-
现有的评价参数主要包括:发电机组自身用电率[16]、供电效率[17]、机组调峰能力[3]、CO2排放因子[18]、锅炉热效率[19]、机组发电标准煤耗率[20]等。其中主要的评价参数如表1所示。
表 1 现有灵活性改造机组主要评价参数
Table 1. Main evaluation parameters of existing units for flexibility modification
评价参数 计算公式 机组功率/MW 参考文献 公式中各个参数的物理意义 评价参数变化 供电效率 $\eta =\dfrac{ {P}_{{\rm{e}}} }{ {BQ}_{{\rm{net}},{\rm{ar}}} }$ 600 [17] Pe为机组发电功率;B为燃煤消耗量;Qnet,ar为燃料的收到基低位发热量 当供热系统增加了背压
式汽轮发电机时,供电
效率提高了1.10%。$ {\mathrm{C}\mathrm{O}}_{2} $排放因子 ${EF}_{ { {\rm{CO} } }_{2.{\rm{y} } } }=\\\dfrac{\gamma \times {\rm{OR}}\times H\times {{\rm{Mol}}}_{ { {\rm{co} } }_{2} }/{{\rm{Mol}}}_{ {\rm{c} } } }{ {\eta }_{ {\rm{y} } } }$ 600/300 [21] γ为煤的含碳量;OR为煤的氧化率;H为电的低热值;${ {\rm{Mol} } }_{ { {\rm{co} } }_{2} } $为CO2的摩尔质量;Molc为碳的摩尔质量;ηy为发电机组热效率 当运行操作发生深度循
环变化时,CO2排放因子
参数增加了11.3%。锅炉热效率 ${\eta }_{{\rm{g}}}$=100−(${q_2}+{q_3}+{q_4}$+${q_5}$+${q_6}$+qoth−qex) 300 [22] q2为排烟热损失,q3为可燃气体不完全燃烧热损失,q4为固体不完全燃烧损失,q5为锅炉散热损失,q6为灰渣物理热损失;qoth为其他热损失;qex为外来热量与燃料低位发热量的百分比 当燃煤机组中生物质气
掺烧量为10000~50000 m3/h时,锅炉热效率
下降了0.2%~1.39%。机组发电
标准煤耗率${b}_{{\rm{g}}}=HR/(29.308\times \dfrac{ {\eta_{{\rm{bo}}} } }{100}$×$\dfrac{ {\eta _{{\rm{pi}}} } }{100}$) 660 [20] HR为汽轮机设计热耗率;ηbo为锅炉燃料效率;ηpi为管道效率 在旁路烟气比为25%工
况下,当能级平衡节点温度由70℃变化到130℃时,机
组发电标准煤耗率参数
降低了2.24 g/kWh。发电机组自身用电率、供电效率、机组调峰能力是从电量方面进行机组灵活性评价的。许啸[16]发现在供热系统中增加背压式汽轮发电机组可以实现供热蒸汽能量的梯级利用,同时降低厂用电率;李沁伦[17]发现采用集成抽汽式空气加热器(SAH)型烟气余热利用系统可以使整个系统的供电效率提高1.10%。钟祎勍等[3]发现将凝结水节流技术用于燃煤发电机组调峰,可以将机组平均调节性能综合指标提高约10%,煤耗降低约0.93 g/(kWh),显著提高了机组的调峰能力和经济性。
CO2排放因子从排放出的污染物方面进行评价。Yu等[18]在对600 MW和300 MW两个典型煤电机组进行深度循环操作和常规操作的结果中发现:深度循环运行和满负荷运行时相比,CO2排放因子增加11.3%,由于深度和频繁的循环而导致更多的污染物排放,另外灵活性操作还将产生额外的成本。
锅炉热效率和机组发电标准煤耗率是从温度以及热经济性等方面进行的评价。王一坤[19]发现当燃煤机组中生物质气掺烧量为104~5×104 m3/h时,锅炉热效率下降0.2%~1.39%;陈珣等[20-21]对燃煤发电机组展开了烟气余热梯级利用系统的研究,结果发现,在旁路烟气比例25%的相同工况下,将排烟温度由130 ℃降低到70 ℃时,标煤耗可降低2.24 g/(kWh);郭璞维等[22]研究发现低温省煤器与暖风器联合运行可以使得排烟温度从122~160 ℃降到100 ℃,实现更好的节煤及降低㶲损失。
Research Progress on Flexibility Modification of Coal-Fired Generating Units
-
摘要:
目的 “碳达峰、碳中和”战略目标的提出增加了对新能源电力并网的需求,因此有必要提高燃煤发电机组的灵活性运行能力。 方法 文章详细介绍了现有燃煤机组灵活改造技术及常见的评价指标。灵活性改造主要包括:凝结水节流技术、燃煤机组耦合生物质混烧改造技术、燃煤机组制粉系统灵活性技术等;燃煤发电机组灵活性常用评价指标包括:发电机组厂用电率、锅炉热效率、机组发电标准煤耗率等。在此基础上,对灵活性改造技术以及评价指标进行总结和分析。 结果 文章提出了燃煤发电机组灵活性技术改造的7个发展方向及相关建议。 结论 原有机组的结构改进、新能源多形式的嵌入以及多储能协同提高燃煤机组灵活性是后续发展的主要方向,为后续燃煤发电机组适应“双碳”能源规划提供参考。 