-
本文选取江苏某海上风电基地已运行风电场H7开展分析工作,该风电场离海岸线最近距离35 km左右,分南、北两个场区,周边已建成风电场有H11(西北方向相距H7北区4.15 km,约32D)和H12(正西方向相距H7北区2.62 km,约20D),具体见图1。
参考IEC 61400-12-1标准[9]对于自由流扇区影响扇区与距离的定义,及海上风电机组尾流影响范围等计算方法,场区间距20D及以上距离可视为独立风场,本文主要基于H7风电场北区和南区开展相邻风电场之间的尾流影响效应分析工作。
-
主要数据应包括3类:风电场基本信息、同期测风数据和风电机组SCADA运行数据。具体如下:
1)风电场基本信息
参考风电场H7共80台WTGS130-2.5 MW机组,轮毂高度85 m,具体排布方案如下:北区机组B1~B42,共4排lin1~lin4,由北向南第一排B1~B12、第四排B31~B42,相邻机组东西向间距为570 m(约4.1D),第二、三排B13~B21、B22~B30,东西向间距680 m(5.2D),南北方向机组之间距离均为1 300 m(约10D);南区机组B43~B80,共三排lin5~lin7,东西向间距4.1D、南北向间距10D(见图2)。
2)同期测风数据
在风电场升压站上部署了一台地面式激光雷达设备,处于风电场北区的西南方向,离海平面高度31 m,距离B31风机约570 m,相对位置见图2。雷达设备型号windcube,观测读取10 min平均风速、风向等参数,观测时段2020-10-15~2021-01-15,观测高度共12层,离海平面高度如下:(70 m/75 m/85 m/100 m/110 m/120 m/140 m/ 160 m/190 m/210 m/260 m)。
3)机组SCADA运行数据
采集参考风电场同期观测时段2020-10-15~2021-01-15,各风电机组实时监控系统记录的10 min平均数据包括风速、网侧有功功率、发电量及其他状态信息数据等,剔除机组故障、异常、停机、限电等异常状态数据。
-
1)参考风向选取
由于机舱测风风向为相对风向,不能直接代表真实风向,选取激光雷达实测风向作为参考基准。考虑激光雷达部分扇区方位离风电机组较近,可能会受不同程度的影响,统计对比激光雷达实测(2020-10-15~2021-01-15)时段不同高度处风向与主风能风向频率(85 m/120 m/160 m/210 m/260 m),发现分布频率基本一致差异不大(见图3),故选取同期激光雷达实测轮毂高度85 m处风向作为基准参考风向。
2)发电量归一化处理
基于风电场后评估经验,机舱风速受各因素的影响不能够代表真实风况[10-12],部分国内外的尾流相关研究[13-15]基于机组的实际出力来开展风电场尾流影响相关分析工作。本文选取B12机组作为参考基准点,将B12机组正常运行状态下的实际产能定义为P0,其他机组同期正常运行状态下的输出产能为Pi,Pi/P0为同期发电产能百分比,发电量归一化可用于对比各机组同等条件下的实际产能差异,上述机组产能是指机组正常运行状态下的产能,剔除机组故障、停机、限电等异常状态运行数据,为了更好地对比机组产能的差异性,选取样本也不包括机组满发运行状态数据,即产能差异主要源于自身风资源差异和尾流损失两个因素排除其他因素。
3)相邻风电场尾流效应场景分类
基于相邻风电场分布及风电机组实际排布,不同风向条件下,下风向相邻风场受影响范围可代表不同“尾流效应”影响状态,为保证样本量,扇区筛选按照实际风机相对位置下的影响范围上限原则,共分为3类场景,详见表1。
表 1 相邻风电场尾流效应场景分类
Table 1. Classification of wake effect scenes of adjacent wind farms
场景 扇区筛选 上风向风场 下风向风场 缓冲带距离/km 影响范围 说明 场景1 60°~75° H7北区 H7南区 5.64 (43.4D) 半影响 北区处于上风向,南区场区部分风机lin5(B43~B47)处于下风向 场景2 30°~45° H7北区 H7南区 4.3 (33.3D) 全影响 北区处于上风向,南区场区所有机组均处于下风向 场景3 345°~360° H11 H7 4.3 (33D)
&4.05 (31D)半影响 H7北区部分风机lin1(B1~B8)处于下风向
H7南区部分风机lin5(B51~B55)处于H11和H7北区的下风向场景3 345°~360° H12 H7南区 3.05 km(23.4D) 半影响 H7南区部分机组lin5(B43~B47)处于下风向
Case Study of "Wake Effect" of Adjacent Offshore Wind Farms
-
摘要:
目的 研究海上相邻风电场间的“尾流效应”对发电损失的影响。 方法 利用海上风电场实际运行SCADA数据结合激光雷达同期实测测风数据,基于不同的风向扇区范围和风电场实际排布进行尾流效应场景分类,开展实际运行相邻风电场间(20D以上间距)的真实尾流电量损失分析工作。 结果 结果表明:对于规则排布的海上大型风电场,基于实际运行SCADA数据,对各机组发电量进行归一化,可以较好地反映海上风能资源分布特征及各机组发电能力的差异;高度集中的单一扇区条件下,处于下风向的相邻风电场受上风向相邻场区的“尾流效应”影响明显,发电产能较自由流降幅明显;相邻风场间随着缓冲带距离的增加,下风向场区机组尾流电量衰减比随之降低,缓冲带需达到一定的距离,对于风速的恢复有明显的作用,发电产能才能够有所提升;本案例不同场景下,缓冲带距离在23D~44D之间,尾流损失电量降幅在27%~4%之间。 结论 基于相邻风电场实际运行数据开展尾流分析可为后续海上大型风电基地规划设计和机组排布优化设计提供指导。 Abstract:Introduction The purpose of this paper is to study the influence of real "wake effect" of adjacent offshore wind farms on generation loss. Method The method is established with the wake scene classification based on the actual arrangement of wind farms under different wind direction and the real wake power loss of adjacent wind farms (with a spacing of more than 20D) in operation are analyzed, based on the actual SCADA data of wind turbines in large offshore wind farms and the measured wind data