• 匿名盲审
  • 学术期刊非营利性
  • 全球免费开放获取全文
  • 最新科研成果提供绿色通道

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1 000 kV格构式独立避雷线塔风致响应分析

林汪勇 陈寅 张华

林汪勇, 陈寅, 张华. 1 000 kV格构式独立避雷线塔风致响应分析[J]. 南方能源建设, 2022, 9(S2): 68-73. doi: 10.16516/j.gedi.issn2095-8676.2022.S2.011
引用本文: 林汪勇, 陈寅, 张华. 1 000 kV格构式独立避雷线塔风致响应分析[J]. 南方能源建设, 2022, 9(S2): 68-73. doi: 10.16516/j.gedi.issn2095-8676.2022.S2.011
LIN Wangyong, CHEN Yin, ZHANG Hua. Wind-Induced Response Analysis of 1 000 kV Lattice Independent Lightning Protection Tower[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S2): 68-73. doi: 10.16516/j.gedi.issn2095-8676.2022.S2.011
Citation: LIN Wangyong, CHEN Yin, ZHANG Hua. Wind-Induced Response Analysis of 1 000 kV Lattice Independent Lightning Protection Tower[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S2): 68-73. doi: 10.16516/j.gedi.issn2095-8676.2022.S2.011

1 000 kV格构式独立避雷线塔风致响应分析

doi: 10.16516/j.gedi.issn2095-8676.2022.S2.011
基金项目: 中国能建中南院科技项目“濒海地区1000kV变电站高耸结构风致响应研究”(40-1A-KY201619-T202)
详细信息
    作者简介:

    林汪勇,1980-,男,湖北公安人,高级工程师,武汉大学结构工程专业硕士,主要从事变电土建结构设计工作(e-mail)linwangyong@csepdi.com

    通讯作者:

    林汪勇,1980-,男,湖北公安人,高级工程师,武汉大学结构工程专业硕士,主要从事变电土建结构设计工作(e-mail)linwangyong@csepdi.com

  • 中图分类号: TM7; TU311.3

Wind-Induced Response Analysis of 1 000 kV Lattice Independent Lightning Protection Tower

  • 摘要:   目的  为对1 000 kV格构式独立避雷线塔风致响应进行研究,并提出其合理的风振系数取值。  方法  文章以1 000 kV格构式独立避雷线塔为研究对象,借助有限元软件ANSYS,以《建筑结构荷载规范》所采用的Davenport脉动风速功率谱密度函数为基础,基于结构随机振动理论以及频域分析方法,分析了该类型避雷线塔的风致响应,并与《高耸结构设计标准》推荐的简化公式所得风振系数值进行对比。  结果  分析结果表明:在B类地貌、基本风压不大于0.60 kN/m2时,该避雷线塔总体变形满足规范要求;《高耸结构设计标准》推荐的简化公式所得风振系数值以及《变电站建筑结构设计技术规程》建议值总体小于有限元分析所得值,结构设计时应特别注意。  结论  根据本文对比分析结果,推荐1 000 kV格构式独立避雷线塔结构设计时,风振系数可统一取2.20。
  • 图  1  1 000 kV格构式避雷针有限元模型

    Fig.  1  Finite element model of 1000 kV lattice lightning rod

    表  1  前三阶自振频率

    Tab.  1.   First three order natural frequencies

    频率阶次避雷针频率/Hz振型
    11.2413一阶横向弯曲
    21.2413一阶纵向弯曲
    34.6223二阶横向弯曲
    44.6223二阶纵向弯曲
    510.1630三阶纵向弯曲
    610.1630三阶横向弯曲
    下载: 导出CSV

    表  2  避雷线塔相关结构参数

    Tab.  2.   Structural parameters of lightning protection tower

    层数体型系数${\mu _{{\rm{s}}i}}$迎风面面积/m2挡风系数R
    m11.601.840.79
    m21.624.190.49
    m31.764.710.42
    m41.866.670.37
    m51.907.920.35
    m61.999.180.30
    m71.9510.440.33
    m82.0012.580.30
    m92.0915.020.26
    m102.0216.650.29
    m112.0518.300.27
    m122.1319.940.24
    下载: 导出CSV

    表  3  X向位移响应和风振系数

    Tab.  3.   X-direction displacement response and wind-induced vibration coefficient

