-
本风电场由22台风机组成,此风机主要部件厂家/型号具体如表1所示,通过历史运行数据和现场实测发现此风电场发电机组存在高共模电流破坏设备问题[11-12]。根据以往经验,若系统长期运行可能导致以下问题,如输电线缆过热、用电转换变压器过热、保护检测设备的误动作/误报警及风电发电机组电机振动异常等。“高共模电流”是电力行业设备中存在的一种共性问题,只是干扰电流破坏设备的程度大与小的问题。
表 1 风机主要部件厂家/型号
Table 1. Manufacturers/models of main component of wind turbine
名称 厂家/型号 装机容量/MW 330 机组型号 MY1.5s-77/65 风机整机厂家 明阳 风机主要部件 叶片 明阳 变桨系统 OAT 主轴 江阴振宏/平湖中州/江阴南工 齿轮箱 南高齿/FD1160E-01-00R13 发电机 南汽轮/DASAA 5023-4UFB 变频器 艾默生/MYFvert-SH 1.5/A 主控系统 倍福 液压站 敏泰11FD004 -
1)测试示意图如图8所示。
2)于2020年11月,对现场机位地势比较高、具有代表性的#11机组进行抽检测试,结果如表2所示。
表 2 #11风机测量结果
Table 2. Measurement result of #11 wind turbine
设备 测试点 共模电流${I}_{{\rm{peak}}}$/A 分析 #11 风机(4.3 m/s) Ⅰ 10.404 基于测量结果,系统中存在较大的共模电流,且共模电流随着风速的增加(功率增加)而增大。若风速达到10 m/s或以上,预计定子的控制系统中共模电流超过20 A,而控制转子的系统共模电流则超过30 A。长期运行较大概率出现以下问题:
(1)电缆过热;(2)变压器过热;(3)保护设备的误动作/误报警;(4)发电机异常振动。#11 风机(5.3 m/s) Ⅰ 12.024 #11 风机(4.3 m/s) Ⅱ 16.624 #11 风机(5.3 m/s) Ⅱ 19.180 3)现场仪器测量截图如图9所示。
-
通过本次采用在试验机组#11风机母线上加装抗干扰线圈CoolBlue®系列的解决方案后现场测试结果如表3和图11所示。
表 3 #11风机整改后测量结果
Table 3. Measurement result after rectification of #11 wind turbine
风机/时间 主轴轴承B温度/℃ 次数/次 最高温度/℃ 占比/% Y向振动实时值/mm 次数/次 最大值/mm #11风机
11月21日~12月21日<40 5 108 39 100.0 <0.8 4 936 — ≤40<50 0 — 0.0 <0.8<1 139 — ≤50<60 0 — 0.0 <1<1.2 29 — ≤60<65 0 — 0.0 >1.2 4 1.53 ≥65 0 — 0.0 — — — 由此可见,在#11风机母线上加装抗干扰线圈CoolBlue®系列前的实测波形图扰动频繁,干扰电压最高值为959.0 mv(如图9所示),而加装抗干扰线圈后实测波形图扰动稀少,干扰电压低至520.2 mv(如图11所示),风机主轴温度和Y轴振动值也都在正常范围内,因此,本次测试整改安装前后效果对比明显可见。
Analysis of the Influence of Common Mode Current on Wind Turbine
-
摘要:
目的 为解决共模干扰电流对风机设备造成的伤害与破坏,避免风力发电机组长期带病运行和伤害风电机组大部件,从而导致风场风电机组可利用率下降、弃风现象产生和发电量损失。 方法 文章通过阐述我国南方某风电场风电机组存在的共模电流干扰信号现象,现场机组设备损坏,误动作信号故障,故障引起的风力发电机组电流输出电缆过热、变压器过热,设备误动作保护以及发电机组振动异常等现象,以风场#11风机为检测点,进行实地机位实验检测,结合现场测量数据和图片,对问题进行系统理论分析。 结果 确认由于该发电变频系统产生的共模干扰电流的存在,引发了风力发电机组电流输出电缆过热、变压器过热、保护设备的误动作、发电机组振动异常等的一系列问题。由于该风场项目为已投产多年的在线发电项目,设备及电缆布置均已就位固定,难以改动或拆卸,为了不影响机组正常运行发电,在不影响原有线路现状的前提下,采用在发电机组发电母线上加装抗干扰线圈CoolBLUE®系列的解决方案。 结论 实践表明:此改善方案有效可行,为以后出现此类故障预防与改善提供建议和思路,避免风机再次发生同类故障,增加风电发电机组的可利用率,并可以推广应用。 -
关键词:
- 共模电流 /
- 电缆过热 /
- 变压器过热 /
- 抗干扰线圈CoolBLUE /
- 故障
Abstract:Introduction The objective is to solve the injury and destruction of the wind turbine equipment caused by the common mode interference current and avoid the long-term operation of the wind turbine with faults and the damage to the large components of the wind turbine, which will lead to the decrease of the availability of wind turbines, wind abandonment phenomenon and loss of power generation. Method The article elaborated on the interference signal phenomenon from common mode current, on-site equipment damage, misoperation signal fault, overheating of the current output cable and transformer of the wind turbine caused by faults, equipment misoperation protection, abnormal vibration of the generator set, and other phenomena of a wind turbine in a certain wind farm in southern China. Taking the # 11 wind turbine in the wind farm as the