-
被加固角钢尺寸为L140×10,通过单轴拉伸试验确定钢材的屈服强度、抗拉强度与弹性模量等参数,如表1所示。
表 1 钢材性能参数
Table 1. Steel performance parameter
试件类别 弹性模量/MPa 屈服强度/MPa 抗拉强度/MPa L140×10(角钢) 2.06×105 379.70 562.60 L63×5(角钢) 2.06×105 388.48 569.23 [12(槽钢) 2.06×105 487.32 615.92 本试验试件共分两组:试件1为未加固角钢试件,计3根试样;试件4为本文拟提出的贴合槽钢加固方案,计3根试样。试件1中单角钢长度为3 m,试件中部两侧对称设置侧向支撑模拟角钢输电塔实际杆系受力机制,单角钢与侧向支撑间采用螺栓连接,如图1(a)所示;试件4为角钢贴合槽钢试件,被加固角钢(单角钢)两肋通过螺栓连接槽钢,两者通过螺栓预紧力固定,侧向支撑两侧贴合槽钢通过桥接板连接,桥接间距为300 mm,如图1(c)所示。为便于轴向加载,被加固角钢上、下端设有边长为300 mm、厚度为40 mm的方形加载板。
-
本文试验采用500 t液压伺服机控制千斤顶加载,角钢长边方向与反力架长边方向平行,铰接端与加载端处连接构造采用球型铰;为满足外侧贴合槽钢不与端板相接触,二者间距设置为70 mm,以避免加固材直接承力;侧向支撑对称设置于被加固角钢中点两侧,二者间采用螺栓连接,使被加固角钢与侧向支撑间可发生转动;侧向支撑与反力支架连接梁间采用螺栓连接,如图2所示。
-
试验采用四阶段加载:第一阶段为预加载,采用1 kN/s的速度加载至50 kN并持荷15 s,以消除试验装置间隙,确保加载装置与试件充分接触;第二阶段为轴压力控制加载,每20 kN为单位加载步,当轴压荷载值达到500 kN时持荷15 s;第三阶段采用位移控制加载,每0.2 mm为单位加载步;当轴压荷载临近850 kN时,减半加载步,采用0.1 mm为单位加载步,直至构件到达极限承载力,当轴压荷载下降至峰值荷载的85%时停止试验。
-
位移计沿试件长度方向依次顺序布置,加载端沿轴向布置W1,自加载端至侧向支撑沿横向依次布置3个位移计:W2、W3、W4,如图1(a)所示;为准确量测轴力作用下试件1和试件4的应力分布,分别沿试件长度方向的1~6截面设置应变测点,如图1(a)、图1(c)所示,试件1和试件4截面应变测定布置如图1(b)、图1(d)所示。
-
角钢属于单轴对称构件,当所采用的加固措施对改善角钢弱轴抗弯刚度效果较强时,加固后构件已不易发生整体性的弯扭失稳,转而在主材角钢某一肢发生局部稳定问题[14-15]。
-
根据试件4最终破坏形态,可将加固后构件失稳问题归结为主材角钢局部屈曲,由于所采用的角钢截面宽厚比超限不满足截面局部稳定性要求[16-18],当截面受压时同一截面各测点荷载-应变速率不同,因而截面应力分布并不均匀,角钢肢尖边缘处将会产生明显的集中应力问题,当角钢肢尖截面应力达到屈服,试件将因角钢肢局部屈曲而丧失承载力。
由于角钢翼缘厚度与翼缘幅面宽度之比介于
$\left( {\dfrac{1}{{80}}\sim \dfrac{1}{{100}}} \right) < \dfrac{t}{b} = \dfrac{1}{{14}} < \left( {\dfrac{1}{5}\sim \dfrac{1}{8}} \right)$ ,板的剪切变形与弯曲变形可忽略,可采用均匀受压板理论计算角钢肢翼缘的弹性屈曲承载力[19-21]。局部稳定计算简图如图12所示,所分析的轴压板边界条件为两加载边固定,非加载边一边自由一边固定。a和b分别为板受力方向边的长度和垂直受力方向边的长度,${P_x}$ 为轴向压力,计算局部屈曲临界应力取决于a、b和板的厚t以及加载边和非加载边的约束条件等。根据单向均匀受压矩形板建立平衡方程:
$$ D\left( {\dfrac{{{\partial ^4}w}}{{\partial {x^4}}} + 2\dfrac{{{\partial ^4}w}}{{\partial {x^2}\partial {y^2}}} + \dfrac{{{\partial ^4}w}}{{\partial {y^4}}}} \right) + {p_x}\dfrac{{{\partial ^2}w}}{{\partial {x^2}}} = 0 $$ (1) 式中:
x —受压方向的长度变量(mm);
y —沿垂直于受压方向的长度变量(mm);
D —单位宽度板的抗弯刚度(N·mm3),
$D = \dfrac{{E{t^3}}}{{12(1 - {\nu ^2})}}$ ;w —矩形板任意点的挠度(mm)。
根据四边简支矩形板边界条件:
当
$x = 0$ 和$x = b$ 时,$\omega = 0$ ,$\dfrac{{{\partial ^2}\omega }}{{{\partial ^2}x}} = 0$ ,$\dfrac{{{\partial ^2}\omega }}{{{\partial ^2}y}} = 0$ ;当
$y = 0$ 和$y = b$ 时,$\omega = 0$ ,$\dfrac{{{\partial ^2}\omega }}{{{\partial ^2}x}} = 0$ ,$\dfrac{{{\partial ^2}\omega }}{{{\partial ^2}y}} = 0$ 。可得四边简支板弹性屈曲条件:
$$ \dfrac{{{m^4}{{\text{π}} ^4}}}{{{a^4}}} + 2\dfrac{{{m^2}{n^2}{{\text{π}} ^2}}}{{{a^2}{b^2}}} + \dfrac{{{n^4}{{\text{π}} ^4}}}{{{b^4}}} - \dfrac{{{p_x}}}{D} \times \dfrac{{{m^2}{{\text{π}} ^2}}}{{{a^2}}} = 0 $$ (2) 式中:
