-
方案一采用二次浓缩及水平浓淡分离的方案,超低负荷下可降低煤粉的着火热,高温烟气卷吸可提供连续稳定的着火热供给,提高稳燃特性,中高负荷时,由于水平浓淡燃烧器具备“风包粉”特性,可最大限度降低对受热面结渣及硫腐蚀的负面影响,此外将对燃烧器周界风进行重新设计,在中高负荷时,周界风的合理利用,也将降低受热面结渣及硫腐蚀等负面影响[12-14]。
方案二采用浓淡分离器配备燃烧器深度浓淡分离燃烧的方案,浓相煤粉BC层集中布置,淡粉上引,又增加200 m2的卫燃带,超低负荷下会增加稳燃特性,但中高负荷时由于燃烧器附近增设的卫燃带,部分区域由于吸热量下降,水循环密度差会有一定影响,但不影响整体安全运行。
-
方案一改造后,煤粉仍在原B、C两层炉膛区域燃烧,由于采用深度水平浓淡分离技术,主燃区还原性气氛更强,对NOx的影响是正面的,不会增加炉膛出口NOx排放浓度。
方案二中低负荷稳燃的燃烧器改造,重点在于B、C层燃烧器的浓淡分离改造,辅以二次风调整。浓淡分离改造中,浓侧在下的方式,将决定燃烧侧,尤其低负荷中,燃烧器中心较改造前下移,对于垂直空气分级低氮燃烧降低NOx排放是有利的。本次改造方案,不会影响燃烧器各部分的空气分级配比,尤其是SOFA部分,这决定着改造前后锅炉NOx排放是否有大的变化。其中对于C层淡粉的布置,会在CCOFA处,布置一层顶上风,保证降氮效果[15-16]。
两种方案影响分析如表1所示,通过对比分析可知两种方案均有较好的低负荷稳燃特性;相比方案一,方案二的安全性略低。方案一和方案二的燃烧改造均有利于降低低负荷时的NOx排放,但方案二需要相应的配套措施保证降氮效果。
表 1 两种方案影响对比
Table 1. Comparison of impacts of two schemes
炉膛影响 NOx排放影响 方案一 低负荷稳燃特性好,
中高负荷安全性较高直接有利于降低NOx 方案二 低负荷稳燃特性好,
中高负荷安全性略低需要配套措施降低NOx
Research on the Retrofit Scheme of 660 MW Unit Boiler for Stable Combustion
-
摘要:
目的 为了解决电站锅炉深度调峰过程中出现稳燃差、水动力不稳定、SCR入口烟温过低等问题,锅炉稳燃改造势在必行。 方法 文章以某660 MW火电机组锅炉灵活性改造为例,提出了两种有效的稳燃改造方案,分析了燃烧及制粉系统改造后对炉膛和NOx排放影响。 结果 两种改造方案均可提升锅炉超低负荷稳燃特性,燃烧及制粉系统改造后对炉膛和NOx排放影响小,在技术可靠性、施工难度及工作量等方面水平相当,相比之下方案一略优。 结论 两种改造方案经理论验证切实可行,可为同类型机组进行灵活性改造提供技术参考。 Abstract:Introduction In order to solve the problems of poor stable combustion, unstable hydrodynamics, and too low SCR inlet flue gas temperature during the deep peak shaving process of power station boilers, it is imperative to reform the boiler to stabilize combustion. Method In this paper, taking the flexibility transformation of a 660 MW thermal power unit boiler as an example, two effective stable combustion transformation schemes were proposed, and the effects of the combustion and pulverizing system transformation on the furnace and NOx emissions were analyzed. Result Both retrofit schemes can improve the ultra-low load and stable combustion characteristics of the boiler. The retrofit of the combustion and pulverizing system has little impact on the furnace and NOx emissions and is comparable in terms of technical reliability, construction difficulty, and workload. In contrast, scheme 1 is slightly better. Conclusion The two transformation schemes have been theoretically verified and feasible, and can provide technical reference for flexible transformation of the same type of units. -
表 1 两种方案影响对比
Tab. 1. Comparison of impacts of two schemes
炉膛影响 NOx排放影响 方案一 低负荷稳燃特性好,
中高负荷安全性较高直接有利于降低NOx 方案二 低负荷稳燃特性好,
中高负荷安全性略低需要配套措施降低NOx -