detection point, on-site machine position experiment detection was conducted, and a systematic theoretical analysis of the problem was conducted combined with on-site measurement data and pictures. Result The existence of common mode interference current generated by the conversion system is confirmed, which causes a series of problems such as overheating of current output cable, overheating of transformer, misoperation of protective equipment and abnormal vibration of generator set. As the wind farm project is an online power generation project that has been put into operation for many years, the equipment and cable layout have been in place and fixed, which is difficult to change or disassemble. In order to avoid affecting the normal operation of the generator set, the solution of installing anti-interference coil CoolBLUE® series on the generating busbar of the generator set is adopted without affecting the current situation of the original line. Conclusion The practice shows that this improvement scheme is effective and feasible, it can provide suggestions and ideas for the prevention and improvement of such faults in the future, avoid the similar faults of the wind turbine again, increase the availability of wind power generator sets, and it can be popularized and applied. -
表 1 风机主要部件厂家/型号
Tab. 1. Manufacturers/models of main component of wind turbine
名称 厂家/型号 装机容量/MW 330 机组型号 MY1.5s-77/65 风机整机厂家 明阳 风机主要部件 叶片 明阳 变桨系统 OAT 主轴 江阴振宏/平湖中州/江阴南工 齿轮箱 南高齿/FD1160E-01-00R13 发电机 南汽轮/DASAA 5023-4UFB 变频器 艾默生/MYFvert-SH 1.5/A 主控系统 倍福 液压站 敏泰11FD004 表 2 #11风机测量结果
Tab. 2. Measurement result of #11 wind turbine
设备 测试点 共模电流 ${I}_{{\rm{peak}}}$ /A分析 #11 风机(4.3 m/s) Ⅰ 10.404 基于测量结果,系统中存在较大的共模电流,且共模电流随着风速的增加(功率增加)而增大。若风速达到10 m/s或以上,预计定子的控制系统中共模电流超过20 A,而控制转子的系统共模电流则超过30 A。长期运行较大概率出现以下问题:
(1)电缆过热;(2)变压器过热;(3)保护设备的误动作/误报警;(4)发电机异常振动。#11 风机(5.3 m/s) Ⅰ 12.024 #11 风机(4.3 m/s) Ⅱ 16.624 #11 风机(5.3 m/s) Ⅱ 19.180 表 3 #11风机整改后测量结果
Tab. 3. Measurement result after rectification of #11 wind turbine
风机/时间 主轴轴承B温度/℃ 次数/次 最高温度/℃ 占比/% Y向振动实时值/mm 次数/次 最大值/mm #11风机
11月21日~12月21日<40 5 108 39 100.0 <0.8 4 936 — ≤40<50 0 — 0.0 <0.8<1 139 — ≤50<60 0 — 0.0 <1<1.2 29 — ≤60<65 0 — 0.0 >1.2 4 1.53 ≥65 0 — 0.0 — — — -
[1] 蔡绍宽. 双碳目标的挑战与电力结构调整趋势展望 [J]. 南方能源建设, 2021, 8(3): 8-17. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.002. CAI S K. Challenges and prospects for the trends of power structure adjustment under the goal of carbon peak and neutrality [J]. Southern energy construction, 2021, 8(3): 8-17. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.002. [2] 李汪繁, 吴何来. 双碳目标下我国碳市场发展分析及建议 [J]. 南方能源建设, 2022, 9(4): 118-126. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.015. LI W F, WU H L. Analysis and suggestions for the development of carbon emissions trading markets in China under carbon peak and neutrality goals [J]. Southern energy construction, 2022, 9(4): 118-126. