-
目前用于热电联产机组灵活性改造的技术主要包括扩大热电比、增设电热转换装置以及耦合储能系统[15]。其中扩大热电比、增设电热转换装置属于储热技术,是物理过程。耦合储能技术则已涉及到了化学能转化。潜在储能具体技术特点及应用现状如下:Benjamin McDaniel等[22]对系统增加储热罐,不仅缓解系统热负荷的要求,提高系统的灵活性,而且可以令热电系统维持运行在高效的区域。于波等[23]对混合储能的光伏发电并网系统建立能量管理模型并进行并网仿真模拟分析,结果发现基于蓄电池和超级电容器构建的储能系统在电网能量管理中具有更好的协同优势,其通过优化蓄电池的充放电过程,一方面延长了电池使用寿命的作用,另一方面为光伏电站并网运行的平稳可靠提供支撑。潜在储能技术的分类以及其应用场景如图4所示。潜在储能技术性能对比如表1所示。
表 1 潜在储能技术性能对比
Table 1. Comparison on performances of potential energy storage technology
储能技术种类 优点 缺点 参考文献 储热技术 显热储热 系统集成的低成本和简易性,
储能介质环境友好性储能密度低、集成系统体积
庞大;热损问题突出[24-25] 潜热储热 在近似等温的状态下存释热,利于
热控;储能密度高于显热储热储热介质与容器的相容性较差;
热稳定性需强化;相变材料较贵[26-27][24,28] 热化学储热 储能密度最大,适用于紧凑装置;
自散热损失可以忽略不计储/释热过程复杂,不确定性大,
控制难;循环中的传热传质特性较差[24-25] 蓄电技术 铅酸电池 价格低 功率密度较低 [29] 液流电池 低成本 电池自放电可控,输出功率可控 [30-31] 大功率电容器 免维护 快速充放、电功率密度大 [32] 锂电池 不具备明显的经济性 比功率高 [32] 飞轮储能
技术永磁–机械轴承混合支承式 成本低廉 储能过程中能量损失大 [33-34] 电磁悬浮轴承支承式 轴承运行稳定,工作寿命长 电机运行过程中散热条件差 [35] 超导磁悬浮轴承支承式 可实现低损耗磁悬浮飞
轮储能,储能效率高成本高 [36] -
采用储热技术可以让机组在高负荷运行时进行储热,在低谷期可以作为热源为热网供热,同时可以将储存的热量去加热给水将热量间接转换为电能进行供电。目前的储热技术可以细分为显热储热、潜热储热与热化学储热等,其具有的优缺点见表1。潜热储热技术工作原理为热能的储存和释放发生在材料的相变过程中,这令潜热储能密度明显高于显热,且存放热过程易于进行热量管控;但是潜热储热技术存在储热介质与容器的相容性差,相变材料较贵等不足。而潜热储热技术中也包括熔盐储热,熔盐储热技术的优点在于蓄热方式灵活,相比于其他储能技术,系统结构简单,初投资较低[26]。其基本原理为利用熔盐自身比热容,通过温度的变化来进行热量的存储与释放。但是熔盐储热技术由于熔岩凝固点较高的限制,容易造成集热管管路堵塞,在实际应用方面会有一些温度上的限制。显热储热技术的优点在于系统集成的低成本和简易性,储能介质具有环境友好性;但储能密度低、集成系统体积庞大等不足制约该技术的推广。储能密度最大是热化学储热技术相比于上述两种储热技术的主要优点,其基本原理为利用物质间的可逆化学反应或者化学吸/脱附反应的吸/放热进行热量的存储与释放,因此储热期间的散热损失极小,但热化学储热技术也存在储/释热过程复杂,不确定性大,控制难等不足[27]。
-
目前的蓄电技术还可以细分为,铅酸电池蓄电、钒液流电池蓄电、锂离子电池蓄电、超级电容器蓄电技术等。其应用汇总见表1。电化学电池的基本原理为利用电池材料化学能与电能的相互转化过程实现电能的存储和释放。铅酸电池蓄电技术的优点在于铅酸电池性能可靠、价格低,可以在电力系统发生故障时,作为备用电源使用,但缺点为能量密度和功率密度均较低。钒液流电池的优点在于电池寿命长、可深度放电、电解质溶液可反复再生,却也存在体积大、比能量低、密封性不好等问题。锂离子电池具有能量密度高、环境友好等优势,在电力系统储能方面有较强的竞争力。超级电容器具有电容量超高、功率密度大、充电速度快、充放电效率高、循环寿命长、工作温度范围宽、免维护、安全无毒、环境友好等优点,可以将机组多发的电储存起来,提高机组的深度调峰能力。其不足之处表现为能量密度偏低,漏电流较大,单体工作电压低,如何在保持其优秀的功率密度和循环稳定性的前提下,进一步提升能量密度的是当前重点研究方向[30-31]。
-
飞轮储能基本原理为利用旋转体旋转时的动能进行能量存储和释放。利用飞轮装置将电能储存为机械能,是一种物理储能方式,其技术的应用汇总见表1。在谷值负荷时,可以将电能以机械能的形式储存在飞轮之中,而峰值负荷到来时,将飞轮中的机械能释放转换为电能,满足负荷。飞轮储能技术具有功率密度高、充放电响应速度快、使用寿命长、放电深度大、无环境污染、运营成本低、安全风险小等综合优势[37]。电磁悬浮轴承支承式、超导磁悬浮轴承支承式和永磁–机械轴承混合支承式是三类不同的飞轮储能系统[33]。其中电磁悬浮轴承需要有源控制;超导永磁轴承的运行需要维持低温环境;永磁轴承与小型螺旋槽流体动压轴承的混合支承方式具有结构简单、运行可靠和成本低廉的优点,适用于小型飞轮(重量为数千克力到数十千克力),并且其摩擦功耗还有降低的潜力[34]。
Application Analysis of Energy Storage Technology for Coal-Fired Combined Heat and Power Generation Under Carbon Peak and Neutrality Goal
-
摘要:
目的 “碳达峰、碳中和”目标要求现有能源结构进行深刻变革。提高原有燃煤热电联产机组灵活调节能力是保障新能源电力安全并网的重要内容之一。 方法 分别从燃煤热电联产系统灵活调节需求、潜在储能应用现状以及耦合储能技术的发展方向等方面进行了评述。 结果 分析认为深度“热电解耦”仍是提高燃煤热电联产系统的关键内容。其次,为满足“源–荷”匹配性,储能技术将在燃煤热电联产系统中发挥重要作用,其中具有应用潜力的储能技术主要包括储热、蓄电以及飞轮储能。 结论 最后根据燃煤热电联产机组耦合储能技术的应用特点,提出了储能性能老化、新能源消纳、扩容区域热电负荷中长期变更、初投资与回收期的经济性分析四个方面的建议以及需要注意的相关问题。 Abstract:Introduction The goal of "carbon peak and neutrality" will require profound changes in the existing energy structure. Improving the flexible adjustment capabilities of the original coal-fired cogeneration units is one of the essential elements in ensuring the safe grid connection of new energy power. Method This paper reviewed the flexible adjustment requirements of the coal-fired cogeneration system, the current status of potential energy storage applications, and the development direction of coupled energy storage technology. Result It is concluded that the deep "thermoelectric decoupling" is still the key to improving the coal-burning cogeneration system. Secondly, to meet the "source-charge" matching, energy storage technology will play an essential role in the coal-fired cogeneration system, among which energy storage technology with potential application mainly includes heat storage, electricity storage, and flywheel energy storage. Conclusion Finally, according to the application characteristics of coupled energy storage technology for coal-fired cogeneration units, the paper puts forward suggestions on the aging of energy storage performance, absorption of new energy, long-term change of thermal power load in the expansion area, economic analysis of initial investment, and payback period and relevant issues needing attention. -
表 1 潜在储能技术性能对比
Tab. 1. Comparison on performances of potential energy storage technology
储能技术种类 优点 缺点 参考文献 储热技术 显热储热 系统集成的低成本和简易性,
储能介质环境友好性储能密度低、集成系统体积
庞大;热损问题突出[24-25] 潜热储热 在近似等温的状态下存释热,利于
热控;储能密度高于显热储热储热介质与容器的相容性较差;
热稳定性需强化;相变材料较贵[26-27][24,28] 热化学储热 储能密度最大,适用于紧凑装置;
自散热损失可以忽略不计储/释热过程复杂,不确定性大,
控制难;循环中的传热传质特性较差[24-25] 蓄电技术 铅酸电池 价格低 功率密度较低 [29] 液流电池 低成本 电池自放电可控,输出功率可控 [30-31] 大功率电容器 免维护 快速充放、电功率密度大 [32] 锂电池 不具备明显的经济性 比功率高 [32] 飞轮储能
技术永磁–机械轴承混合支承式 成本低廉 储能过程中能量损失大 [33-34] 电磁悬浮轴承支承式 轴承运行稳定,工作寿命长 电机运行过程中散热条件差 [35] 超导磁悬浮轴承支承式 可实现低损耗磁悬浮飞
轮储能,储能效率高成本高 [36] -
