-
2021年光伏、风电上网平均价格为0.3669元/kWh左右[11],开发成本虽已大幅下降,但规模化产业还处于变革与发展的时期,整机成本在短时间内不会明显降低至陆上风电价格水平(此电价包括10 MW风机及平台的CAPEX),PEM系统制氢耗电量成本为5.6 kWh/Nm3/h,不考虑输电线损率及终端销售价格,仅电价带来的成本约为24.75元/kg H2。
按15年折旧计算,考虑时间成本因素,折现率(复利)为4.7%,预计一台3 MW独立式海上风机制氢平台投入5000万元,其一年的运行费用(包括海上运输、运维、人工、管理费用)为120万元,项目拟定在北海附近海域进行,考虑机组大型化及技术进步的因素,预计年平均利用小时数为4000 h,氢气产量600 kg/d,成本为30.02元/kg H2,此价格未考虑高压氢气储罐的陆上运价。具体测算结果如表1所示。
表 1 氢气成本预测
Table 1. Hydrogen production cost forecast
成本 Case 1 Case 2 Case 3 Case 4 PEM制氢耗电量/(kWh·Nm−3·h−1) 5.6 5.0 5.0 4.5 电价/[元·(kWh)−1] 0.3669 0.25 0.15 0.15 CAPEX/万元 5000 4000 4000 4000 OPEX/万元 120 108 108 108 系统折旧年限/a 15 15 15 15 年负荷/(h·a−1) 4000 4000 4000 4000 年平均氢气价格/[元·(kg)−1 H2] 55.77 40.48 34.45 33.55 主要影响氢气成本的因素有电价、PEM电解槽关键材料价格、风机设备成本等,上述问题均可通过大规模工业化及国产化得到一定缓解。氢气压缩机虽大部分已实现国产化,但核心零部件部分需外购,如何打破国外的技术封锁实现自主研发是降低成本的重要一环。
-
综上所述,以海上制氢平台为例,提出一种海上风电制氢设想方案包括但不限于设备配置如表2所示。整套制氢装置在生产过程中使用的原料仅为海水,动力来源为可再生能源风能,生产过程中基本上无三废排放,海水循环冷却系统进出口温度差小于5 ℃,因而对当地环境影响较小。
表 2 600 Nm3/h海上制氢平台推荐设备配置
Table 2. Recommended equipment configuration for 600 Nm3/h offshore hydrogen production platform
设备名称 数量 工作压力/MPa 备注 风机 1台 - 8MW~10 MW 氢气储罐 8~12组 35/70 - 氢气压缩机 2台 35/70 2×50%,含冷却系统 PEM 3台 3 3×33% 置换吹扫系统 1套 0.6~0.8 99.2%氮气 仪表风系统 1套 0.6~0.8 - 放空系统 1套 - - 此方案从工艺的角度对独立式海上风电制氢平台进行设计,其关键设备PEM、氢气压缩机及储氢方式与风电的适配性好,工程上可行性较高,撬装化设计也能带来更短的工期及便捷的运输,整体设计无技术上的痛点。但由于供应链处于发展初级时期且部分供应商未涉及海洋工程,核心零部件的研发存在瓶颈,成本缺乏透明度,且海上风电还无法做到平价上网即经济性较差,目前,可再生能源制氢市场应用还需要一个长期过程,从部署中吸取经验教训,并通过多个项目的执行优化设备的安装。
从规模和总量上看,我国风电装机量是世界前列,从国内趋势看,用电成本及制氢设备成本将不断下降,发展空间巨大,绿氢项目也趋于长周期、大规模发展,对此平台而言,解决风电消纳问题,借助陆地项目的经验拓展海上项目,采用风氢耦合的形式实现对能源的高效利用。本平台设计仍处于研发阶段,经济性不能与发展成熟的工业副产氢及煤制氢相比,但未来10年是绿氢的技术发展的关键期,氢能产业政策完善化及产业规模化必将极大推动可再生能源制氢的发展,成本问题必将随着未来我国工业化进程的加快而逐步下降,海上制氢必将成为氢能产业的一部分。
Process Design of Independent Offshore Wind Power Hydrogen Production
-
摘要:
目的 文章旨在为充分利用深远海优质的风资源,解决海上风电的弃风问题以及对未来新能源船舶提供一种可能的海上氢气燃料供给方式。 方法 论述了一种依托于独立式海上平台的海上风电耦合海水制氢技术的工艺流程,主要对关键设备——质子交换膜电解水制氢系统、氢气压缩机、氢气储罐及部分辅助设备的工艺设计问题进行阐述,简略说明了制氢平台的控制方案,并且对其经济性进行了初步分析。 结果 从工艺设计的角度对海上风电制氢平台上的设计仅在较为前期的阶段,关键设备的供应链市场处于发展初级时期且大部分供应商未进军海工市场,表明现今海上浮式制氢的工程设计到工程化还不成熟且可再生能源制氢经济性较差。 结论 目前,海上风电还无法做到平价上网,海洋风电耦合氢能应用还需要一个长期过程,进行工程试验是大规模工程化的前提。 Abstract:Introduction The research aims to make full use of the high quality wind resources in the deep sea, solve the problem of wind abandonment of offshore wind power, and provide a possible offshore hydrogen fuel supply for future new energy ships. Method The process flow of offshore wind power coupled seawater hydrogen production technology relying on an independent offshore platform was discussed. The key equipment proton exchange membrane water electrolysis hydrogen production system, hydrogen