Abstract:Introduction The strategic goal of "carbon peaking and carbon neutrality" has increased the demand for new energy power grid integration, so it is necessary to improve the flexible operation capacity of coal-fired generating units. Method This paper introduced the flexible transformation technology and common evaluation indicators of existing coal-fired units in detail. Flexibility transformation mainly included condensate throttling technology, coupled biomass co-combustion transformation technology of coal-fired units, flexibility technology of pulverizing system of coal-fired units, etc.; Common evaluation indicators for the flexibility of coal-fired generating units included: the power consumption rate of the generator set plant, the thermal efficiency of the boiler, the standard coal consumption rate of the generator set, etc. On this basis, this paper summarized and analyzed the flexibility transformation technology and evaluation indexes. Result Finally, the paper puts forward seven kinds of the technology development direction and relevant suggestions of coal-fired generating units. Conclusion The structural improvement of original generating units, the introduction of multi-form new energies and the coordinated regulation design of multi-heat storage will be the main direction of subsequent development. It is expected that paper can provide reference for subsequent coal-fired generating units to adapt to "dual carbon" energy planning. -
表 1 现有灵活性改造机组主要评价参数
Tab. 1. Main evaluation parameters of existing units for flexibility modification
评价参数 计算公式 机组功率/MW 参考文献 公式中各个参数的物理意义 评价参数变化 供电效率 $\eta =\dfrac{ {P}_{{\rm{e}}} }{ {BQ}_{{\rm{net}},{\rm{ar}}} }$ 600 [17] Pe为机组发电功率;B为燃煤消耗量;Qnet,ar为燃料的收到基低位发热量 当供热系统增加了背压
式汽轮发电机时,供电
效率提高了1.10%。$ {\mathrm{C}\mathrm{O}}_{2} $ 排放因子${EF}_{ { {\rm{CO} } }_{2.{\rm{y} } } }=\\\dfrac{\gamma \times {\rm{OR}}\times H\times {{\rm{Mol}}}_{ { {\rm{co} } }_{2} }/{{\rm{Mol}}}_{ {\rm{c} } } }{ {\eta }_{ {\rm{y} } } }$ 600/300 [21] γ为煤的含碳量;OR为煤的氧化率;H为电的低热值; ${ {\rm{Mol} } }_{ { {\rm{co} } }_{2} } $ 为CO2的摩尔质量;Molc为碳的摩尔质量;ηy为发电机组热效率当运行操作发生深度循
环变化时,CO2排放因子
参数增加了11.3%。锅炉热效率 ${\eta }_{{\rm{g}}}$ =100−(${q_2}+{q_3}+{q_4}$ +${q_5}$ +${q_6}$ +qoth−qex)300 [22] q2为排烟热损失,q3为可燃气体不完全燃烧热损失,q4为固体不完全燃烧损失,q5为锅炉散热损失,q6为灰渣物理热损失;qoth为其他热损失;qex为外来热量与燃料低位发热量的百分比 当燃煤机组中生物质气
掺烧量为10000~50000 m3/h时,锅炉热效率
下降了0.2%~1.39%。机组发电
标准煤耗率${b}_{{\rm{g}}}=HR/(29.308\times \dfrac{ {\eta_{{\rm{bo}}} } }{100}$ ×$\dfrac{ {\eta _{{\rm{pi}}} } }{100}$ )660 [20] HR为汽轮机设计热耗率;ηbo为锅炉燃料效率;ηpi为管道效率 在旁路烟气比为25%工
况下,当能级平衡节点温度由70℃变化到130℃时,机
组发电标准煤耗率参数
降低了2.24 g/kWh。 -