    层数平均位移/m均方根位移/m合位移/m风振系数
    m11.33E-014.46E-022.44E-011.84
    m21.17E-013.91E-022.15E-011.83
    m31.01E-013.36E-021.85E-011.83
    m48.41E-022.81E-021.54E-011.84
    m56.73E-022.24E-021.23E-011.83
    m65.21E-021.73E-029.53E-021.83
    m73.88E-021.28E-027.08E-021.82
    m82.73E-028.98E-034.98E-021.82
    m91.66E-025.42E-033.01E-021.82
    m108.61E-032.78E-031.56E-021.81
    m113.24E-031.04E-035.83E-031.80
    m123.69E-041.13E-046.51E-041.76
    风振系数加权平均值1.82
    下载: 导出CSV

    表  4  Y向位移响应和风振系数

    Tab.  4.   Y-direction displacement response and wind-induced vibration coefficient

    层数平均位移/m均方根位移/m合位移/m风振系数
    11.52E-017.16E-023.31E-012.18
    21.35E-016.28E-022.92E-012.16
    31.18E-015.39E-022.52E-012.15
    49.91E-024.51E-022.12E-012.14
    58.04E-023.59E-021.70E-012.12
    66.32E-022.77E-021.33E-012.10
    74.78E-022.05E-029.92E-022.07
    83.43E-021.44E-027.03E-022.05
    92.13E-028.70E-034.30E-022.02
    101.13E-024.47E-032.25E-021.99
    114.41E-031.67E-038.58E-031.94
    125.56E-041.81E-041.01E-031.82
    风振系数加权平均值2.06
    下载: 导出CSV

    表  5  X向风振系数比较

    Tab.  5.   Comparison of X-direction wind-induced vibration coefficients

    层数有限元分析所得
    风振系数
    标准方法所得
    风振系数
    误差
    11.841.924.17%
    21.831.956.15%
    31.831.945.67%
    41.841.903.16%
    51.831.851.08%
    61.831.71−7.02%
    71.821.59−14.47%
    81.821.46−24.66%
    91.821.33−36.84%
    101.811.18−53.39%
    111.801.08−66.67%
    121.761.02−72.55%
    加权平均值1.821.55−17.42%
    下载: 导出CSV

    表  6  Y向风振系数比较

    Tab.  6.   Comparison of Y-direction wind-induced vibration coefficients

    层数有限元分析所得
    风振系数
    标准方法所得
    风振系数
    误差
    12.181.92−13.54%
    22.161.95−10.77%
    32.151.94−10.82%
    42.141.90−12.63%
    52.121.85−14.59%
    62.101.71−22.81%
    72.071.59−30.19%
    82.051.46−40.41%
    92.021.33−51.88%
    101.991.18−68.64%
    111.941.08−79.63%
    121.821.02−78.43%
    加权平均值2.061.55−32.90%
    下载: 导出CSV
  • [1] 陈寅, 陈传新, 张华, 等. 换流站避雷线塔风振系数计算 [J]. 电网与清洁能源, 2011, 27(8): 50-52. DOI:  10.3969/j.issn.1674-3814.2011.08.010.

    CHEN Y, CHEN C X, ZHANG H, et al. Wind vibration coefficient calculation of lightning protection tower in converter station [J]. Advances of Power System and Hydroelectric Engineering, 2011, 27(8): 50-52. DOI:  10.3969/j.issn.1674-3814.2011.08.010.
    [2] 李正良, 罗熙越, 蔡青青. 考虑塔-线耦合作用的输电塔体系风振系数研究 [J]. 建筑钢结构进展, 2021, 23(3): 119-128. DOI:  10.13969/j.cnki.cn31-1893.2021.03.013.

    LI Z L, LUO X Y, CAI Q Q. A study on the wind vibration coefficient of transmission tower system considering tower-line coupling effect [J]. Progress in Steel Building Structures, 2021, 23(3): 119-128. DOI:  10.13969/j.cnki.cn31-1893.2021.03.013.
    [3] 原迁, 张德凯. 大跨越输电塔线体系风振响应及风振系数分析 [J]. 山西建筑, 2021, 47(6): 34-38. DOI:  10.3969/j.issn.1009-6825.2021.06.012.

    YUAN Q, ZHANG D K. Analysis of wind-induced response and vibration coefficient of long-span transmission line tower [J]. Shanxi Architecture, 2021, 47(6): 34-38. DOI:  10.3969/j.issn.1009-6825.2021.06.012.
    [4] 窦汉岭, 程长征. 转角输电塔线体系的风振响应分析 [J]. 合肥工业大学学报(自然科学版), 2020, 43(9): 1218-1222. DOI:  10.3969/j.issn.1003-5060.2020.09.013.