of LIDAR in the same period. Result The results show that: for the large-scale offshore wind farms with regular arrangement, the power generation normalization of the actual SCADA data can better reflect the distribution characteristics of offshore wind energy resources and the difference of power generation capacity; Under the condition of highly centralized wind direction, the adjacent wind farms in the downwind are obviously affected by the "wake effect" of the upwind wind farm; The buffer zones with different distances of adjacent wind farms have an obvious effect on the recovery of wind speed which affected the power generating capacity. The power generating capacity can be improved but if the buffer zone can reach enough distance; In different scenes of this case, the buffer zone distance is between 23D and 44D, and the power loss of wake decreases by 27%~4%. Conclusion This work can provide guidance for the planning of offshore wind power base and the optimization design of large offshore wind frams. -
Key words:
- adjacent wind farms /
- wake effect /
- power generation normalization /
- buffer zone /
- layout optimization
-
表 1 相邻风电场尾流效应场景分类
Tab. 1. Classification of wake effect scenes of adjacent wind farms
场景 扇区筛选 上风向风场 下风向风场 缓冲带距离/km 影响范围 说明 场景1 60°~75° H7北区 H7南区 5.64 (43.4D) 半影响 北区处于上风向,南区场区部分风机lin5(B43~B47)处于下风向 场景2 30°~45° H7北区 H7南区 4.3 (33.3D) 全影响 北区处于上风向,南区场区所有机组均处于下风向 场景3 345°~360° H11 H7 4.3 (33D)
&4.05 (31D)半影响 H7北区部分风机lin1(B1~B8)处于下风向
H7南区部分风机lin5(B51~B55)处于H11和H7北区的下风向场景3 345°~360° H12 H7南区 3.05 km(23.4D) 半影响 H7南区部分机组lin5(B43~B47)处于下风向 -
[1] ASTARIZ S, IGLESIAS G. Enhancing wave energy competitiveness through co-located wind and wave energy farms. a review on the shadow effect [J]. Energies, 2015(8): 7344-7366. DOI: 10.3390/en8077344. [2] HASAGER C B, VINCENT P, BADGER J, et al. Using satellite SAR to characterize the wind flow around offshore wind farms [J]. Energies, 2015(8): 5413-5439. DOI: 10.3390/en8065413. [3] FRANDSEN S, BARTHELMIE R, PRYOR S, et al. Analytical modelling of wind speed deficit in large offshore: wind farms [J]. Wind Energy, 2006, 9(1): 39-53. DOI: 10.1002/we.189. [4] 陈树勇, 戴慧珠, 白晓民, 等. 尾流效应对风电场输出功率的影响 [J]. 中国电力, 1998, 31(11): 28-31. CHEN S Y, DAI H Z, BAI X M, et al. Impact of wind turbine wake on wind power output [J]. Electric Power, 1998, 31(11): 28-31. [5] 刘沙, 王中权, 蔡彦枫. 海上风电场运行期尾流损失分析 [J]. 南方能源建设, 2019, 6(1): 66-70. DOI: 10.16516/j.gedi.issn2095-8676.2019.01.011. LIU S, WANG Z Q, CAI Y F. Wake loss analysis of offshore wind farm in operation [J]. Southern Energy Construction, 2019, 6(1): 66-70. DOI: 10.16516/j.gedi.issn2095-8676.2019.01.011. [6] 温建民, 张新旺, 陈锋, 等. 基于风电场实测的风机尾流特征分析 [J]. 机械工程与自动化, 2021(1): 3-6. DOI: 10.3969/j.issn.1672-6413.2021.01.002. WEN J M, ZHANG X W, CHEN F, et al. Analysis of wind turbine wake characteristics based on wind farm field measurement [J]. Mechanical Engineering & Automation, 2021(1): 3-6. DOI: 10.3969/j.issn.1672-6413.2021.01.002. [7] 李岩, 吴迪, 洪畅, 等. 