px—屈曲荷载,
${p_x} = \dfrac{{{a^2}{{\text{π}} ^2}D}}{{{m^2}}}{\left( {\dfrac{{{m^2}}}{{{a^2}}} + \dfrac{{{n^2}}}{{{b^2}}}} \right)^2}$ 。板屈曲时垂直受力方向仅产生一个半波,而此时受力方向产生半波数m需使对应的屈曲荷载为最小值,将m视作弹性屈曲荷载的连续函数,求导得到其极值点
${P_{{\rm{crx}}}}$ 所对应$m = \dfrac{a}{b}$ ,因m的物理意义为受力方向对应的半波数,而$\dfrac{a}{b}$ 通常并不为整数,因此计算时m取值为与$\dfrac{a}{b}$ 接近且使${P_{{\rm{crx}}}}$ 最小的整数,因此弹性屈曲临界公式可表达为:$$ {p_x} = k \cdot \dfrac{{{{\text{π}} ^2}D}}{{{b^2}}} $$ (3) 式中:
k—屈曲系数,
$k = {\left( {\dfrac{{mb}}{a} + \dfrac{a}{{mb}}} \right)^2}$ 。现有研究发现,当加载边为固定边界时,k值有所提高,因此将加载边固定,非加载边一边固定,一边自由所得k值曲线拟合,如图13所示。
-
由于主材角钢存在初始缺陷,理想薄板弹性屈曲理论计算得到的承载力偏大。基于验证的有限元分析结果与理想薄板弹性局部失稳承载力之比确定修正的局部稳定承载力计算方法,如表2所示,得到以构件长细比为自变量的修正局部稳定承载力
${P_{\max .{\rm{C}}}}$ 计算公式:表 2 理想弹性局部稳定承载力计算表
Table 2. Calculation table of ideal elastic local stability bearing capacity
试件编号 d×t/(mm×mm) 长度/mm 长细比 $ \mathrm{\xi } $ m k Pmax,C/kN Pmax,FEM/kN $\dfrac{ { {P_{\max .{\rm{C}}} } } }{ { {P_{\max .{\rm{FEM}}} } } }$ Rein4-1 L140×10 2500 45.05 0.42 2.64 1.81 1000.71 1000.80 1.00 Rein4-2 L140×10 3000 54.06 0.41 2.64 1.81 977.02 974.91 1.00 Rein4-3 L140×10 3500 63.07 0.40 2.64 1.81 953.24 950.79 1.00 Rein4-4 L140×10 4000 72.08 0.39 2.64 1.81 929.87 927.20 1.00 Rein4-5 L140×10 4500 81.10 0.38 2.64 1.81 907.11 905.34 1.00 Rein4-6 L140×10 5000 90.11 0.37 2.64 1.81 885.06 886.20 1.00 Rein4-7 L140×10 5500 99.12 0.36 2.64 1.81 863.73 863.38 1.00 Rein4-8 L140×10 6000 108.13 0.35 2.64 1.81 843.10 838.25 1.01 Test-Rein4-1 L140×10 2750 49.56 0.41 2.64 1.81 988.93 988.97 1.00 Test-Rein4-2 L140×10 3750 67.58 0.39 2.64 1.81 941.49 938.85 1.00 Test-Rein4-3 L140×10 4250 76.59 0.38 2.64 1.81 918.41 918.42 1.00 注:Rein4-1中,“Rein4”代表试件类型为角钢贴合槽钢(加固试件),“1、2……8”表示变长细比试件编号;Pmax, C表示公式计算承载力;Pmax, FEM表示有限元计算承载力;Test-Rein4-1中“Test-Rein4”代表验证试件,其类型为角钢贴合槽钢(加固试件),“1、2、3”表示验证试件编号。 $$ \eta = \dfrac{{\ln \lambda }}{{10}} $$ (4) $$ \xi = - 3{\eta ^2} + 1.8\eta + 0.165 $$ (5) $$ {P_{\max ,{\rm{C}}}} = \xi \cdot k \cdot \dfrac{{{{\text{π}} ^2}D}}{{{b^2}}} $$ (6) 式中:
$\lambda $ —角钢长细比,$\lambda = \dfrac{l}{i}$ ;$i$ —角钢截面回转半径(mm),$i = \sqrt {\dfrac{I}{A}}$ ;k—屈曲系数,
$k = 3.59{m^{ - 1.203}} + 0.70$ ,$m = \dfrac{a}{b}$ ;a—受压方向加载端至屈曲位置最近螺栓的距离(mm),针对本文具体可取370 mm;
b—角钢肢宽(mm),针对本文具体可取140 mm。
-
根据上述得出的修正局部稳定承载力计算公式采用有限元计算承载力进行验证,验证模型构件分别为Test-Rein4-1、Test-Rein4-2和Test-Rein4-3,如表2所示。验证模型与计算公式所得承载力一致,证明修正局部稳定承载力计算公式可有效计算大长细比角钢贴合槽钢构件的极限承载力。
Research on Bearing Capacity of Angle Steel Transmission Tower Subject to Parallel Reinforcement by Fitting Channel Steel
-
摘要:
目的 现有角钢输电塔已持续运行多年,结构损伤导致使用性能降低,同时老旧输电塔设计承载力已不满足现有规范设计要求。为了解决老旧输电塔承载力不足的问题,提出了1种角钢外贴槽钢并联加固方法,通过试验研究与有限元分析获得了加固结构承载力,并提出了基于弹性分析的屈曲临界荷载公式。 方法 为了获得构件的承载力,设置了2组试件的轴压试验,开展了2种构件轴压有限元数值模拟:未加固角钢、角钢贴合槽钢;根据破坏形式推导了基于弹性分析的薄板屈曲临界荷载计算公式。 结果 轴压试验结果表明:未加固角钢试件发生弯扭破坏,角钢贴合槽钢试件发生局部屈曲破坏,加固构件承载力可有效提高。 结论 角钢贴合槽钢改变了原有角钢的失稳破坏状态提高了角钢承载力,建立的有限元模型可真实反映加固构件破坏状态,理论计算公式可准确计算加固构件的轴压承载力。 Abstract:Introduction The existing angle steel transmission tower has been running for many years, and the structural damage leads to the reduction of service performance. At the same time, the design bearing capacity of the old transmission tower ceases to meet the design requirements of the existing specifications. In order to address the insufficient bearing capacity of the old transmission tower, a parallel reinforcement method of angle steel fitted with channel steel is proposed. The bearing capacity of the reinforced structure is obtained through experimental research and finite element analysis (FEM), and the critical buckling load is proposed based on elastic analysis. Method In order to obtain the bearing capacity of members, two groups of axial compression tests on test specimens were set up. Two kinds of finite element numerical simulation include unreinforced angle steel and angle steel fitted with channel steel were conducted under axial compression. According to the failure mode, the calculation formula of buckling load of thin plate based on elastic analysis was deduced. Result The axial compression test results show the bending failure of the unreinforced angle steel specimen and the local buckling failure of the angle steel fitted with channel steel. The results also show that the bearing capacity of the reinforced members could be effectively improved. Conclusion Angle steel fitted with channel steel changes the instability failure state of the original angle steel and improves the bearing capacity of the angle steel. The established FEM can reflect the true failure state of the reinforced members, and the theoretical calculation formula can accurately calculate the axial compression bearing capacity of the reinforced members. -
表 1 钢材性能参数
Tab. 1. Steel performance parameter
试件类别 弹性模量/MPa 屈服强度/MPa 抗拉强度/MPa L140×10(角钢) 2.06×105 379.70 562.60 L63×5(角钢) 2.06×105 388.48 569.23 [12(槽钢) 2.06×105 487.32 615.92 表 2 理想弹性局部稳定承载力计算表
Tab. 2. Calculation table of ideal elastic local stability bearing capacity