    DOU H L, CHENG C Z. Analysis on wind-induced response of corner transmission tower-line system [J]. Journal of Hefei University of Technology (Natural Science Edition), 2020, 43(9): 1218-1222. DOI:  10.3969/j.issn.1003-5060.2020.09.013.
    [5] 邓洪洲, 张建明, 帅群, 等. 输电钢管塔体型系数风洞试验研究 [J]. 电网技术, 2010, 34(9): 190-194. DOI:  10.13335/j.1000-3673.pst.2010.09.024.

    DENG H Z, ZHANG J M, SHUAI Q, et al. Wind-tunnel investigation on pressure coefficient of steel tubular transmission tower [J]. Power System Technology, 2010, 34(9): 190-194. DOI:  10.13335/j.1000-3673.pst.2010.09.024.
    [6] 邹良浩, 梁枢果, 邹垚, 等. 格构式塔架风载体型系数的风洞试验研究 [J]. 特种结构, 2008, 25(5): 41-43,68. DOI:  10.3969/j.issn.1001-3598.2008.05.013.

    ZOU L H, LIANG S G, ZOU Y, et al. Investigation on wind load shape coefficient of lattice towers by wind tunnel tests [J]. Special Structures, 2008, 25(5): 41-43,68. DOI:  10.3969/j.issn.1001-3598.2008.05.013.
    [7] 沈国辉, 项国通, 郭勇, 等. 圆钢输电塔架的风荷载体型系数研究 [J]. 特种结构, 2015, 32(5): 62-65,85.

    SHEN G H, XIANG G T, GUO Y, et al. Research on body shape coefficients of wind loads on steel transmission towers with cylindrical members [J]. Special Structures, 2015, 32(5): 62-65,85.
    [8] 林汪勇, 陈寅, 杨彪. 1000 kV变电构架位移风振系数研究 [J]. 低温建筑技术, 2013, 35(4): 75-76. DOI:  10.3969/j.issn.1001-6864.2013.04.030.

    LIN W Y, CHEN Y, YANG B. Wind displacement vibration coefficient research of 1 000 kV truss structures [J]. Low Temperature Architecture Technology, 2013, 35(4): 75-76. DOI:  10.3969/j.issn.1001-6864.2013.04.030.
    [9] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB 50009—2012 [S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Load code for the design of building structures: GB 50009—2012 [S]. Beijing: China Architecture & Building Press, 2012.
    [10] 祝曦晨. 输电塔架及输电塔线体系等效静力风荷载研究 [D]. 武汉: 武汉大学, 2017.

    ZHU X C. Investigation on equivalent static wind load of lattice towers and transmission tower-line system [D]. Wuhan: Wuhan University, 2017.
    [11] 张相庭. 结构风工程: 理论·规范·实践 [M]. 北京: 中国建筑工业出版社, 2006.

    ZHANG X T. Structural wind engineering: Theory·Standard·Practice [M]. Beijing: China Architecture & Building Press, 2006.
    [12] 国家能源局. 变电站建筑结构设计技术规程: DL/T 5457—2012 [S]. 北京: 中国电力出版社, 2012.