[1] 黄畅, 张攀, 王卫良, 等. 燃煤发电产业升级支撑我国节能减排与碳中和国家战略 [J]. 热力发电, 2021, 50(4): 1-6. DOI: 10.19666/j.rlfd.202101004. HUANG C, ZHANG P, WANG W L, et al. Coal-fired power generation industry upgrade to support China's energy conservation and carbon neutral national strategy [J]. Thermal Power Generation, 2021, 50(4): 1-6. DOI: 10.19666/j.rlfd.202101004. [2] 方旭, 彭雪风, 张凯, 等. 燃煤热电联产系统冷端余能供热改造研究进展 [J]. 华电技术, 2021, 43(3): 48-56. DOI: 10.3969/j.issn.1674-1951.2021.03.008. FANG X, PENG X F, ZHANG K, et al. Research progress of cold-end waste energy heating retrofit in coal-fired cogeneration systems [J]. Huadian Technology, 2021, 43(3): 48-56. DOI: 10.3969/j.issn.1674-1951.2021.03.008. [3] 王金星, 卓建坤, 李菁, 等. 适应燃煤电厂灵活调峰的安全改造技术探讨 [C]. 北京能源与环境学会. 2018火电灵活性改造及深度调峰技术交流研讨会论文集. 北京能源与环境学会: 北京中能联创信息咨询有限公司, 2018: 31-37. [4] 张翼, 魏书洲, 任学武, 等. 风电-抽凝机组耦合系统供暖方案研究 [J]. 热力发电, 2021, 50(11): 54-60+67. DOI: 10.19666/j.rlfd.202106111. ZHANG Y, WEI S Z, REN X W, et al. Study on the heating scheme of wind power-extraction condensing unit coupled system [J]. Thermal Power Generation, 2021, 50(11): 54-60+67. DOI: 10.19666/j.rlfd.202106111. [5] 王金星, 郝剑, 刘畅, 等. 抽凝机组热电联产系统中扩大热电负荷比的灵活性研究 [J]. 热力发电, 2020, 49(12): 41-50. DOI: 10.19666/j.rlfd.202002095. WANG J X, HAO J, LIU C, et al. Study on the flexibility of expanding cogeneration load ratio in pumped condensing unit cogeneration system [J]. Thermal Power Generation, 2020, 49(12): 41-50. DOI: 10.19666/j.rlfd.202002095. [6] 天罡, 刘立华, 黄智, 等. 350 MW机组低压缸切除供热改造方案及调峰性能分析 [J]. 汽轮机技术, 2019, 61(6): 457-460. DOI: 10.3969/j.issn.1001-5884.2019.06.014. TIAN G, LIU L H, HUANG Z, et al. Reconstruction scheme of removing low pressure cylinder and heating for 350 MW unit analysis of peak regulation performance [J]. Turbine Technology, 2019, 61(6): 457-460. DOI: 10.3969/j.issn.1001-5884.2019.06.014. [7] 刘双白, 张晶, 吴昕, 等. 320 MW机组低压缸零出力性能分析及应用研究 [J]. 中国电力, 2021, 54(5): 213-220. DOI: 10.11930/j.issn.1004-9649.202101053. LIU S B, ZHANG J, WU X, et al. Performance analysis and application study of zero output of low pressure cylinder in 320 MW unit [J]. Electric Power, 2021, 54(5): 213-220. DOI: 10.11930/j.issn.1004-9649.202101053. [8] GE W C, LIU D B, DENG G N, et al. Optimal dispatching strategy in the domain with energy storage and heat storage taking into account deep regulation of thermal power plants [J]. IOP Conference Series:Earth and Environmental Science, 2021, 675(1): 012145. DOI: 10.1088/1755-1315/675/1/012145. [9] TAN K M, BABU T S, RAMACHANDARAMURTHY V K, et al. Empowering smart grid: a comprehensive review of energy storage technology and application with renewable energy integration [J]. Journal of Energy Storage, 2021, 39: 102591. DOI: 10.1016/j.est.2021.102591. [10] 何林轩, 李文艳. 