试件编号 d×t/(mm×mm) 长度/mm 长细比 $ \mathrm{\xi } $ m k Pmax,C/kN Pmax,FEM/kN $\dfrac{ { {P_{\max .{\rm{C}}} } } }{ { {P_{\max .{\rm{FEM}}} } } }$ Rein4-1 L140×10 2500 45.05 0.42 2.64 1.81 1000.71 1000.80 1.00 Rein4-2 L140×10 3000 54.06 0.41 2.64 1.81 977.02 974.91 1.00 Rein4-3 L140×10 3500 63.07 0.40 2.64 1.81 953.24 950.79 1.00 Rein4-4 L140×10 4000 72.08 0.39 2.64 1.81 929.87 927.20 1.00 Rein4-5 L140×10 4500 81.10 0.38 2.64 1.81 907.11 905.34 1.00 Rein4-6 L140×10 5000 90.11 0.37 2.64 1.81 885.06 886.20 1.00 Rein4-7 L140×10 5500 99.12 0.36 2.64 1.81 863.73 863.38 1.00 Rein4-8 L140×10 6000 108.13 0.35 2.64 1.81 843.10 838.25 1.01 Test-Rein4-1 L140×10 2750 49.56 0.41 2.64 1.81 988.93 988.97 1.00 Test-Rein4-2 L140×10 3750 67.58 0.39 2.64 1.81 941.49 938.85 1.00 Test-Rein4-3 L140×10 4250 76.59 0.38 2.64 1.81 918.41 918.42 1.00 注:Rein4-1中,“Rein4”代表试件类型为角钢贴合槽钢(加固试件),“1、2……8”表示变长细比试件编号;Pmax, C表示公式计算承载力;Pmax, FEM表示有限元计算承载力;Test-Rein4-1中“Test-Rein4”代表验证试件,其类型为角钢贴合槽钢(加固试件),“1、2、3”表示验证试件编号。 -
[1] 薛晓敏, 袁红丽, 饶翼, 等. 输电铁塔单变双拼角钢转换节点承载力研究 [J]. 西安交通大学学报, 2020, 54(8): 11-19. DOI: 10.7652/xjtuxb202008002. XUE X M, YUAN H L, RAO Y, et al. Bearing capacity of conversion joints between single-angle and dual-angle steels in steel pylon [J]. Journal of Xi'an Jiaotong University, 2020, 54(8): 11-19. DOI: 10.7652/xjtuxb202008002. [2] 杨风利, 黄国, 牛华伟, 等. 输电塔角钢杆件阻力系数及背风面遮挡效应研究 [J]. 土木工程学报, 2019, 52(11): 25-36. DOI: 10.15951/j.tmgcxb.2019.11.003. YANG F L, HUANG G, NIU H W, et al. Study on drag coefficients and shielding effects of angle members in lattice transmission towers [J]. China Civil Engineering Journal, 2019, 52(11): 25-36. DOI: 10.15951/j.tmgcxb.2019.11.003. [3] 邵帅, 杨风利, 程永锋, 等. 大跨越输电高塔发展历程及其结构承载性能研究综述 [J]. 中国电机工程学报, 2022, 42(增刊1): 313-331. DOI: 10.13334/j.0258-8013.pcsee.221479. SHAO S, YANG F L, CHENG Y F, et al. Development of long-span high-rise transmission towers and research on structural bearing capacity: a review [J]. Proceedings of the CSEE, 2022, 42(Supp. 1): 313-331. DOI: 10.13334/j.0258-8013.pcsee.221479. [4] 王荣鹏, 王干军, 吴毅江. 侧向横风作用下角钢输电塔的动力响应研究 [J]. 南方能源建设, 2015, 2(1): 88-91. DOI: 10.16516/j.gedi.issn2095-8676.2015.01.017. WANG R P, WANG G J, WU Y J. Research on dynamic responses of a transmission tower with angle section members under lateral wind loadings [J]. Energy Construction, 2015, 2(1): 88-91. DOI: 10.16516/j.gedi.issn2095-8676.2015.01.017. [5] 肖凯, 付兴, 雷旭, 等. 输电线路风致倒塌失效分析及监测方案 [J]. 建筑科学与工程学报, 2019, 36(4): 71-79. DOI: 10.3969/j.issn.1673-2049.2019.04.009. XIAO K, FU X, LEI X, et al. Failure analysis of transmission line subjected to wind loading and monitoring scheme [J]. Journal of Architecture and Civil Engineering, 2019, 36(4): 71-79. DOI: 10.3969/j.issn.1673-2049.2019.04.009. [6] 雷旭, 付兴, 肖凯, 等. 