    National Energy Administration. Technical code for the design of substation buildings and structures: DL/T5457—2012 [S]. Beijing: China Electric Power Press, 2012.
    [13] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 高耸结构设计标准: GB 50135—2019 [S]. 北京: 中国计划出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, State Administration for Market Regulation. Standard for design of high-rising structures: GB 50135—2019 [S]. Beijing: China Planning Press, 2019.
  • [1] 周琦, 王振华.  输电塔风致倒塌破坏研究进展 . 南方能源建设, 2024, 11(): 1-10. doi: 10.16516/j.ceec.2024-041
    [2] 杨伟华, 胡雪扬, 张浦阳, 甘毅, 陈青山.  砂土中海上倾斜螺旋群桩基础承载特性研究 . 南方能源建设, 2024, 11(2): 82-92. doi: 10.16516/j.ceec.2024.2.08
    [3] 伍明军.  某2×1 000 MW燃煤电厂淡水获取方案探讨 . 南方能源建设, 2023, 10(S1): 94-97. doi: 10.16516/j.gedi.issn2095-8676.2023.S1.015
    [4] 陈涛, 时慧林, 陈诚, 陈珂, 元国凯.  考虑安装误差的灌浆连接段轴向力学性能研究 . 南方能源建设, 2023, 10(4): 32-42. doi: 10.16516/j.gedi.issn2095-8676.2023.04.004
    [5] 郑阳.  圆形扩展式风机基础钢筋设计优化分析 . 南方能源建设, 2022, 9(S1): 76-82. doi: 10.16516/j.gedi.issn2095-8676.2022.S1.012
    [6] 任灏, 方辉, 魏鑫泽.  导管架船撞损伤与剩余强度的结构有限元模拟与评估方法 . 南方能源建设, 2021, 8(3): 26-33. doi: 10.16516/j.gedi.issn2095-8676.2021.03.004
    [7] 陈兆雄, 马旻, 陶林惠, 熊雄.  超超临界燃煤机组侧煤仓有限元分析及设计 . 南方能源建设, 2020, 7(S2): 75-81. doi: 10.16516/j.gedi.issn2095-8676.2020.S2.012
    [8] 黄海华, 吴阿峰.  高环评标准下1 000 MW机组的设计优化研究及工程实践 . 南方能源建设, 2019, 6(2): 34-37. doi: 10.16516/j.gedi.issn2095-8676.2019.02.006
    [9] 刘广林, 尹进.  1 000 MW燃煤机组引风机与增压风机改造研究 . 南方能源建设, 2019, 6(2): 38-42. doi: 10.16516/j.gedi.issn2095-8676.2019.02.007
    [10] 施伟, 郑侃, 任年鑫.  南海海况下半潜浮式风机在故障工况下的动力学响应分析 . 南方能源建设, 2018, 5(4): 12-20. doi: 10.16516/j.gedi.issn2095-8676.2018.04.002
    [11] 吴阿峰, 谭灿燊, 范永春, 张翔宇, 石韬, 徐金苗.  1 000 MW二次再热机组建设无油电厂的技术经济性分析 . 南方能源建设, 2018, 5(1): 122-126. doi: 10.16516/j.gedi.issn2095-8676.2018.01.021
    [12] 李倩, 王学军, 汪晶毅, 潘春平, 刘俊翔.  ±800 kV极导线与接地极线共塔线路耐雷性能及双极闭锁反事故措施分析 . 南方能源建设, 2018, 5(4): 86-91. doi: 10.16516/j.gedi.issn2095-8676.2018.04.013
    [13] 王辉, 何铮.  基于自主有限元软件的反应堆压力容器密封分析 . 南方能源建设, 2018, 5(4): 66-72. doi: 10.16516/j.gedi.issn2095-8676.2018.04.010
    [14] 邓成刚, 郑军, 邹罗明, 罗颖坚.  蛇形管高压加热器用于1 000 MW二次再热机组的可行性分析 . 南方能源建设, 2017, 4(1): 44-48. doi: 10.16516/j.gedi.issn2095-8676.2017.01.007
    [15] 王辉, 何铮, 刚直.  反应堆压力容器防断裂一体化有限元分析 . 南方能源建设, 2017, 4(4): 59-65. doi: 10.16516/j.gedi.issn2095-8676.2017.04.012
    [16] 常欣, 徐力, 王振华, 章东鸿.  偏心节点钢管塔的受力分析和设计建议 . 南方能源建设, 2017, 4(2): 90-94. doi: 10.16516/j.gedi.issn2095-8676.2017.02.016
    [17] 邓成刚, 石佳.  1 000 MW超超临界燃煤机组高压加热器端差取值分析 . 南方能源建设, 2016, 3(S1): 14-17. doi: 10.16516/j.gedi.issn2095-8676.2016.S1.004
    [18] 龚有军, 郭琳霞.  不同电源送出1 000 kV交流输电线路导线选型研究 . 南方能源建设, 2016, 3(4): 64-68,101. doi: 10.16516/j.gedi.issn2095-8676.2016.04.013
    [19] 胡服全, 杨培勇, 朱翊洲, 高文军, 何铮.  基于实测数据的电缆桥架有限元模型修正 . 南方能源建设, 2015, 2(4): 88-92. doi: 10.16516/j.gedi.issn2095-8676.2015.04.015
    [20] 凌芳, 霍沛强, 邓成刚, 张鹏.  1 000 MW等级湿冷机组回热级数优化研究 . 南方能源建设, 2014, 1(1): 45-49. doi: 10.16516/j.gedi.issn2095-8676.2014.01.008
  • 加载中
图(1) / 表 (6)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  49
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-24
  • 网络出版日期:  2023-01-04
  • 刊出日期:  2023-01-04