飞轮储能辅助火电机组一次调频过程仿真分析 [J]. 储能科学与技术, 2021, 10(5): 1679-1686. DOI: 10.19799/j.cnki.2095-4239.2021.0283. HE L X, LI W Y. Simulation analysis of primary frequency regulation process of flywheel energy storage assisted thermal power units [J]. Energy Storage Science and Technology, 2021, 10(5): 1679-1686. DOI: 10.19799/j.cnki.2095-4239.2021.0283. [11] HAMIDPOUR H, AGHAEI J, PIROUZI S, et al. Flexible, reliable, and renewable power system resource expansion planning considering energy storage systems and demand response programs [J]. IET Renewable Power Generation, 2019, 13(11): 1862-1872. DOI: 10.1049/iet-rpg.2019.0020. [12] YUAN J H, NA C N, LEI Q, et al. Coal use for power generation in China [J]. Resources, Conservation and Re-cycling, 2018, 129: 443-453. DOI: 10.1016/j.resconrec.2016.03.021. [13] 张兴, 阮鹏, 张柳丽, 等. 飞轮储能在华中区域火电调频中的应用分析 [J]. 储能科学与技术, 2021, 10(5): 1694-1700. DOI: 10.19799/j.cnki.2095-4239.2021.0277. ZHANG X, RUAN P, ZHANG L L, et, al. Analysis of the application of flywheel energy storage in the frequency regulation of thermal power in central China [J]. Energy Storage Science and Technology, 2021, 10(5): 1694-1700. DOI: 10.19799/j.cnki.2095-4239.2021.0277. [14] 陈银丽. 热电联产的供热运行调节方式及热电分产能源效率对比 [J]. 低碳世界, 2020, 10(1): 54-55. DOI: 10.3969/j.issn.2095-2066.2020.01.033. CHEN Y L. Heating operation regulation of cogeneration and comparison of energy efficiency of cogeneration [J]. Low Carbon World, 2020, 10(1): 54-55. DOI: 10.3969/j.issn.2095-2066.2020.01.033. [15] 王金星. 大型燃煤热电联产系统研究现状和展望 [J]. 华北电力大学学报(自然科学版), 2019, 46(6): 90-98. DOI: 10.3969/j.ISSN.1007-2691.2019.06.12. WANG J X. Research status and prospect for large coal-fired combined heat and power generation system [J]. Journal of North China Electric Power University(Natural Science Edition), 2019, 46(6): 90-98. DOI: 10.3969/j.ISSN.1007-2691.2019.06.12. [16] 郭海涛, 刘力, 王静怡. 2020年中国能源政策回顾与2021年调整方向研判 [J]. 国际石油经济, 2021, 29(2): 53-61. DOI: 10.3969/j.issn.1004-7298.2021.02.007. GUO H T, LIU L, WANG J Y. Review of China's energy policy in 2020 and study of adjustment direction in 2021 [J]. International Petroleum Economics, 2021, 29(2): 53-61. DOI: 10.3969/j.issn.1004-7298.2021.02.007. [17] 刘晓龙, 崔磊磊, 李彬, 等. 碳中和目标下中国能源高质量发展路径研究 [J]. 北京理工大学学报(社会科学版), 2021, 23(3): 1-8. DOI: 10.15918/j.jbitss1009-3370.2021.7522. LIU X L, CUI L L, LI B, et al. Study on the path of China's energy quality development under the carbon neutrality target [J]. Journal of Beijing University of Technology (Social Science Edition), 2021, 23(3): 1-8. DOI: 10.15918/j.jbitss1009-3370.2021.7522. [18] 高虎. “双碳”目标下中国能源转型路径思考 [J]. 