大型海上风电场风机排布优化策略研究 [J]. 太阳能, 2020(2): 67-74. DOI: 10.3969/j.issn.1003-0417.2020.02.011. LI Y, WU D, HONG C, et al. Optimization of wind turbine layout in large-scale offshore wind farm [J]. Solar Enengy, 2020(2): 67-74. DOI: 10.3969/j.issn.1003-0417.2020.02.011. [8] 郑建才, 万德成, 王尼娜, 等. 基于尾流叠加模型的风电场数值模拟 [C]// 《水动力学研究与进展》编委会, 中国力学学会流体力学专业委员会水动力学专业组, 集美大学, 等. 第三十一届全国水动力学研讨会, 中国福建厦门, 2020-10-30. 北京: 海洋出版社, 2020: 833-847. DOI: 10.26914/c.cnkihy.2020.037043. ZHEN J C, WAN D C, WANG N, et al. Numerical solution of wind farm wake based on wake interaction model [C]// Editorial Board of Research and Progress in Hydrodynamics, Hydrodynamics Professional Group of Hydromechanics Committee of Chinese Society of Mechanics, Jimei University, et al. Thirty-first National Symposium on Hydrodynamics, Xiamen, Fujian, China, 2020-10-30. Beijing: China Ocean Press, 2020: 833-847. DOI: 10.26914/c.cnkihy.2020.037043. [9] TC88. Wind turbines-part 12-1: power performance measurements of electricity producing wind turbines: IEC 61400-12-1 [S]. Genève: International Electrotechnical Commission, 2005. [10] 杨昆, 姜婷婷, 朱金奎, 等. 大规模风电场实际尾流分析与算法研究 [C]// 中国农机工业协会风力机械分会. 第七届中国风电后市场交流合作大会, 中国江苏无锡, 2020-8-26. 北京: 中国农机工业协会风力机械分会, 2020: 81-86. DOI: 10.26914/c.cnkihy.2020.011484. Y K, J T T, ZHU J K, et al. Research on the actual wake of large scale wind farm and algorithms [C]// China Agricultural Machinery Industry Association Wind Machinery Branch. The 7th China Wind Power Aftermarket Exchange and Cooperation Conference, Wuxi, Jiangsu, China, 2020-8-26. Beijing: China Agricultural Machinery Industry Association Wind Machinery Branch, 2020: 81-86. DOI: 10.26914/c.cnkihy.2020.011484. [11] MITTELMEIER N, et al. An analysis of offshore wind farm SCADA measurements to identify key parameters influencing the magnitude of wake effects [J]. Wind Energy Science, 2017(2): 477-490. DOI: 10.5194/wes-2-477-2017. [12] 许帅, 邓智文, 汪健文, 等. 偏航工况下风电机组尾流模型与风电场尾流叠加研究 [J]. 能源研究与利用, 2015(4): 27-30+49. DOI: 10.16404/j.cnki.issn1001-5523.2018.04.011. XU S, DENG Z W, WANG J W, et al. Study on wind turbine wake model and wake superposition under the yaw condition [J]. Energy Research & Utilization, 2015(4): 27-30+49. DOI: 10.16404/j.cnki.issn1001-5523.2018.04.011. [13] 杨志超, 高丙团, 叶飞, 等. 基于尾流效应的风电场最大出力优化控制 [J]. 电力建设, 2017, 38(4): 96-102. DOI: 10.3969/j.issn.1000-7229.2017.04.013. YANG Z C, GAO B T, YE F, et al. Maximum output optimal control of wind farm based on wake effect [J]. Electric Power Construction, 2017, 38(4): 96-102. DOI: 10.3969/j.issn.1000-7229.2017.04.013. [14] MITTELMEIER N, BLODAU T, KÜHN M. Monitoring offshore wind farm power performance with SCADA data and an advanced wake model [J]. Wind Energy Science, 2017, 2(1): 175-187. DOI: 10.5194/wes-2-175-2017,2017. [15] 李岩, 罗辛·费伊, 白雪. 基于运营风机scada数据的风电场尾流损失测量方法: CN106321368B [P]. 2019-02-15. LI Y, ROSIN F, BAI X. The method of measuring wake loss in wind farm based on scada data of operating wind turbines: CN106321368B [P]. 2019-02-15.