compressor, hydrogen storage tank and some auxiliary equipment process design problems were described, with a brief description of the control scheme of hydrogen production platform, and a preliminary analysis of its economy. Result From the angle of process design, the design of offshore wind hydrogen production platform just in a relatively early stage. The supply chain of key equipment is in the initial development period and most of the suppliers did not enter the marine market, suggesting that current process from engineering design to the engineering of offshore floating hydrogen production is not yet mature and the economic benefit of hydrogen production from renewable energy is low. Conclusion At the moment, offshore wind power cannot be connected to the grid at a reasonable price, and the application of coupled hydrogen energy of offshore wind power still has a long way to go. Engineering tests are the prerequisite for large-scale engineering. -
Key words:
- hydrogen /
- wind power hydrogen production /
- process flow /
- process design /
- offshore engineering
-
表 1 氢气成本预测
Tab. 1. Hydrogen production cost forecast
成本 Case 1 Case 2 Case 3 Case 4 PEM制氢耗电量/(kWh·Nm−3·h−1) 5.6 5.0 5.0 4.5 电价/[元·(kWh)−1] 0.3669 0.25 0.15 0.15 CAPEX/万元 5000 4000 4000 4000 OPEX/万元 120 108 108 108 系统折旧年限/a 15 15 15 15 年负荷/(h·a−1) 4000 4000 4000 4000 年平均氢气价格/[元·(kg)−1 H2] 55.77 40.48 34.45 33.55 表 2 600 Nm3/h海上制氢平台推荐设备配置
Tab. 2. Recommended equipment configuration for 600 Nm3/h offshore hydrogen production platform
设备名称 数量 工作压力/MPa 备注 风机 1台 - 8MW~10 MW 氢气储罐 8~12组 35/70 - 氢气压缩机 2台 35/70 2×50%,含冷却系统 PEM 3台 3 3×33% 置换吹扫系统 1套 0.6~0.8 99.2%氮气 仪表风系统 1套 0.6~0.8 - 放空系统 1套 - - -
[1] 中国氢能联盟. 中国氢能源及燃料电池产业白皮书 [R]. 北京: 中国氢能联盟, 2019. China Hydrogen Alliance. China hydrogen energy and fuel cell industry white peper [R]. Beijing: China Hydrogen Alliance, 2019 [2] 刘振亚. 全球能源互联网 [M]. 北京: 中国电力出版社, 2015. LIU Z Y. Global energy internet [M]. Beijing: China Electric Power Press, 2015. [3] 陈永翀, 李爱晶, 刘丹丹, 等. 储能技术在能源互联网系统中应用与发展展望 [J]. 电器与能效管理技术, 2015(24): 39-44. DOI: 10.16628/j.cnki.2095-8188.2015.24.011. CHEN Y C, LI A J, LIU D D, et al. Application and development of energy storage in energy internet system [J]. Electrical & Energy Management Technology, 2015(24): 39-44. DOI: 10.16628/j.cnki.2095-8188.2015.24.011. [4] 智研咨询. 2020-2026年中国海上风电行业发展态势与投资策略研究报告 [R]. 北京: 智研咨询, 2019. Intelligence Research Group. Research report on the development trend and investment strategy of China's offshore wind power industry from 2020 to 2026 [R]. Beijing: Intelligence Research Group, 2019. [5] 赵波, 赵鹏程, 胡娟, 等. 用于波动性新能源大规模接入的氢储能技术研究综述 [J]. 