-
以某±800 kV特高压直流换流站为例,对高端阀厅巡视走道开展不同技术方案的对比研究。如下图4所示为典型的“一字型”±800 kV高端阀厅布置图。阀厅内巡视走道最外廓一般按2 000(宽) mm×2 500(高) mm考虑,悬吊在阀厅下弦或设置在上弦屋架处。
1) 方案一:单层屏蔽巡视走道方案,设置在屋架下弦采用单层屏蔽巡视走道,为了保证巡视人员的绝对安全,在计算带电部分对巡视走道的空气净距时一般取5σ,阀厅高度主要由D10、D13决定;阀厅宽度主要由D5、D6决定,其中D5为巡视通道与直流穿墙套管的距离,D6为巡视通道与六脉动阀中点的距离。D5、D6均按14.1 m考虑,阀厅宽度为36.0 m,高度为30.5 m。
2) 方案二:单层屏蔽巡视走道方案,设置在屋架上弦,穿屋架设置阀厅高度和宽度的计算原则、决定因素同方案一。由于巡视走道在屋架内部,有效节省空间,但巡视便利性较差。阀厅宽度为35.0 m,高度为28.5 m。
将巡视走道置于屋架内部,需增高屋架高度,并调整屋架腹杆布置,采用人字形腹杆。屋架高度增加后,高度将远大于屋架的经济高度,用钢量将增加。
3) 方案三:双层屏蔽巡视走道方案,设置在屋架下弦采用双层屏蔽巡视走道,在计算带电部分对巡视走道的空气净距时取2 σ,阀厅高度主要由D10、D13决定,阀厅宽度由D7决定。D7按9.8 m考虑,阀厅宽度为35.0 m,高度为28.5 m。
以宽度为35.0 m,高度为28.5 m的单个阀厅为基准,对采用上述三个不同的屏蔽巡视走道方案导致增加的投资费用进行对比,如表1所示:
表 1 三个方案投资费用对比
Table 1. Cost comparison for three proposals
方案 项目 工程量 材料单价 费用 方案一 结构用钢 18 t 7500 元/t — 压型钢板 318 m2 410 元/m2 28.23 万元 地坪 89 m2 95 元/m2 — 方案二 结构用钢 42 t 7500 元/t 31.50 万元 方案三 屏蔽网 880 m2 10 元/m2 0.88 万元 方案一和方案二为传统的单层屏蔽巡视走道方案,目前已在国内常规直流工程中广泛应用。可以看出,文章中提出的方案三,采用设置在屋架下弦的双层屏蔽巡视走道方案,相比较于方案一和方案二具备一定的经济优势。
Research on Application of Double-Layer Shielding Cage for Valve Hall in HVDC Converter Station
-
摘要:
目的 为了减小高压直流换流站阀厅占地面积并降低投资成本,提出了一种适用于高压直流换流站阀厅的双层屏蔽巡视走道方案。 方法 在借鉴1100kV昌吉—古泉特高压直流输电工程首次应用双层屏蔽巡视走道的成功经验,以及国内科研单位开展的试验结果基础上,针对阀厅内不同巡视走道方案开展经济性对比,验证本方案的经济性。 结果 结果证明文章提出的双层屏蔽巡视走道方案具备一定的优势。 结论 文章提出的一种高压直流换流站阀厅采用双层屏蔽巡视走道的具体实施方案,并在某工程的阀厅中得以成功应用,具备推广价值。 Abstract:Introduction In order to reduce the land acquisition and cost of valve hall for HVDC converter station, a double-layer shielding cage scheme for valve hall of UHVDC converter station is presented in this paper. Method With the base of successful application of double-layer shielding cage in the ±1100 kV UHVDC Changji-Guquan transmission projects, and relative experiment conducted by China power research institute, the economic comparison of various kinds of shielding cages in valve hall was carried out to verify the economy of this scheme. Result The result shows that the double-layer shielding cage scheme has certain advantages. Conclusion The detailed implementing scheme of the double-layer shielding cage for valve hall in HVDC converter station presented in this paper is successfully applied in one project with popularization value. -
Key words:
- ±800 kV /
- UHVDC converter station /
- double-layer shielding cage /
- valve hall /
- grounding
-
表 1 三个方案投资费用对比
Tab. 1. Cost comparison for three proposals