[1] 白暴力, 程艳敏, 白瑞雪. 新时代中国特色社会主义生态经济理论及其实践指引−绿色低碳发展助力我国“碳达峰、碳中和”战略实施 [J]. 河北经贸大学学报, 2021, 42(4): 26-36. DOI: 10.14178/j.cnki.issn1007-2101.20210701.002. BAI B L, CHENG Y M, BAI R X. The ecological economic theory on socialism with Chinese characteristics for a new era and its practical guidelines: green and low-carbon development helps the implementation of China's strategy of "peak carbon dioxide emissions, carbon neutrality" [J]. Journal of Hebei University of Economics and Business, 2021, 42(4): 26-36. DOI: 10.14178/j.cnki.issn1007-2101.20210701.002. [2] 宫广正. 超临界火电机组运行灵活性提升控制策略研究及应用 [J]. 中国电力, 2017, 50(8): 22-26. DOI: 10.11930/j.issn.1004-9649.2017.08.022.05. GONG G Z. Research on and application of the control strategy for flexibility improvement of supercritical fossil-fired power units [J]. Electric Power, 2017, 50(8): 22-26. DOI: 10.11930/j.issn.1004-9649.2017.08.022.05. [3] 钟祎勍, 孙阳阳, 姚国鹏, 等. 凝结水节流技术在燃煤机组灵活性改造中的应用 [J]. 热力发电, 2018, 47(12): 77-81. DOI: 10.19666/j.rlfd.201805141. ZHONG Y Q, SUN Y Y, YAO G P, et al. Application of condensation water throttling technology in flexibility transformation of coal-fired units [J]. Thermal Power Generation, 2018, 47(12): 77-81. DOI: 10.19666/j.rlfd.201805141. [4] 李建强, 陈星旭, 赵凯, 等. 基于数据分析的燃煤机组制粉系统与配风方式优化 [J]. 动力工程学报, 2017, 37(11): 876-882+911. DOI: 10.3969/j.issn.1674-7607.2017.11.003. LI J Q, CHEN X X, ZHAO K, et al. Optimization on pulverizing system and air distribution method of a coal-fired unit based on data analysis [J]. Journal of Chinese Society of Power Engineering, 2017, 37(11): 876-882+911. DOI: 10.3969/j.issn.1674-7607.2017.11.003. [5] 张翼, 魏书洲, 任学武, 等. 风电-抽凝机组耦合系统供暖方案研究 [J]. 热力发电, 2021, 50(11): 54-60+67. DOI: 10.19666/j.rlfd.202106111. ZHANG Y, WEI S Z, REN X W, et al. Heat supply schemes for a coupling system of condensing unit and wind power [J]. Thermal Power Generation, 2021, 50(11): 54-60+67. DOI: 10.19666/j.rlfd.202106111. [6] 戈志华, 张尤俊, 熊念, 等. 高背压供热汽轮机低压部分性能优化 [J]. 化工进展, 2019, 38(12): 5264-5270. DOI: 10.16085/j.issn.1000-6613.2019-0428. GE Z H, ZHANG Y J, XIONG N, et al. Optimization of low-pressure flow part of high back-pressure heating steam turbine [J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5264-5270. DOI: 10.16085/j.issn.1000-6613.2019-0428. [7] CHEN H, XIAO Y, XU G, et al. Energy-saving mechanism and parametric analysis of the high back-pressure heating process in a 300 MW coal-fired combined heat and power unit [J]. Applied Thermal Engineering, 2019, 149: 829-840. DOI: 10.1016/j.applthermaleng.2018.12.001. [8] 国家能源局东北监管局. 东北电力辅助服务市场运营规则 [Z]. 沈阳: 国家能源局东北监管局, 2016. Northeast China Energy Regulatory Bureau of National Energy Administration. Operating rules of northeast electric power auxiliary service market [Z]. Shenyang: Northeast China Energy Regulatory Bureau of National Energy Administration, 2016. [9] 龙辉, 黄晶晶. “十三五”燃煤发电设计技术发展方向分析 [J]. 