国际石油经济, 2021, 29(3): 1-6. DOI: 10.3969/j.issn.1004-7298.2021.03.001. GAO H. China's energy transformation under the targets of peaking carbon emissions and carbon neutral [J]. International Petroleum Economics, 2021, 29(3): 1-6. DOI: 10.3969/j.issn.1004-7298.2021.03.001. [19] 杨挺, 于亚利, 张亚健, 等. 计及热电耦合的太阳能联产系统功率协调控制 [J]. 电网技术, 2020, 44(9): 3433-3440. DOI: 10.13335/j.1000-3673.pst.2019.1391. YANG T, YU Y L, ZHANG Y J, et al. Coordination control for integrated solar combined cycle with thermoelectric coupling [J]. Power System Technology, 2020, 44(9): 3433-3440. DOI: 10.13335/j.1000-3673.pst.2019.1391. [20] NURDAN BURGU, Haluk GÖZDE, M Cengiz TAPLAMACIOĞLU. Efficiency optimization of combined heat and power system integrated with renewable energy for a hospital [J]. International Journal of Multidisciplinary Studies and Innovative Technologies, 2019, 3(1): 76-81. [21] KANG S S, LI H Q, LIU L F, et al. Exergy analysis of a novel CHP–GSHP coupling system [J]. Applied Thermal Engineering, 2016, 93: 308-314. DOI: 10.1016/j.applthermaleng.2015.09.039. [22] MCDANIEL B, KOSANOVIC D. Modeling of combined heat and power plant performance with seasonal thermal energy storage [J]. Journal of Energy Storage, 2016, 7: 13-23. DOI: 10.1016/j.est.2016.04.006. [23] 于波, 沈啸轩. 浅谈基于混合储能的光伏发电并网系统的能量管理及协调控制 [J]. 中国设备工程, 2021(13): 194-195. DOI: 10.3969/j.issn.1671-0711.2021.13.118. YU B, SHEN X X. Introduction to energy management and coordinated control of grid-connected PV power generation system based on hybrid energy storage [J]. China Plant Engineering, 2021(13): 194-195. DOI: 10.3969/j.issn.1671-0711.2021.13.118. [24] 汪翔, 陈海生, 徐玉杰, 等. 储热技术研究进展与趋势 [J]. 科学通报, 2017, 62(15): 1602-1610. DOI: 10.1360/N972016-00663. WANG X, CHEN H S, XU Y J. Research progress and trends in thermal storage technology [J]. Chinese Science Bulletin, 2017, 62(15): 1602-1610. DOI: 10.1360/N972016-00663. [25] 李廷贤, 李卉, 闫霆, 等. 大容量热化学吸附储热原理及性能分析 [J]. 储能科学与技术, 2014, 3(3): 236-243. DOI: 10.3969/j.issn.2095-4239.2014.03.008. LI T X, LI H, YAN T, et al. Principle and performance analysis of large capacity thermochemical adsorption thermal storage [J]. Energy Storage Science and Technology, 2014, 3(3): 236-243. DOI: 10.3969/j.issn.2095-4239.2014.03.008. [26] 李磊. 熔盐储热技术在光热电站中的应用 [J]. 