[1] 付蔷. 促进风电消纳的火电灵活性改造深度及经济效益研究[D]. 北京: 北京交通大学, 2018. FU Q. Study on depth and economic benefits of thermal power flexibility transformation to promote wind power consumption[D]. Beijing: Beijing Jiaotong University, 2018. [2] 舒印彪, 张智刚, 郭剑波, 等. 新能源消纳关键因素分析及解决措施研究 [J]. 中国电机工程学报, 2017, 37(1): 1-8. DOI: 10.13334/j.0258-8013.pcsee.162555. SHU Y B, ZHANG Z G, GUO J B, et al. Study on key factors and solution of renewable energy accommodation [J]. Proceedings of the CSEE, 2017, 37(1): 1-8. DOI: 10.13334/j.0258-8013.pcsee.162555. [3] 国家发展改革委, 国家能源局. 关于印发《“十四五”现代能源体系规划》的通知 [R]. 北京: 国家发展改革委, 国家能源局, 2022. National Development and Reform Commission, National Energy Administration. Notice on printing and distributing the "14th five year plan" for modern energy system [R]. Beijing: National Development and Reform Commission, National Energy Administration, 2022. [4] 刘刚. 火电机组灵活性改造技术路线研究 [J]. 电站系统工程, 2018, 34(1): 12-15. LIU G. Analysis on technical route of flexible transformation of thermal power units [J]. Power System Engineering, 2018, 34(1): 12-15. [5] 王伟, 徐婧, 赵翔, 等. 中国煤电机组调峰运行现状分析 [J]. 南方能源建设, 2017, 4(1): 18-24. DOI: 10.16516/j.gedi.issn2095-8676.2017.01.003. WANG W, XU J, ZHAO X, et al. Analysis on peak load regulation status quo for coal-fired power plants in China [J]. Southern Energy Construction, 2017, 4(1): 18-24. DOI: 10.16516/j.gedi.issn2095-8676.2017.01.003. [6] 裴顺, 杨桂. 燃煤机组低负荷工况下安全稳定运行研究 [J]. 南方能源建设, 2018, 5(增刊1): 19-24. DOI: 10.16516/j.gedi.issn2095-8676.2018.S1.004. PEI S, YANG G. Research on safe and stable operation under lower load condition for coal-fired power plant [J]. Southern Energy Construction, 2018, 5(Supp. 1): 19-24. DOI: 10.16516/j.gedi.issn2095-8676.2018.S1.004. [7] 李伟, 蔡勇, 张晓磊, 等. 深度调峰工况锅炉主要辅机运行安全性分析 [J]. 广东电力, 2019, 32(11): 63-69. DOI: 10.3969/j.issn.1007-290X.2019.011.008. LI W, CAI Y, ZHANG X L, et al. Analysis of operation safety of main auxiliaries of boilers under deep peak shaving [J]. Guangdong Electric Power, 2019, 32(11): 63-69. DOI: 10.3969/j.issn.1007-290X.2019.011.008. [8] 侯玉婷, 李晓博, 刘畅, 等. 火电机组灵活性改造形势及技术应用 [J]. 热力发电, 2018, 47(5): 8-13. DOI: 10.19666/j.rlfd.201803043. HOU Y T, LI X B, LIU C, et al. Flexibility reform situation and technical application of thermal power units [J]. Thermal Power Generation, 2018, 47(5): 8-13. DOI: 10.19666/j.rlfd.201803043. [9] 龚胜, 石奇光, 冒玉晨, 等. 我国火电机组灵活性现状与技术发展 [J]. 