发电技术, 2018, 39(1): 13-17. DOI: 10.12096/j.2096-4528.pgt.2018.002. LONG H, HUANG J J. Development direction analysis of coal-fired power units' design technology during the 13th five-year plan [J]. Power Generation Technology, 2018, 39(1): 13-17. DOI: 10.12096/j.2096-4528.pgt.2018.002. [10] 王一坤, 张广才, 王晓旭, 等. 生物质气化耦合发电提升燃煤机组灵活性分析 [J]. 热力发电, 2018, 47(5): 77-82. DOI: 10.19666/j.rlfd.201803040. WANG Y K, ZHANG G C, WANG X X, et al. Analysis of flexibility improvement of coal-fired power plant by biomass gasification coupled power generation [J]. Thermal Power Generation, 2018, 47(5): 77-82. DOI: 10.19666/j.rlfd.201803040. [11] 於震跃. 槽式太阳能集热场辅助燃煤发电系统的性能分析 [D]. 北京: 华北电力大学, 2012. YU Z Y. Performance analysis of trough solar collector field aided coal-fired power system [D]. Beijing: North China Electric Power University, 2012. [12] HOU H J, YU Z Y, YANG Y P, et al. Performance evaluation of solar aided feedwater heating of coal-fired power generation (SAFHCPG) system under different operating conditions [J]. Applied Energy, 2013, 112: 710-718. DOI: 10.1016/j.apenergy.2013.05.062. [13] 陈天佑. 基于储热的热电厂消纳风电方案研究 [D]. 大连: 大连理工大学, 2014. CHEN T Y. Research on accommodating wind power by CHP based on heat accumulator [D]. Dalian: Dalian University of Technology, 2014. [14] 吕泉, 陈天佑, 王海霞, 等. 配置储热后热电机组调峰能力分析 [J]. 电力系统自动化, 2014, 38(11): 34-41. DOI: 10.7500/AEPS20130724002. LYU Q, CHEN T Y, WANG H X, et al. Analysis on peak-load regulation ability of cogeneration unit with heat accumulator [J]. Automation of Electric Power Systems, 2014, 38(11): 34-41. DOI: 10.7500/AEPS20130724002. [15] 郭丰慧, 胡林献, 周升彧, 等. 基于二级热网储热式电锅炉调峰的弃风消纳调度模型 [J]. 电力系统自动化, 2018, 42(19): 50-56. DOI: 10.7500/AEPS20180130009. GUO F H, HU L X, ZHOU S Y, et al. Dispatching model of wind power accommodation based on heat storage electric boiler for peak-load regulation in secondary heat supply network [J]. Automation of Electric Power Systems, 2018, 42(19): 50-56. DOI: 10.7500/AEPS20180130009. [16] 许啸, 唐磊, 周传文, 等. 330 MW燃煤机组工业供热中增加背压式汽轮发电机组的改造 [J]. 发电设备, 2020, 34(6): 434-438. DOI: 10.19806/j.cnki.fdsb.2020.06.014. XU X, TANG L, ZHOU C W, et al. Heating retrofit of 330 MW coal-fired units by adding a back-pressure turbo-generator set [J]. Power Equipment, 2020, 34(6): 434-438. DOI: 10.19806/j.cnki.fdsb.2020.06.014. [17] 李沁伦, 王璐凯, 刘银河, 等. 燃煤发电机组烟气余热利用系统改进研究 [J]. 