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.015. [3] 李俊超. 风电场风机主轴轴承保持架失效原因分析 [J]. 设备管理与维修, 2021(9): 48-50. DOI: 10.16621/j.cnki.issn1001-0599.2021.05.21. LI J C. Failure cause analysis of main shaft bearing cage of wind farm fan [J]. Plant maintenance engineering, 2021(9): 48-50. DOI: 10.16621/j.cnki.issn1001-0599.2021.05.21. [4] 李剑. 我国风能发电发展前景研究 [J]. 中国设备工程, 2019(14): 184-185. DOI: 10.3969/j.issn.1671-0711.2019.14.110. LI J. Our country wind power development prospect research [J]. China plant engineering, 2019(14): 184-185. DOI: 10.3969/j.issn.1671-0711.2019.14.110. [5] 任仰成, 郭建军. 引风机前后烟道气流扰动问题研究 [J]. 山西电力, 2020(3): 62-66. DOI: 10.3969/j.issn.1007-9904.2019.11.015. REN Y C, GUO J J. Study of the airflow disturbance problem of the front and back flues of the induced draft fan [J]. Shanxi electric power, 2020(3): 62-66. DOI: 10.3969/j.issn.1007-9904.2019.11.015. [6] 崔慧茹, 王浩, 赵彦博, 等. 明阳MY1.5Se型风机SCADA监控系统能量平台机组负荷控制分析 [J]. 内蒙古科技与经济, 2017(12): 95-96. DOI: 10.3969/j.issn.1007-6921.2017.12.046. CUI H R, WANG H, ZHAO Y B, et al. Load control analysis of energy platform unit of mingyang MY1.5Se fan SCADA monitoring system [J]. Inner Mongolia science technology and economy, 2017(12): 95-96. DOI: 10.3969/j.issn.1007-6921.2017.12.046. [7] 秦永军. 新能源风力发电技术及其发展趋势分析 [J]. 科技创新与应用, 2022, 12(19): 162-165. DOI: 10.19981/j.CN23-1581/G3.2022.19.038. QIN Y J. New energy wind power generation technology and its development trend analysis [J]. Technology innovation and application, 2022, 12(19): 162-165. DOI: 10.19981/j.CN23-1581/G3.2022.19.038. [8] 许林冲, 徐君, 刘威. 共模干扰的建模分析及处理方法 [J]. 电力电子技术, 2022, 56(11): 33-36,44. DOI: 10.3969/j.issn.1000-100X.2022.11.010. XU L C, XU J, LIU W. Modeling analysis and processing method of common mode interference [J]. Power electronics, 2022, 56(11): 33-36,44. DOI: 10.3969/j.issn.1000-100X.2022.11.010. [9] 章勇高, 柴成凯, 刘鹏. 基于驱动信号自调整的磁铁电源共模抑制 [J]. 电力电子技术, 2021, 55(10): 121-124. DOI: 10.3969/j.issn.1000-100X.2021.10.031. ZHANG Y G, CHAI C K, LIU P. Magnet power supply with common-mode rejection based on automatic calibration of drive pulse [J]. Power electronics, 2021, 55(10): 121-124. DOI: 10.3969/j.issn.1000-100X.2021.10.031. [10] 范高, 李力超. 用于LLC谐振变换器的低共模噪声混叠变压器 [J]. 电子技术, 2021, 50(9): 6-9. FAN G, LI L C. Study on low common mode noise aliasing transformer for LLC resonant converter [J]. Electronic technology, 2021, 50(9): 6-9. [11] 张三锋. 低功耗生物信号采集前端研究 [D]. 成都: 电子科技大学, 2022: 128. DOI: 10.27005/d.cnki.gdzku.2021.000005. ZHANG S F. Circuit design techniques for integrated bio-signal acquisition front-ends [D]. Chengdu: University of Electronic Science and Technology of China, 2022: 128. DOI: 10.27005/d.cnki.gdzku.2021.000005. [12] 郑煜铭, 漆一宏, 黎福海, 等. 共模电流对多探头天线测量系统影响的研究 [J]. 仪器仪表学报, 2020, 41(9): 140-150. DOI: 10.19650/j.cnki.cjsi.J2006758. ZHENG Y M, QI Y H, LI F H, et al. Research on common mode current aspect of multi-probe antenna measurement system [J]. Chinese journal of scientific instrument, 2020, 41(9): 140-150. DOI: 10.19650/j.cnki.cjsi.J2006758. [13] 黄建文, 于淼. 