应用能源技术, 2017(5): 1-6. DOI: 10.3969/j.issn.1009-3230.2017.05.001. GONG S, SHI Q G, MAO Y C, et al. Present situation and development of flexible technology of thermal power units in China [J]. Applied Energy Technology, 2017(5): 1-6. DOI: 10.3969/j.issn.1009-3230.2017.05.001. [10] 宋民航, 黄云, 黄骞, 等. 旋流煤粉燃烧器低负荷稳燃技术探讨 [J]. 中国电机工程学报, 2021, 41(13): 4552-4565. DOI: 10.13334/j.0258-8013.pcsee.210311. SONG M H, HUANG Y, HUANG Q, et al. Discussion on low-load stable combustion technology of swirl pulverized-coal burner [J]. Proceedings of the CSEE, 2021, 41(13): 4552-4565. DOI: 10.13334/j.0258-8013.pcsee.210311. [11] 马达夫, 何翔, 吕为智, 等. 660 MW超临界W火焰锅炉低负荷稳燃特性研究 [J]. 工程热物理学报, 2022, 43(1): 259-266. MA D F, HE X, LÜ W Z, et al. Investigations of combustion stability in a 660 MW supercritical W-flame boiler under low load [J]. Journal of Engineering Thermophysics, 2022, 43(1): 259-266. [12] 罗聪, 刘鑫屏. 深度调峰工况下锅炉过量空气系数对炉内温度影响的分析 [J]. 南方能源建设, 2019, 6(3): 81-86. DOI: 10.16516/j.gedi.issn2095-8676.2019.03.014. LUO C, LIU X P. Analysis of optimal excess air ratio under ultra low load conditions [J]. Southern Energy Construction, 2019, 6(3): 81-86. DOI: 10.16516/j.gedi.issn2095-8676.2019.03.014. [13] 孙海峰, 王兆辉, 王建峰, 等. 600 MW超临界机组深度调峰安全可靠运行解析 [J]. 华电技术, 2020, 42(12): 94-100. DOI: 10.3969/j.issn.1674-1951.2020.12.016. SUN H F, WANG Z H, WANG J F, et al. Analysis on safety and reliability of 600 MW supercritical units' deep peak regulation [J]. Huadian Technology, 2020, 42(12): 94-100. DOI: 10.3969/j.issn.1674-1951.2020.12.016. [14] 王立, 王燕晋, 李战国, 等. 火力发电机组深度调峰试验及优化 [J]. 发电设备, 2019, 33(2): 133-137. DOI: 10.3969/j.issn.1671-086X.2019.02.014. WANG L, WANG Y J, LI Z G, et al. Deep peak shaving tests and optimization for thermal power units [J]. Power Equipment, 2019, 33(2): 133-137. DOI: 10.3969/j.issn.1671-086X.2019.02.014. [15] 章斐然, 周克毅, 徐奇, 等. 燃煤机组低负荷运行SCR烟气脱硝系统应对措施 [J]. 热力发电, 2016, 45(7): 78-83. DOI: 10.3969/j.issn.1002-3364.2016.07.078. ZHANG F R, ZHOU K Y, XU Q, et al. Countermeasures for SCR denitration system of coal-fired unit during low-load operation [J]. Thermal Power Generation, 2016, 45(7): 78-83. DOI: 10.3969/j.issn.1002-3364.2016.07.078. [16] 杨青山, 廖永进. 降低SCR脱硝装置最低投运负荷的策略研究 [J]. 中国电力, 2014, 47(9): 153-155. DOI: 10.11930/j.issn.1004-9649.2014.9.153.2. YANG Q S, LIAO Y J. The strategy on reduction of SCR minimum operation load [J]. Electric Power, 2014, 47(9): 153-155. DOI: 10.11930/j.issn.1004-9649.2014.9.153.2.