1 000 kV格构式独立避雷线塔风致响应分析

doi: 10.16516/j.gedi.issn2095-8676.2022.S2.011
    基金项目:  中国能建中南院科技项目“濒海地区1000kV变电站高耸结构风致响应研究”(40-1A-KY201619-T202)
    作者简介:

    林汪勇,1980-,男,湖北公安人,高级工程师,武汉大学结构工程专业硕士,主要从事变电土建结构设计工作(e-mail)linwangyong@csepdi.com

    通讯作者: 林汪勇,1980-,男,湖北公安人,高级工程师,武汉大学结构工程专业硕士,主要从事变电土建结构设计工作(e-mail)linwangyong@csepdi.com
  • 中图分类号: TM7; TU311.3

摘要:   目的  为对1 000 kV格构式独立避雷线塔风致响应进行研究,并提出其合理的风振系数取值。  方法  文章以1 000 kV格构式独立避雷线塔为研究对象,借助有限元软件ANSYS,以《建筑结构荷载规范》所采用的Davenport脉动风速功率谱密度函数为基础,基于结构随机振动理论以及频域分析方法,分析了该类型避雷线塔的风致响应,并与《高耸结构设计标准》推荐的简化公式所得风振系数值进行对比。  结果  分析结果表明:在B类地貌、基本风压不大于0.60 kN/m2时,该避雷线塔总体变形满足规范要求;《高耸结构设计标准》推荐的简化公式所得风振系数值以及《变电站建筑结构设计技术规程》建议值总体小于有限元分析所得值,结构设计时应特别注意。  结论  根据本文对比分析结果,推荐1 000 kV格构式独立避雷线塔结构设计时,风振系数可统一取2.20。

English Abstract

林汪勇, 陈寅, 张华. 1 000 kV格构式独立避雷线塔风致响应分析[J]. 南方能源建设, 2022, 9(S2): 68-73. doi: 10.16516/j.gedi.issn2095-8676.2022.S2.011
引用本文: 林汪勇, 陈寅, 张华. 1 000 kV格构式独立避雷线塔风致响应分析[J]. 南方能源建设, 2022, 9(S2): 68-73. doi: 10.16516/j.gedi.issn2095-8676.2022.S2.011
LIN Wangyong, CHEN Yin, ZHANG Hua. Wind-Induced Response Analysis of 1 000 kV Lattice Independent Lightning Protection Tower[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S2): 68-73. doi: 10.16516/j.gedi.issn2095-8676.2022.S2.011
Citation: LIN Wangyong, CHEN Yin, ZHANG Hua. Wind-Induced Response Analysis of 1 000 kV Lattice Independent Lightning Protection Tower[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S2): 68-73. doi: 10.16516/j.gedi.issn2095-8676.2022.S2.011
    • 格构式避雷线塔目前被广泛地应用于变电站以及换流站当中,这类结构一般具有轻质、高柔的特点。随着电压等级的升高,避雷线塔的高度也随之不断增大,同时随着结构高度的增大此类结构的刚度和阻尼进一步降低,从而增加了其对风的敏感性,同时风荷载是此类构筑物结构设计的主要控制荷载。目前1 000 kV避雷线塔最大高度为60 m,具有轻质、高柔、小阻尼等特性,使得1 000 kV格构式独立避雷线塔在强风的作用下会产生较大幅度的位移和振动,其风致振动和动力特征分析已成为变电站、换流站结构设计长期关注的重要内容。