探讨10 kV电缆故障分析及运行维护技术 [J]. 电子测试, 2021(18): 98-100. DOI: 10.3969/j.issn.1000-8519.2021.18.036. HUANG J W, YU M. Discussion on 10 kV cable fault analysis and operation and maintenance technology [J]. Electronic test, 2021(18): 98-100. DOI: 10.3969/j.issn.1000-8519.2021.18.036. [14] 朱亮, 苏娟, 马振祺, 等. 10 kV电缆中间接头故障解体分析 [J]. 电工技术, 2021(23): 96-97. DOI: 10.19768/j.cnki.dgjs.2021.23.031. ZHU L, SU J, MA Z Q, et al. Disassembly analysis of a 10 kV cable intermediate joint fault [J]. Electric engineering, 2021(23): 96-97. DOI: 10.19768/j.cnki.dgjs.2021.23.031. [15] 王兆新, 任建华, 姚传慧, 等. 硫酸铜浓度及电流密度的变化对游离微珠辅助磨电铸铜的影响 [J]. 表面技术, 2023, 52(1): 401-409,420. DOI: 10.16490/j.cnki.issn.1001-3660.2023.01.041. WANG Z X, REN J H, YAO C H, et al. Effects of copper sulfate concentration and current density on free microbeads assisted grinding electroformed copper [J]. Surface technology, 2023, 52(1): 401-409,420. DOI: 10.16490/j.cnki.issn.1001-3660.2023.01.041. [16] 陈炜. 高温超导线缆局部特性对交流损耗的影响研究 [D]. 成都: 西南交通大学, 2022: 163. DOI: 10.27414/d.cnki.gxnju.2021.000031. CHEN W. Influence of local characteristics of high-temperature superconducting tape or wire and cable on AC loss [D]. Chengdu: Southwest Jiaotong University, 2022: 163. DOI: 10.27414/d.cnki.gxnju.2021.000031. [17] 唐永胜. 电力电缆的运行维护管理研究 [J]. 科技风, 2012(21): 72-73. DOI: 10.19392/j.cnki.1671-7341.2012.21.057. TANG Y S. Research on operation and maintenance management of power cable [J]. Technology wind, 2012(21): 72-73. DOI: 10.19392/j.cnki.1671-7341.2012.21.057. [18] 房伟, 常缝源. 电力电缆的运行维护及管理探讨 [J]. 通讯世界, 2017(7): 113-114. DOI: 10.3969/j.issn.1006-4222.2017.07.087. FANG W, CHANG F Y. Discussion on operation maintenance and management of power cable [J]. Telecom world, 2017(7): 113-114. DOI: 10.3969/j.issn.1006-4222.2017.07.087. [19] 陈建光. 电力电缆施工中的常见问题及防范措施分析 [J]. 中国高新技术企业, 2016(2): 116-117. DOI: 10.13535/j.cnki.11-4406/n.2016.02.056. CHEN J G. Analysis of common problems and preventive measures in power cable construction [J]. China high-tech enterprises, 2016(2): 116-117. DOI: 10.13535/j.cnki.11-4406/n.2016.02.056. [20] 蔡绍宽. 新型电力系统下的储能解决方案探讨 [J]. 南方能源建设, 2022, 9(增刊1): 17-23. DOI: 10.16516/j.gedi.issn2095-8676.2022.S1.003. CAI S K. Discussion on energy storage solutions under the new power system [J]. Southern energy construction, 2022, 9(Suppl. 1): 17-23. DOI: 10.16516/j.gedi.issn2095-8676.2022.S1.003. [21] 黄华, 谢静媛, 汪正玲, 等. 基于时频分析法的开关柜避雷器泄漏电流检测 [J]. 南方能源建设, 2022, 9(4): 150-158. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.019. HUANG H, XIE J Y, WANG Z L, et al. Leakage current detection for surge arrester in switchgear based on time-frequency analysis method [J]. Southern energy construction, 2022, 9(4): 150-158. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.019.