方案 项目 工程量 材料单价 费用 方案一 结构用钢 18 t 7500 元/t — 压型钢板 318 m2 410 元/m2 28.23 万元 地坪 89 m2 95 元/m2 — 方案二 结构用钢 42 t 7500 元/t 31.50 万元 方案三 屏蔽网 880 m2 10 元/m2 0.88 万元 -
[1] 赵畹君. 高压直流输电工程技术 [M]. 北京: 中国电力出版社, 2004. ZHAO W J. HVDC transmission engineering teachnology [M]. Beijing: China Electric Power Press, 2004 [2] 郭贤珊, 郄鑫, 曾静. ±800kV换流站通用设计研究与应用 [J]. 电力建设, 2014, 35(10): 36-42. DOI: 10.3969/j.issn.1000-7229.2014.10.008. GUO X S, QIE X, ZENG J. Research and application of general design for ±800 kV converter station [J]. Electric Power Construction, 2014, 35(10): 36-42. DOI: 10.3969/j.issn.1000-7229.2014.10.008. [3] 黄阳, 王建武, 鲁翔, 等. 集约式绿色换流站设备选型及优化布置研究 [J]. 南方能源建设, 2020, 7(1): 107-112. DOI: 10.16516/j.gedi.issn2095-8676.2020.01.017. HUANG Y, WANG J W, LU X, et al. Research on equipment selection and optimal layout of intensive green converter station [J]. Southern Energy Construction, 2020, 7(1): 107-112. DOI: 10.16516/j.gedi.issn2095-8676.2020.01.017. [4] 邢毅, 孙帮新, 骆玲, 等. 高地震烈度地区特高压换流站阀厅电气布置及联接设计 [J]. 南方电网技术, 2019, 13(1): 7-13. DOI: 10.13648/j.cnki.issn1674-0629.2019.01.002. XING Y, SUN B X, LUO L, et al. Electric layout and connection design in valve hall of UHVDC converter station in high earthquake intensity area [J]. Southern Power System Technology, 2019, 13(1): 7-13. DOI: 10.13648/j.cnki.issn1674-0629.2019.01.002. [5] 曹效义, 杜建建. ±800 kV特高压换流站电气总平面布置设计优化 [J]. 内蒙古电力技术, 2015, 33(4): 5-10. DOI: 10.3969/j.issn.1008-6218.2015.04.011. CAO X Y, DU J J. Optimization of general electric arrangement design for ±800 kV extra-high tension convertor station [J]. Inner Mongolia Electric Power, 2015, 33(4): 5-10. DOI: 10.3969/j.issn.1008-6218.2015.04.011. [6] 张凌, 杨金根, 曾静. 特高压阀厅电气设计研究 [J]. 电力建设, 2007, 28(5): 12-16. DOI: 10.3969/j.issn.1000-7229.2007.05.003. ZHANG L, YANG J G, ZENG J. Study on electric design of UHV valve hall [J]. Electric Power Construction, 2007, 28(5): 12-16. DOI: 10.3969/j.issn.1000-7229.2007.05.003. [7] 王丽杰, 杨金根, 张凌. 背靠背换流站阀厅电气设计 [J]. 电力建设, 2008, 29(4): 43-45,59. DOI: 10.3969/j.issn.1000-7229.2008.04.014. WANG L J, YANG J G, ZHANG L. Electric design of back-to-back converter station valve hall [J]. Electric Power Construction, 2008, 29(4): 43-45,59. DOI: 10.3969/j.issn.1000-7229.2008.04.014. [8] 刘泽洪. ±1100 kV特高压直流输电工程创新实践 [J]. 中国电机工程学报, 2020, 40(23): 7782-7791. DOI: 10.13334/j.0258-8013.pcsee.201451. LIU Z H. Findings in development of ±1100 kV UHVDC transmission [J]. Proceedings of the CSEE, 2020, 40(23): 7782-7791. DOI: 10.13334/j.0258-8013.pcsee.201451. [9] 谭威, 简翔浩, 施世鸿, 等. ±1100kV特高压直流换流站直流场设计选型 [J]. 