-
随着国家海洋战略的提出,海洋风电项目建设如火如荼,在海洋风电场建设的过程中,海底电缆铺设环节至关重要,因此海缆铺设逐渐成为海洋风电研究领域的重要课题[1-3]。为了应对海洋环境的复杂性,海底电缆需要埋设于海床之下,以避免抛锚及拖网等海上作业对海底电缆造成损坏[4-5]。海底电缆需要依赖于埋设机进行铺设,埋设机首先通过机械手将海缆提升至一定高度,随后利用挖沟设备进行海床的开挖,最后进行海缆的放置与埋设。缆线受到机械手向上抬升之后,会形成一个悬跨段,这就导致缆线出现较大的挠曲和变形,引起局部应力的增加,进而可能造成海底电缆的损伤[6-7]。许多学者针对埋设机挖沟埋设过程中造成的悬跨问题开展研究,如刘可安[4]、李修波[8]、和刘志伟[9]等分别通过理论研究、仿真模拟等研究方法,对海底电缆的埋设受力进行研究。研究表明,海底电缆在埋设过程中的屈曲程度受到挖沟深度的影响非常显著[8-11]。
本文以江苏启东市某海上风电场建设项目为工程背景,通过ABAQUS软件,建立海底电缆铺设模型,模拟海缆从缆线抬升至沟槽放置作业的全过程,分析海缆在铺设作业中的应力变化规律。
Numerical Simulation Study on Mechanical Characteristics of Submarine Cable During Laying Process
-
摘要:
目的 以江苏启东某海上风电场建设项目为工程背景,开展海底电缆铺设过程中的力学特性数值模拟研究,分析不同挖沟深度的工况下海缆悬跨段的局部应力分布情况。 方法 基于ABAQUS数值模拟软件,建立海底电缆埋设数值模型。 结果 研究结果显示:海底电缆后缘提升点在埋设过程中的应力相较于埋设作业前显著增大,该位置的缆线在整个埋设过程中受力最大,是最危险的位置;挖沟深度对海底电缆后缘提升点处的应力有显著影响,随着挖沟深度的增加,后缘提升点处的应力相应增大。 结论 海底电缆铺设作业中应加强保护抬升点处的缆线材料,缆线的屈服应力参数选取应着重参考埋设作业中缆线的受力分析结果。研究成果可为海底电缆铺设作业提供参考依据。 Abstract:Introduction Based on an offshore wind farm construction project in Qidong, Jiangsu Province, the numerical simulation study on mechanical characteristics of submarine cable during laying process was carried out and the local stress distribution of the suspension span of submarine cables under different trenching depths was analyzed. Method A numerical model of submarine cable laying based on ABAQUS numerical simulation software was established. Result Results show that the stress of the lifting point at the trailing edge of the submarine cable increases significantly during the burial process compared with that before the burial operation. This is the most dangerous position as the cable at this position has the largest stress during the whole burial process. The trenching depth has a significant effect on the stress at the lifting point at the trailing edge of the cable. With the increase of the trenching depth, the stress at the lifting point at the trailing edge increases correspondingly. Conclusion The selection of cable material at the lifting point should be protected in the cable laying operation, and the yield stress parameters of the cable should be mainly based on the stress analysis results of the cable in the burial operation. The research results can provide a reference for submarine cable laying operation. -
Key words:
- submarine cable /
- stress analysis /
- trenching depth /
- ABQUS /
- numerical simulation
-
-
[1] 吴荣辉, 沈佳轶, 库猛, 等. 海底电缆悬跨段应力分布数值模拟研究 [J]. 科技通报, 2021, 37(9): 60-63. DOI: 10.13774/j.cnki.kjtb.2021.09.011. WU R H, SHEN J Y, KU M, et al. Numerical simulation of stress distribution of submarine cable [J]. Bulletin of Science and Technology, 2021, 37(9): 60-63. DOI: 10.13774/j.cnki.kjtb.2021.09.011. [2] 林航, 方宁. 大口径海底电缆的敷设及检验注意事项 [J]. 中国水运, 2019, 19(6): 83-84. LIN H, FANG N. Points for attention in laying and inspection of large diameter submarine cables [J]. China Water Transport, 2019, 19(6): 83-84. [3] 邱巍, 鲍洁秋, 于力, 等. 海底电缆及其技术难点 [J]. 沈阳工程学院学报(自然科学版), 2012, 8(1): 41-44. DOI: 10.13888/j.cnki.jsie(ns).2012.01.017. QIU W, BAO J Q, YU L, et al. Submarine cable and its technical difficulties [J]. Journal of Shenyang Institute of Engineering: Natural Science, 2012, 8(1): 41-44. DOI: 10.13888/j.cnki.jsie(ns).2012.01.017. [4] 王亚东, 伍林伟, 高彬, 等. 砂质海床条件下海底电缆埋深研究 [J]. 南方能源建设, 2020, 7(3): 81-88. DOI: 10.16516/j.gedi.issn2095-8676.2020.03.010. WANG Y D, WU L W, GAO B, et al. Research on the burial depth of submarine cable in sandy seabed [J]. Southern Energy Construction, 2020, 7(3): 81-88. DOI: 10.16516/j.gedi.issn2095-8676.2020.03.010. [5] 罗楚军, 李健, 吴庆华, 等. 