强风作用下输电塔结构不确定性倒塌分析 [J]. 中国电机工程学报, 2018, 38(增刊1): 266-274. DOI: 10.13334/j.0258-8013.pcsee.180665. LEI X, FU X, XIAO K, et al. Failure analysis of a transmission tower subjected to wind load using uncertainty method [J]. Proceedings of the CSEE, 2018, 38(Supp. 1): 266-274. DOI: 10.13334/j.0258-8013.pcsee.180665. [7] 陈城, 许海源, 王晨, 等. 500 kV输电塔线体系强风荷载倒塌分析 [J]. 工业建筑, 2019, 49(12): 36-41. DOI: 10.13204/j.gyjz201912007. CHEN C, XU H Y, WANG C, et al. Collapse analysis of 500 kilovolts transmission tower line system under strong wind load [J]. Industrial Construction, 2019, 49(12): 36-41. DOI: 10.13204/j.gyjz201912007. [8] 杨正, 谢强, 张戬, 等. 输电塔T形组合角钢加固试验及理论分析 [J]. 电力电容器与无功补偿, 2020, 41(3): 147-155. DOI: 10.14044/j.1674-1757.pcrpc.2020.03.024. YANG Z, XIE Q, ZHANG J, et al. Test and theoretical analysis of T-section combined angles retrofitting scheme for transmission tower [J]. Power Capacitor & Reactive Power Compensation, 2020, 41(3): 147-155. DOI: 10.14044/j.1674-1757.pcrpc.2020.03.024. [9] 刘翔, 庄志伟, 江巳彦, 等. 输电铁塔新型加固方式的试验研究 [J]. 钢结构, 2018, 33(11): 113-116. DOI: 10.13206/j.gjg201811020. LIU X, ZHUANG Z W, JIANG S Y, et al. Experimental research on new strengthening method for transmission tower [J]. Steel Construction, 2018, 33(11): 113-116. DOI: 10.13206/j.gjg201811020. [10] 祝凯, 郭耀杰, 孙云, 等. Q420大规格双角钢十字组合截面构件受力性能 [J]. 科学技术与工程, 2021, 21(30): 13016-13023. DOI: 10.3969/j.issn.1671-1815.2021.30.031. ZHU K, GUO Y J, SUN Y, et al. Mechanical performance of Q420 large-size double-angle steel cross sectional members [J]. Science Technology and Engineering, 2021, 21(30): 13016-13023. DOI: 10.3969/j.issn.1671-1815.2021.30.031. [11] 苏子威, 李敏生, 严斌, 等. 新型构件并联法加固角钢输电塔试验研究及设计建议 [J]. 建筑结构, 2020, 50(6): 95-98. DOI: 10.19701/j.jzjg.2020.06.018. SU Z W, LI M S, YAN B, et al. Tests and design suggestion on a new type of paralleling component method in reinforcing angle steel transmission tower [J]. Building Structure, 2020, 50(6): 95-98. DOI: 10.19701/j.jzjg.2020.06.018. [12] 姚瑶, 王凌旭, 张有佳. 高压输电塔主材的角钢并联加固轴压承载力 [J]. 西南交通大学学报, 2020, 55(3): 561-569. DOI: 10.3969/j.issn.0258-2724.20190370. YAO Y, WANG L X, ZHANG Y J. Axial bearing capacity of angle parallel reinforcement for high voltage transmission towers [J]. Journal of Southwest Jiaotong University, 2020, 55(3): 561-569. DOI: 10.3969/j.issn.0258-2724.20190370. [13] ZHUGE Y, MILLS J E, MA X. Modelling of steel lattice tower angle legs reinforced for increased load capacity [J]. Engineering Structures, 2012, 43: 160-168. DOI: 10.1016/j.engstruct.2012.05.017. [14] 刘洪义, 李正良, 黄祖林. 