动力工程学报, 2019, 39(12): 1019-1026. DOI: 10.3969/j.issn.1674-7607.2019.12.011. LI Q L, WANG L K, LIU Y H, et al. Study on a modified flue gas waste heat utilization system for coal-fired power units [J]. Journal of Chinese Society of Power Engineering, 2019, 39(12): 1019-1026. DOI: 10.3969/j.issn.1674-7607.2019.12.011. [18] DONG Y L, JIANG X, LIANG Z H, et al. Coal power flexibility, energy efficiency and pollutant emissions implications in China: a plant-level analysis based on case units [J]. Resources, Conservation and Recycling, 2018, 134: 184-195. DOI: 10.1016/j.resconrec.2018.03.012. [19] 王一坤, 邓磊, 常根周, 等. 生物质气参数对燃煤耦合生物质发电机组影响研究 [J]. 热力发电, 2021, 50(3): 34-40. DOI: 10.19666/j.rlfd.202007076. WANG Y K, DENG L, CHANG G Z, et al. Influence of biomass gas parameters on coupled coal-fired biomass generation [J]. Thermal Power Generation, 2021, 50(3): 34-40. DOI: 10.19666/j.rlfd.202007076. [20] 陈珣, 徐曙, 杨益, 等. 660 MW燃煤发电机组烟气余热梯级利用系统性能分析与优化 [J]. 热能动力工程, 2021, 36(3): 1-12. DOI: 10.16146/j.cnki.rndlgc.2021.03.001. CHEN X, XU S, YANG Y, et al. Performance analysis and optimization for the flue gas waste heat cascade utilization system of 660 MW coal-fired generating unit [J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(3): 1-12. DOI: 10.16146/j.cnki.rndlgc.2021.03.001. [21] YUE H, WORRELL E, CRIJNS-GRAUS W, et al. The potential of industrial electricity savings to reduce air pollution from coal-fired power generation in China [J]. Journal of Cleaner Production, 2021, 301: 126978. DOI: 10.1016/j.jclepro.2021.126978. [22] 郭璞维, 彭跃, 邓靖敏, 等. 烟气余热回收与储能技术耦合应用的可行性研究 [J]. 华电技术, 2021, 43(9): 62-68. DOI: 10.3969/j.issn.1674-1951.2021.09.008. GUO P W, PENG Y, DENG J M, et al. Feasibility study on the coupling application of flue gas waste heat recovery and energy storage technology [J]. Huadian Technology, 2021, 43(9): 62-68. DOI: 10.3969/j.issn.1674-1951.2021.09.008. [23] 刘畅, 卓建坤, 赵东明, 等. 利用储能系统实现可再生能源微电网灵活安全运行的研究综述 [J]. 中国电机工程学报, 2020, 40(1): 1-18. DOI: 10.13334/j.0258-8013.pcsee.190212. LIU C, ZHUO J K, ZHAO D M, et al. A review on the utilization of energy storage system for the flexible and safe operation of renewable energy microgrids [J]. Proceedings of the CSEE, 2020, 40(1): 1-18. DOI: 10.13334/j.0258-8013.pcsee.190212. [24] 王蕾. 科学发展储能, 助力实现“双碳”目标 [J]. 中国发展观察, 2021(17): 54-57,44. DOI: 10.3969/j.issn.1673-033X.2021.17.019. WANG L. Scientific development of energy storage to help achieve the goal of "double carbon" [J]. China Development Observe, 2021(17): 54-57,44. DOI: 10.3969/j.issn.1673-033X.2021.17.019.