO2热泵耦合燃气锅炉供暖系统研究 [J]. 热力发电, 2021, 50(5): 133-138. DOI: 10.19666/j.rlfd.202008242. WU Y L, CHEN Z L, ZHAO Z X, et al. Research on CO2 heat pump coupled gas boiler heating system [J]. Thermal power generation, 2021, 50(5): 133-138. DOI: 10.19666/j.rlfd.202008242. [35] 刘永. 600 MW超临界机组抽汽供热改造在工业供热中的应用分析 [D]. 徐州: 中国矿业大学, 2021. DOI: 10.27623/d.cnki.gzkyu.2021.001425. LIU Y. Analysis of the application of 600MW supercritical unit in industrial heat supply [D]. Xuzhou: China University of Mining and Technology, 2021. DOI: 10.27623/d.cnki.gzkyu.2021.001425.