      国内外专门对避雷线塔风致响应的相关理论分析与试验研究相对较少,相关设计均为根据规范方法计算得到或者参考输电塔、变电构架相关理论和试验研究成果。陈寅等[1]根据3种不同的设计规范,对换流站4种不同形式避雷塔架进行风振系数计算,通过分析比较,得出避雷线塔风振系数的计算方法和取值标准;李正良等[2]以某220 kV塔线体系为原型,通过气弹性风洞试验和有限元数值模拟的方式,计算该输电塔的风振系数,并与我国现行规范中的相关取值进行对比;原迁等[3]以智利CHACAO大跨越工程为例,在ANSYS中建立塔线体系有限元模型,从结构的动力特性和风振响应几个方面对单塔及塔线体系进行风振分析;并根据时程分析结果对风振系数进行计算并和规范结果对比。窦汉岭等[4]以某220 kV的输电线路为工程背景,利用ANSYS软件建立了转角输电塔线耦联体系的有限元模型,通过模态分析研究了模型的动力特性,采用谐波合成法在模拟出风荷载,并对转角输电塔线体系的风振响应进行时程分析;邓洪州等[5]针对1 000 kV特高压输电线路钢管塔进行了高频测力天平风洞试验,得到了作用在模型上的平均风荷载和体型系数;邹良浩等[6]利用高频测力天平风洞试验分别得到了3种典型的角钢格构式塔架的基底弯矩、基底剪力时程,在此基础上提出了格构式塔架的风载体型系数取值方法,进而计算出上述格构式塔架在不同工况下的风载体型系数;沈国辉等[7]在B类地貌中进行4个塔架模型的天平测力风洞试验,计算塔架在XY方向的体型系数,探讨体型系数随风向角的分布特征,并将试验结果与国内外规范进行比较;林汪勇等[8]以1 000 kV变电构架为背景,基于随机振动理论通过有限元软件计算得到其位移风振系数,并与标准方法所得风振系数进行比较。

      本文在上述研究的基础上,采用有限元软件ANSYS,基于随机振动理论,以某实际1 000 kV变电站格构式独立避雷线为原型,对1 000 kV格构式独立避雷线进行风致响应有限元分析。

    • 本文所研究的1 000 kV格构式独立避雷线塔截面型式为三角形,高度为60 m,弦杆采用圆钢、腹杆采用角钢,其截面尺寸自下而上递减,所处地区为B类地貌,100年一遇基本风压w0=0.60 kN/m2

      采用通用有限元分析软件ANSYS建立1 000 kV格构式独立避雷线塔的有限元模型,结构阻尼比取0.02。模型假定所有杆件为铰接,采用三维梁单元(BEAM188)模拟各杆件,为便于分析相关数据,将60 m高1 000 kV格构式独立避雷线塔分为12层,有限元分析模型见图1。模型经模态分析后得到模型的前6阶频率见表1

      图  1  1 000 kV格构式避雷针有限元模型

      Figure 1.  Finite element model of 1000 kV lattice lightning rod

      表 1  前三阶自振频率

      Table 1.  First three order natural frequencies

      频率阶次避雷针频率/Hz振型
      11.2413一阶横向弯曲
      21.2413一阶纵向弯曲
      34.6223二阶横向弯曲
      44.6223二阶纵向弯曲
      510.1630三阶纵向弯曲
      610.1630三阶横向弯曲
    • 按照《建筑结构荷载规范》[9],对于1 000 kV格构式独立避雷线塔而言,其各层高度处的平均风荷载可按照下式来计算:

      $$ {\bar P_{\left( {\textit{z}} \right)}} = {\mu _{s({\textit{z}})}}{\mu _{{\textit{z}}({\textit{z}})}}{w_0}{S_{\left( {\textit{z}} \right)}}{R_{\left( {\textit{z}} \right)}}$$ (1)

      式中:

      $\bar P_\left( {\textit{z}} \right)$ ——避雷针高度z(m)处平均风荷载(kN);

      μs(z) ——避雷针结构各层高度处体型系数;

      μz(z) ——避雷针各层高度处风压变化系数;

      $ {w_0} $ ——基本风压(kN/m2);

      S(z) ——避雷针架各层高度处轮廓面积(m2);

      R(z) ——避雷针架各层高度处挡风系数。

    • 根据我国《建筑结构荷载规范》[9]中采用加拿大学者Davenport提出的顺风向脉动风速功率谱密度函数,本文采用该功率谱密度函数来推导脉动风荷载功率谱密度函数,顺风向脉动风速功率谱密度函数表达式为:

      $$ {S_{v(n)}} = \frac{{4K{{\overline V }_{10}}^2{x^2}}}{{n{{(1 + {x^2})}^{\frac{4}{3}}}}} $$ (2)

      式中:

      Sv(n) ——脉动风速谱(m/s);

      K ——与地貌相关的表面阻力系数;

      ${\overline V _{10}}$ ——10 m高度处的平均风速(m/s);

      n ——脉动风频率(Hz);

      $$ x = \frac{{1\;200{n}}}{{{{\overline V }_{10}}}} $$ (3)