输电塔角钢构件受压稳定承载力研究 [J]. 建筑钢结构进展, 2021, 23(12): 47-55. DOI: 10.13969/j.cnki.cn31-1893.2021.12.005. LIU H Y, LI Z L, HUANG Z L. A study on the bearing capacity of angle steel members in transmission towers [J]. Progress in Steel Building Structures, 2021, 23(12): 47-55. DOI: 10.13969/j.cnki.cn31-1893.2021.12.005. [15] 顾伟华,张大长,曹世山. 输电铁塔单角钢轴压承载力计算公式及试验研究 [J]. 建筑钢结构进展, 2020, 22(1): 78-84. DOI: 10.13969/j.cnki.cn31-1893.2020.01.009. GU W H, ZHANG D S, CAO S S. Analytical and experimental investigation on axial compression capacity of single angle steel for transmission line tower [J]. Progress in Steel Building Structures, 2020, 22(1): 78-84. DOI: 10.13969/j.cnki.cn31-1893.2020.01.009. [16] 孙立建, 刘云贺, 王媛, 等. Q420等边角钢输电塔腿轴压试验研究及数值分析 [J]. 西安理工大学学报, 2015, 31(2): 225-230. DOI: 10.3969/j.issn.1006-4710.2015.02.019. SUN L J, LIU Y H, WANG Y, et al. Experimental and numerical investigation of axial compression Q420 equal angle steel legs for transmission tower [J]. Journal of Xi'an University of Technology, 2015, 31(2): 225-230. DOI: 10.3969/j.issn.1006-4710.2015.02.019. [17] 中华人民共和国住房和城乡建设部. 钢结构设计标准: GB 50017—2017 [S]. 北京: 中国建筑工业出版社, 2017. Ministry of Housing and Urban-rural Development of the People′s Republic of China. Standard for design of steel structures: GB 50017-2017 [S]. Beijing: China Architecture & Building Press, 2017. [18] 郭宏超, 郝际平, 简政, 等. Q460高强角钢极限承载力的试验研究 [J]. 工业建筑, 2014, 44(1): 118-123. DOI: 10.13204/j.gyjz201401026. GUO H C, HE J P, JIAN Z, et al. Experimental study on ultimate bearing capacity of Q460 high strength angle [J]. Industrial Construction, 2014, 44(1): 118-123. DOI: 10.13204/j.gyjz201401026. [19] 张爱林, 张庆芳. 单角钢构件稳定承载力设计方法与研究综述 [J]. 北京工业大学学报, 2016, 42(8): 1199-1207. DOI: 10.11936/bjutxb2015100015. ZHANG A L, ZHANG Q F. Review of steel single angles subject to compression and bending [J]. Journal of Beijing University of Technology, 2016, 42(8): 1199-1207. DOI: 10.11936/bjutxb2015100015. [20] 李清扬, 冯圆圆, 刘远鹏, 等. 高强等边角钢轴压杆局部-整体相关屈曲分析 [J]. 河南科技大学学报(自然科学版), 2016, 37(6): 61-65,71. DOI: 10.15926/j.cnki.issn1672-6871.2016.06.013. LI Q Y, FENG Y Y, LIU Y P, et al. Local-overall interaction buckling analysis of high-strength steel equal angle members under axial compression [J]. Journal of Henan University of Science & Technology (Natural Science Edition), 2016, 37(6): 61-65,71. DOI: 10.15926/j.cnki.issn1672-6871.2016.06.013. [21] 陈绍蕃. 钢结构设计原理(2版) [M]. 北京: 科学出版社, 1998. CHEN S F. Principles of steel structure design (2nd ed. ) [M]. Beijing: Science Press, 1998.