能源与环境, 2018(5): 26-28. DOI: 10.3969/j.issn.1672-9064.2018.05.012. LI L. Application of molten salt thermal storage technology in solar thermal power plants [J]. Energy and Environment, 2018(5): 26-28. DOI: 10.3969/j.issn.1672-9064.2018.05.012. [27] 周宇涵. 熔盐蓄热供热技术研究与示范项目 [J]. 区域供热, 2021(3): 129-133. DOI: 10.16641/j.cnki.cn11-3241/tk.2021.03.023. ZHOU Y H. Research and demonstration project of molten salt heat storage heating technology [J]. District Heating, 2021(3): 129-133. DOI: 10.16641/j.cnki.cn11-3241/tk.2021.03.023. [28] 徐治国, 赵长颖, 纪育楠, 等. 中低温相变蓄热的研究进展 [J]. 储能科学与技术, 2014, 3(3): 179-190. DOI: 10.3969/j.issn.2095-4239.2014.03.02. XU Z G, ZHAO C Y, JI Y N, et al. Research progress of medium and low temperature phase change thermal storage [J]. Energy Storage Science and Technology, 2014, 3(3): 179-190. DOI: 10.3969/j.issn.2095-4239.2014.03.02. [29] 张永锋, 俞越, 张宾, 等. 铅酸电池现状及发展 [J]. 蓄电池, 2021, 58(1): 27-31. DOI: 10.16679/j.cnki.21-1121.2021.01.007. ZHANG Y F, YU Y, ZHANG B, et al. Current status and development of lead-acid batteries [J]. Chinese LABAT Man, 2021, 58(1): 27-31. DOI: 10.16679/j.cnki.21-1121.2021.01.007. [30] POONAM, SHARMA K, ARORA A, et al. Review of supercapacitors: materials and devices [J]. Journal of Energy Storage, 2019, 21: 801-825. DOI: 10.1016/j.est.2019.01.010. [31] RAZA W, ALI F, RAZA N, et al. Recent advancements in supercapacitor technology [J]. Nano Energy, 2018, 52: 441-473. DOI: 10.1016/j.nanoen.2018.08.013. [32] 张明勋, 丛鹏, 刘光辉. 电池储能技术在电力系统中的应用 [J]. 通信电源技术, 2020, 37(11): 121-123. DOI: 10.3969/j.issn.1008-9772.2018.05.185. ZHANG M X, CONG P, LIU G H. Application of battery energy storage technology in power systems [J]. Telecom Power Technology, 2020, 37(11): 121-123. DOI: 10.3969/j.issn.1008-9772.2018.05.185. [33] 鞠立华. 飞轮储能系统机电耦合非线性动力学研究 [D]. 南京: 东南大学, 2005. DOI: 10.7666/d.y943415. JU L H. Study of electromechanical coupling nonlinear dynamics of flywheel energy storage system [D]. Nanjing: Southeast University, 2005. DOI: 10.7666/d.y943415. [34] 戴兴建, 卫海岗, 沈祖培. 储能飞轮支承系统进动模态阻尼研究 [J]. 振动工程学报, 2002(1): 102-105. DOI: 10.3969/j.issn.1004-4523.2002.01.020. DAI X J, WEI H G, SHEN Z P. Study on the damping of energy storage flywheel support system into the dynamic mode [J]. Journal of Vibration Engineering, 2002(1): 102-105. DOI: 10.3969/j.issn.1004-4523.2002.01.020. [35] 刘付成, 李结冻, 李延宝, 等. 磁悬浮储能飞轮技术研究及应用示范 [J]. 