电器与能效管理技术, 2018(16): 1-7. DOI: 10.16628/j.cnki.2095-8188.2018.16.001. ZHAO B, ZHAO P C, HU J, et al. Overview of hydrogen energy storage technology in large scale intermittent renewable energy integration application [J]. Electrical & Energy Management Technology, 2018(16): 1-7. DOI: 10.16628/j.cnki.2095-8188.2018.16.001. [6] 廖圣瑄, 陈可仁. 能源岛: 深远海域海上风电破局关键 [J]. 能源, 2021(5): 46-49. LIAO S X, CHEN K R. Energy Island: the key to offshore wind power in the deep sea [J]. Energy, 2021(5): 46-49. [7] 张浩. 氢储能系统关键技术及发展前景展望 [J]. 国网技术学院学报, 2021, 24(2): 8-12. DOI: 10.3969/j.issn.1008-3162.2021.02.003. ZHANG H. Key technologies and development prospect of hydrogen energy storage system [J]. Journal of Shandong Electric Power College, 2021, 24(2): 8-12. DOI: 10.3969/j.issn.1008-3162.2021.02.003. [8] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 氢气使用安全技术规程: GB 4962-2008 [S]. 北京: 中国标准出版社, 2009. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. Technical safety regulation for gaseous hydrogen use: GB 4962-2008 [S]. Beijing: Standards Press of China, 2009 [9] International Organization for Standardization. Transportable gas cylinders — Compatibility of cylinder and valve materials with gas contents — Part 4: Test methods for selecting steels resistant to hydrogen embrittlement: ISO 11114-4-2017 [S]. Geneva: IOS, 2017. [10] 陈如意, 简建明. 大型氢气隔膜压缩机的开发及应用 [J]. 压缩机技术, 2014(3): 47-50. DOI: 10.16051/j.cnki.ysjjs.2014.03.013. CHEN R Y, JIAN J M. Development and application of large type hydrogen diaphragm compressors [J]. Compressor Technology, 2014(3): 47-50. DOI: 10.16051/j.cnki.ysjjs.2014.03.013. [11] 刘泽坤, 郑刚, 张倩, 等. 加氢站用离子压缩机及离子液体简述 [J]. 化工设备与管道, 2020, 57(6): 47-53. DOI: 10.3969/j.issn.1009-3281.2020.06.012. LIU Z K, ZHENG G, ZHANG Q, et al. Introduction of ionic compressor and ionic liquid used in hydrogen refueling station [J]. Process Equipment & Piping, 2020, 57(6): 47-53. DOI: 10.3969/j.issn.1009-3281.2020.06.012. [12] American National Standards Institute (ANSI). Recriprocating compressors for petroleum, chemical, and gas industry services: ANSI/API 618-2008 [S]. New York: ANSI, 2008. [13] 郝加封, 张志宇, 朱旺, 等. 加氢站用氢气压缩机研发现状与思考 [J]. 中国新技术新产品, 2020(11): 22-24. DOI: 10.13612/j.cnki.cntp.2020.11.011. HAO J F, ZHANG Z Y, ZHU W, et al. Development status and thinking of hydrogen compressor for hydrogenation station [J]. New Technology & New Products of China, 2020(11): 22-24. DOI: 10.13612/j.cnki.cntp.2020.11.011. [14] 张彦, 陶毅刚, 张韬, 等. 氢能与电力系统融合发展研究 [J]. 