      将1 000 kV格构式独立避雷线塔沿高划分成12段,结合随机振动理论,同时结合参考文献[10]以及文献[11],可得第i段脉动风荷载谱计算式如下:

      $$ {S_{{\rm{P}}i(n)}} = {[\sqrt {24K} \mu _{{\textit{z}}i({\textit{z}})}^{0.5}{\mu _{{\rm{s}}i({\textit{z}})}}{w_0}{A_i}]^2}{S_{{\rm{f}}(n)}}{{\rm{coh}}_{(i,j)}} $$ (4)
      $$ {S_{\rm{f}}(n)} = \frac{{2x_{}^2}}{{3n{{(1 + x_{}^2)}^{4/3}}}} $$ (5)

      式中:

      ${\mu _{{{\rm{s}}i}(z)}}$ ——第i段的体形系数;

      ${\mu _{{zi}(z)}}$ ——风压沿高度变化系数;

      $ {A_i} $ ——第i段迎风面面积(m2);

      $ {w_0} $ ——基本风压(kN/m2);

      ${\text{coh}}_{(i,j)}$ ——ij两点的互相关函数,相关参数取值见表2

      表 2  避雷线塔相关结构参数

      Table 2.  Structural parameters of lightning protection tower

      层数体型系数${\mu _{{\rm{s}}i}}$迎风面面积/m2挡风系数R
      m11.601.840.79
      m21.624.190.49
      m31.764.710.42
      m41.866.670.37
      m51.907.920.35
      m61.999.180.30
      m71.9510.440.33
      m82.0012.580.30
      m92.0915.020.26
      m102.0216.650.29
      m112.0518.300.27
      m122.1319.940.24

      将式(4)计算所得脉动风荷载谱输入通用有限元分析软件ANSYS进行功率谱分析,经计算可得1 000 kV格构式独立避雷线塔第i段的位移响应根方差,进而得到构架第i段位移风振系数,即总位移与平均风压位移的比值,具体见式(6)。

      $$ {\beta _{{\text{u}}(x)}} = \frac{u}{{\bar{u}}} = 1 + \frac{{\mu {\sigma _{u}}}}{{\overline {u} }} $$ (6)

      式中:

      μ——峰值因子,根据《建筑结构荷载规范》取2.5。

    • 表3表4显示了1 000 kV格构式独立避雷线塔位移响应以及风振系数沿高分布规律。由表3表4可以看出:(1)1 000 kV格构式独立避雷线塔平均位移、均方根位移、合位移以及风振系数沿高整体均呈增大趋势;(2)X向风振系数最大值为1.84,加权平均值为1.82,最大合位移为244 mm,相对变形值为1/246;(3)Y向风振系数最大值为2.18,加权平均值为2.06,最大合位移为331 mm,相对变形值为1/181;(4)XY向相对变形值均满足《变电站建筑结构设计技术规程》[12]对格构式避雷线塔相对变形值为1/100的要求。

      表 3  X向位移响应和风振系数

      Table 3.  X-direction displacement response and wind-induced vibration coefficient

      层数平均位移/m均方根位移/m合位移/m风振系数
      m11.33E-014.46E-022.44E-011.84
      m21.17E-013.91E-022.15E-011.83
      m31.01E-013.36E-021.85E-011.83
      m48.41E-022.81E-021.54E-011.84
      m56.73E-022.24E-021.23E-011.83
      m65.21E-021.73E-029.53E-021.83
      m73.88E-021.28E-027.08E-021.82
      m82.73E-028.98E-034.98E-021.82
      m91.66E-025.42E-033.01E-021.82
      m108.61E-032.78E-031.56E-021.81
      m113.24E-031.04E-035.83E-031.80
      m123.69E-041.13E-046.51E-041.76
      风振系数加权平均值1.82

      表 4  Y向位移响应和风振系数

      Table 4.  Y-direction displacement response and wind-induced vibration coefficient

      层数平均位移/m均方根位移/m合位移/m风振系数
      11.52E-017.16E-023.31E-012.18
      21.35E-016.28E-022.92E-012.16
      31.18E-015.39E-022.52E-012.15
      49.91E-024.51E-022.12E-012.14
      58.04E-023.59E-021.70E-012.12
      66.32E-022.77E-021.33E-012.10
      74.78E-022.05E-029.92E-022.07
      83.43E-021.44E-027.03E-022.05
      92.13E-028.70E-034.30E-022.02
      101.13E-024.47E-032.25E-021.99
      114.41E-031.67E-038.58E-031.94
      125.56E-041.81E-041.01E-031.82
      风振系数加权平均值2.06
    • 根据《高耸结构设计标准》[13]自立式高耸结构在z高度处的风振系数${\beta _{z}}$可按式(6)确定:

      $$ {\beta _{z}} = 1 + \xi {\varepsilon _1}{\varepsilon _2} $$ (7)