高压海底电缆锚害事故风险评估 [J]. 南方能源建设, 2021, 8(1): 67-73. DOI: 10.16516/j.gedi.issn2095-8676.2021.01.010. LUO C J, LI J, WU Q H, et al. Risk assessment method for anchoring accident of high voltage submarine cable [J]. Southern Energy Construction, 2021, 8(1): 67-73. DOI: 10.16516/j.gedi.issn2095-8676.2021.01.010. [6] 刘可安, 李修波, 王华昆, 等. 犁式挖沟机后挖沟埋管对海底管道屈曲压溃压力影响分析 [J]. 中国造船, 2020, 61(1): 101-108. DOI: 10.3969/j.issn.1000-4882.2020.01.010. LIU K A, LI X B, WANG H K, et al. Analysis of buckling pressure of submarine pipeline after trenching and burying pipe by plough trenching machine [J]. Shipbuilding of China, 2020, 61(1): 101-108. DOI: 10.3969/j.issn.1000-4882.2020.01.010. [7] THOMAS W. 海底电力电缆: 设计、安装、修复和环境影响 [M]. 北京: 机械工业出版社, 2011. THOMAS W. Submarine power cables: design, installation, rehabilitation and environmental impact [M]. Beijing: China Machine Press, 2011. [8] 李修波, 刘可安, 王华昆, 等. 后挖沟深度对深海海底管道屈曲影响数值分析 [J]. 海洋工程, 2020, 38(3): 152-160. DOI: 10.16483/j.issn.1005-9865.2020.03.016. LI X B, LIU K A, WANG H K, et al. Numerical analysis of the influence of post-trench depth on buckling of deep sea submarine pipeline [J]. The Ocean Engineering, 2020, 38(3): 152-160. DOI: 10.16483/j.issn.1005-9865.2020.03.016. [9] 刘志伟, 肖波, 杜永兵, 等. 海底电缆铺设作业的数值仿真及工程应用 [J]. 海洋工程装备与技术, 2019, 6(3): 579-583. DOI: 10.12087/oeet.2095-7297.2019.03.06. LIU Z W, XIAO B, DU Y B, et al. Numerical simulation of submarine cable laying operation method and engineering application [J]. Ocean Engineering Equipment and Technology, 2019, 6(3): 579-583. DOI: 10.12087/oeet.2095-7297.2019.03.06. [10] 张太佶, 胡晓为. 海底电缆在敷设中的受力分析 [J]. 船舶, 2009, 20(3): 15-20. DOI: 10.3969/j.issn.1001-9855.2009.03.004. ZHANG T J, HU X W. Tension analysis in submarine cable laying [J]. Ship & Boat, 2009, 20(3): 15-20. DOI: 10.3969/j.issn.1001-9855.2009.03.004. [11] 张磊, 王振宁, 甘浪雄, 等. 基于有限元法的海底管道埋深计算 [J]. 船舶工程, 2017, 39(11): 93-98. DOI: 10.13788/j.cnki.cbgc.2017.11.093. ZHANG L, WANG Z N, GAN L X, et al. Buried depth calculation of subsea pipeline based on finite element method [J]. Ship Engineering, 2017, 39(11): 93-98. DOI: 10.13788/j.cnki.cbgc.2017.11.093. [12] 李黎, 程志远, 王腾飞, 等. 海底电缆抛石保护层抗锚害能力的数值仿真研究 [J]. 土木工程与管理学报, 2013, 30(2): 1-5. DOI: 10.3969/j.issn.2095-0985.2013.02.001. LI L, CHENG Z Y, WANG T F, et al. Numerical simulation study on the degree of submarine cable protection by rock fill against anchor [J]. Journal of Civil Engineering and Management, 2013, 30(2): 1-5. DOI: 10.3969/j.issn.2095-0985.2013.02.001. [13] 于贵芙. 海底挖沟机管道力学分析及调整机构设计 [D]. 哈尔滨: 哈尔滨工程大学, 2013. DOI: 10.7666/d.D429631. YU G F. Pipeline stress analysis and pipe handling structures design of the pipeline plough [D]. Harbin: Harbin Engineering University, 2013. DOI: 10.7666/d.D429631. [14] 陈大勇, 张慧甍, 董小松, 等. 海底电缆抗拉性能数值分析 [J]. 电线电缆, 2021(4): 19-22. DOI: 10.16105/j.cnki.dxdl.2021.04.005. CHEN D Y, ZHANG H M, DONG X S, et al. Numerical analysis of tensile properties of submarine cables [J]. Wire & Cable, 2021(4): 19-22. DOI: 10.16105/j.cnki.dxdl.2021.04.005. [15] 崔东岭, 江春, 史忠秋, 等. 大型海上风电项目中的集电海缆研究 [J]. 南方能源建设, 2020, 7(2): 98-102. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.015. CUI D L, JIANG C, SHI Z Q, et al. Research on array submarine cables in large offshore windfarm [J]. Southern Energy Construction, 2020, 7(2): 98-102. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.015.