上海节能, 2017(2): 80-84. DOI: 10.13770/j.cnki.issn2095-705x.2017.02.005. LIU F C, LI J D, LI Y B, et al. Research and application demonstration of magnetic levitation energy storage flywheel technology [J]. Shanghai Energy Conservation, 2017(2): 80-84. DOI: 10.13770/j.cnki.issn2095-705x.2017.02.005. [36] 詹三一, 唐跃进, 李敬东, 等. 超导磁悬浮飞轮储能的基本原理和发展现状 [J]. 电力系统自动化, 2001(16): 67-72. DOI: 10.3321/j.issn:1000-1026.2001.16.017. ZHAN S Y, TANG Y J, LI J D. The basic principle and development status of superconducting magnetic levitation flywheel energy storage [J]. Automation of Electric Power Systems, 2001(16): 67-72. DOI: 10.3321/j.issn:1000-1026.2001.16.017. [37] 王睿佳. 飞轮储能在电力系统的应用和发展前景 [J]. 中国电业, 2021(5): 21-23. WANG R J. Application and development prospect of flywheel energy storage in power system [J]. China Electric Power, 2021(5): 21-23. [38] 牟春华, 兀鹏越, 孙钢虎, 等. 火电机组与储能系统联合自动发电控制调频技术及应用 [J]. 热力发电, 2018, 47(5): 29-34. DOI: 10.19666/j.rlfd.201803053. MOU C H, WU P Y, SUN G H, et al. AGC frequency modulation technology and application for combination of thermal power unit and energy storage system [J]. Thermal Power Generation, 2018, 47(5): 29-34. DOI: 10.19666/j.rlfd.201803053. [39] 隋云任, 梁双印, 黄登超, 等. 飞轮储能辅助燃煤机组调频动态过程仿真研究 [J]. 中国电机工程学报, 2020, 40(8): 2597-2606. DOI: 10.13334/j.0258-8013.pcsee.190921. SUI Y R, LIANG S Y, HUANG D C, et al. Simulation study on the dynamic process of frequency regulation of flywheel energy storage assisted coal-fired units [J]. Proceedings of the CSEE, 2020, 40(8): 2597-2606. DOI: 10.13334/j.0258-8013.pcsee.190921. [40] 马成龙, 隋云任. 飞轮储能系统辅助调频的参数配置和经济性分析 [J]. 节能, 2020, 39(10): 25-29. DOI: 10.3969/j.issn.1004-7948.2020.10.009. MA C L, SUI Y R. Parameter configuration and economic analysis of auxiliary frequency regulation of flywheel energy storage system [J]. Energy Conservation, 2020, 39(10): 25-29. DOI: 10.3969/j.issn.1004-7948.2020.10.009. [41] 崔杨, 杨志文, 仲悟之, 等. 基于成本最优的含储热光热电站与火电机组联合出力日前调度 [J]. 电力自动化设备, 2019, 39(2): 71-77. DOI: 10.16081/j.issn.1006-6047.2019.02.011. CUI Y, YANG Z W, ZHONG W Z, et al. Day-ahead dispatch for output of combined CSP with thermal storage system and thermal power units based on minimized operation cost [J]. Electric Power Automation Equipment, 2019, 39(2): 71-77. DOI: 10.16081/j.issn.1006-6047.2019.02.011. [42] 郑明. 1 000 MW火电机组汽轮机控制系统分析与设计 [D]. 北京: 华北电力大学(北京), 2017. DOI: 10.7666/d.Y3262993. ZHENG M. Analysis and design of 1 000 MW coal fired steam turbine control system [D]. Beijing: North China Electric Power University(Beijing), 2017. DOI: 10.7666/d.Y3262993.