      式中:

      $\xi $ ——脉动增大系数;

      ${\varepsilon _1}$——风压脉动和风压高度变化等影响系数;

      ${\varepsilon _2}$——振型、结构外形的影响系数。

      表5表6中列出1 000 kV格构式独立避雷线塔采用《高耸结构设计标准》推荐的简化公式所得以及有限元分析所得风振系数的值以及两者间的相对误差。

      表 5  X向风振系数比较

      Table 5.  Comparison of X-direction wind-induced vibration coefficients

      层数有限元分析所得
      风振系数
      标准方法所得
      风振系数
      误差
      11.841.924.17%
      21.831.956.15%
      31.831.945.67%
      41.841.903.16%
      51.831.851.08%
      61.831.71−7.02%
      71.821.59−14.47%
      81.821.46−24.66%
      91.821.33−36.84%
      101.811.18−53.39%
      111.801.08−66.67%
      121.761.02−72.55%
      加权平均值1.821.55−17.42%

      表 6  Y向风振系数比较

      Table 6.  Comparison of Y-direction wind-induced vibration coefficients

      层数有限元分析所得
      风振系数
      标准方法所得
      风振系数
      误差
      12.181.92−13.54%
      22.161.95−10.77%
      32.151.94−10.82%
      42.141.90−12.63%
      52.121.85−14.59%
      62.101.71−22.81%
      72.071.59−30.19%
      82.051.46−40.41%
      92.021.33−51.88%
      101.991.18−68.64%
      111.941.08−79.63%
      121.821.02−78.43%
      加权平均值2.061.55−32.90%

      通过对比两种方法所得风振系数的大小以及变化规律可知:与有限元分析所得风振系数变化规律类似,标准方法所得风振系数值为顶部最大,中间其次,底部最小。标准方法所得值,除X向风振系数顶部区域大于本文计算所得风振系数值外,X向其他区域以及Y向风振系数均小于本文计算所得风振系数值。顶部区域最大相差13.54%,中部区域最大相差40.41%,底部区域最大相差78.43%,但底部区域风荷载较小对整体受力影响不明显。两者沿高加权平均值,X向相差17.4%,Y向相差32.9%,标准方法计算所得风振系数最大值为1.95,沿高加权平均值为1.55。

      总体而言,《高耸结构设计标准》推荐的简化公式所得风振系数计算值比有限元分析所得值小,因为标准公式基本计算理论仍是基于第一振型的惯性风荷载法,计算时仅考虑一阶振型系数,对于类似1 000 kV格构式独立避雷线塔这类高耸结构在进行风振计算时,其高阶振型和扭转振型的贡献所占比例是不可忽略的。

      综合比较标准所得以及有限元分析所得风振系数值,按《高耸结构设计标准》推荐公式计算所得向风振系数高加权平均值为1.55与《变电站建筑结构设计技术规程》所取1.5比较接近,均小于有限元分析所得风振系数值,偏于不安全,对于1 000 kV格构式独立避雷线塔这类风荷载为控制荷载的高耸结构,在设计时应特别注意。同时根据本文的对比分析结果,推荐1 000 kV格构式独立避雷线塔结构设计时,风振系数可统一取2.20,进行包络设计。

    • 本文以1 000 kV格构式独立避雷线塔为研究对象,借助有限元软件ANSYS,基于结构随机振动理论以及频域分析方法,分析了B类地貌下,该类型避雷线塔的风致响应,并与规范方法所得风振系数值进行对比,得出的主要结论如下:

      1)基本风压不大于w0=0.60 kN/m2时,该避雷线塔总体变形满足《变电站建筑结构设计技术规程》对格构式避雷线塔相对变形值为1/100的要求。

      2)对于1 000 kV格构式独立避雷线塔进行风振计算时仅考虑一阶振型系数,误差相对较大,应考虑高阶振型和扭转振型的影响。

      3)在1 000 kV格构式独立避雷线塔结构设计时,风振系数可统一取2.20,进行包络设计。

      4)《高耸结构设计标准》推荐方法所得风振系数值以及《变电站建筑结构设计技术规程》的推荐值均小于本文限元分析所得值,偏于不安全,结构设计时应特别注意。

参考文献 (13)

目录

    /

    返回文章
    返回