南方能源建设, 2017, 4(4): 23-28. DOI: 10.16516/j.gedi.issn2095-8676.2017.04.005. TAN W, JIAN X H, SHI S H, et al. Selection of ±1100kV UHVDC converter station DC field [J]. Southern Energy Construction, 2017, 4(4): 23-28. DOI: 10.16516/j.gedi.issn2095-8676.2017.04.005. [10] 彭冠炎, 穆峰磊, 官澜, 等. ±1100kV换流站户内直流场智能巡检系统设计 [J]. 南方能源建设, 2017, 4(4): 118-123. DOI: 10.16516/j.gedi.issn2095-8676.2017.04.022. PENG G Y, MU F L, GUAN L, et al. Intelligence inspection system design of DC indoor switch yard in ±1100 kV converter substation [J]. Southern Energy Construction, 2017, 4(4): 118-123. DOI: 10.16516/j.gedi.issn2095-8676.2017.04.022. [11] 姚斌, 施世鸿, 陈荔. ±1100kV特高压直流换流站直流场导体的电磁计算与设计选型 [J]. 南方能源建设, 2016, 3(4): 37-41. DOI: 10.16516/j.gedi.issn2095-8676.2016.04.008. YAO B, SHI S H, CHEN L. Electromagnetic environment calculation and design of ±1100 kV DC conductor in UHVDC converter station [J]. Southern Energy Construction, 2016, 3(4): 37-41. DOI: 10.16516/j.gedi.issn2095-8676.2016.04.008. [12] 包维瀚, 郭贤珊, 丁晓飞, 等. ±1100kV换流站户内直流场巡检方案研究 [J]. 四川电力技术, 2017, 40(3): 26-30. DOI: 10.16527/j.cnki.cn51-1315/tm.2017.03.006. BAO W H, GUO X S, DING X F, et al. Research on inspection scheme of indoor DC field for ± 1100 kV converter station [J]. Sichuan Electric Power Technology, 2017, 40(3): 26-30. DOI: 10.16527/j.cnki.cn51-1315/tm.2017.03.006. [13] 岳云峰, 简翔浩, 孔志达, 等. ±1100 kV直流户内开关场设计研究 [J]. 南方能源建设, 2018, 5(1): 92-97,58. DOI: 10.16516/j.gedi.issn2095-8676.2018.01.015. YUE Y F, JIAN X H, KONG Z D, et al. Research on indoor design of DC switch yard for 1100 kV converter substation [J]. Southern Energy Construction, 2018, 5(1): 92-97,58. DOI: 10.16516/j.gedi.issn2095-8676.2018.01.015. [14] 杨金根, 张凌, 钟伟华. 特高压户内直流场设计研究 [J]. 电力建设, 2007, 28(5): 1-7. DOI: 10.3969/j.issn.1000-7229.2007.05.001. YANG J G, ZHANG L, ZHONG W H. Design study on UHV indoor DC field [J]. Electric Power Construction, 2007, 28(5): 1-7. DOI: 10.3969/j.issn.1000-7229.2007.05.001. [15] 陈锡磊, 周浩, 王东举, 等. g参数修正法用于浙西±800kV换流站阀厅空气净距设计 [J]. 高电压技术, 2011, 37(9): 2185-2189. DOI: 10.13336/j.1003-6520.hve.2011.09.007. CHEN X L, ZHOU H, WANG D J, et al. Air clearance design for valve hall of Zhexi ±800 kV UHVDC converter station using parameter g [J]. High Voltage Engineering, 2011, 37(9): 2185-2189. DOI: 10.13336/j.1003-6520.hve.2011.09.007.