中外能源, 2021, 26(9): 19-28. ZHANG Y, TAO Y G, ZHANG T, et al. Research on integrated development of hydrogen energy and power system [J]. Sino-Global Energy, 2021, 26(9): 19-28. [15] Bloomberg New Energy Finance (BNEF). Hydrogen economy outlook [R]. New York: BNEF, 2020. [16] AYERS K E, ANDERSON E B, CAPUANO C, et al. Research advances towards low cost, high efficiency PEM electrolysis [J]. ECS Transactions, 2010, 33(1): 3-15. DOI: 10.1149/1.3484496. [17] 国家市场监督管理总局, 国家标准化管理委员会. 压力型水电解制氢系统技术条件: GB/T 37562-2019 [S]. 北京: 中国标准出版社, 2019. State Administration of Market Supervision and Administration of the People's Republic of China, Standardization Administration. Technical conditions of pressurized water electrolysis system for hydrogen production: GB/T 37562-2019 [S]. Beijing: Standards Press of China, 2019. [18] 中华人民共和国建设部, 中华人民共和国国家质量监督检验检疫总局. 氢气站设计规范: GB 50177-2005 [S]. 北京: 中国计划出版社, 2005. Ministry of Construction of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Design code for hydrogen station: GB 50177-2005 [S]. Beijing: China Planning Press, 2005. [19] 中华人民共和国住房和城乡建设部. 加氢站技术规范: GB 50516-2010 [S]. 北京: 中国计划出版社, 2021. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical code for hydrogen fuelling station: GB 50516-2010 [S]. Beijing: China Planning Press, 2021. [20] 李保法. 电解水制氢系统安全设计 [J]. 化工设计, 2011, 21(4): 16-18,48. DOI: 10.15910/j.cnki.1007-6247.2011.04.009. LI B F. Safety design of hydrogen production through water electrolysis system [J]. Chemical Engineering Design, 2011, 21(4): 16-18,48. DOI: 10.15910/j.cnki.1007-6247.2011.04.009. [21] PRASAD K. High-pressure release and dispersion of hydrogen in a partially enclosed compartment: effect of natural and forced ventilation [J]. International Journal of Hydrogen Energy, 2014, 39(12): 6518-6532. DOI: 10.1016/j.ijhydene.2014.01.189. [22] 张彦纯. 加氢站主要工艺设备选型分析 [J]. 上海煤气, 2019(6): 10-13,27. DOI: 10.3969/j.issn.1009-4709.2019.06.003. ZHANG Y C. Analysis of main process equipment selection in hydrogen refueling station [J]. Shanghai Gas, 2019(6): 10-13,27. DOI: 10.3969/j.issn.1009-4709.2019.06.003. [23] 李硕存, 陈静, 程久欢, 等. 海洋石油固定平台大气放空系统设计研究 [J]. 中国石油和化工标准与质量, 2018, 38(24): 5-6,9. DOI: 10.3969/j.issn.1673-4076.2018.24.002. LI S C, CHEN J, CHENG J H, et al. Design and research of atmospheric venting system for offshore oil Fixed Platform [J]. China Petroleum and Chemical Standard and Quality, 2018, 38(24): 5-6,9. DOI: 10.3969/j.issn.1673-4076.2018.24.002. [24] 杨源, 汪少勇, 谭江平, 等. 海上风电场智慧运维管理系统 [J]. 南方能源建设, 2021, 8(1): 74-79. DOI: 10.16516/j.gedi.issn2095-8676.2021.01.011. YANG Y, WANG S Y, TAN J P, et al. The Intelligent operation and maintenance management system for offshore wind farms [J]. Southern Energy Construction, 2021, 8(1): 74-79. DOI: 10.16516/j.gedi.issn2095-8676.2021.01.011.