-
典型的半桥MMC换流器拓扑如图1所示,各相单元含上下两个桥臂,各桥臂单元由N个MMC子模块及桥臂电抗L组成,图中R为子模块等效内阻。子模块采用半桥结构,内含两个具有反并联二极管的IGBT和电容组成,实际工程中每个子模块还含一个保护晶闸管和快速开关。在直流侧通过钳位电容或钳位大电阻接地提供接地钳位点时[25],此时正负极母线上电压分别为Vd/2及−Vd/2。
-
对相单元与交直流侧形成回路的利用基尔霍夫电压定律( Kirchhoff's Voltage Law,KVL)有:
$$ \left\{ {\begin{array}{*{20}{c}} {\dfrac{{{V_{\rm{d}}}}}{2} - {v_{\rm{u}}} - R{i_{\rm{u}}} - L\dfrac{{{\rm{d}}{i_{\rm{u}}}}}{{{\rm{d}}t}} = {v_{\rm{a}}}} \\ { - \dfrac{{{V_{\rm{d}}}}}{2} + {v_{\rm{l}}} + R{i_{\rm{l}}} + L\dfrac{{{\rm{d}}{i_{\rm{l}}}}}{{{\rm{d}}t}} = {v_{\rm{a}}}} \end{array}} \right. $$ (1) 式中:
L ——桥臂电抗值(H);
R ——子模块的等效内阻(Ω);
Vd ——直流电压(kV);
vu、vl ——上、下桥臂端间电压(kV);
iu、il ——上、下桥臂电流(kA),电流方向如图1所示;
va ——阀侧A相相电压(kV)。
对式(1)进行数学变换得:
$$ \left\{ {\begin{array}{*{20}{c}} {\dfrac{L}{2}\dfrac{{{\rm{d}}{i_{\rm{s}}}}}{{{\rm{d}}t}} = \underbrace {\dfrac{{ - {v_{\rm{u}}} + {v_{\rm{l}}}}}{2}}_{{v_{\rm{s}}}} - {v_{\rm{a}}} - \dfrac{R}{2}{i_{\rm{s}}}} \\ {L\dfrac{{{\rm{d}}{i_{\rm{c}}}}}{{{\rm{d}}t}} = - \underbrace {\dfrac{{{v_{\rm{u}}} + {v_{\rm{l}}}}}{2}}_{{v_{\rm{c}}}} + \dfrac{{{V_{\rm{d}}}}}{2} - R{i_{\rm{c}}}} \end{array}} \right. $$ (2) 式中:
is ——阀侧相电流(kA);
ic ——流过桥臂的直流电流分量(kA);
vs ——上下桥臂的差模电压(kV);
vc ——上下桥臂的共模电压(kV)。
式(2)中用到了如下关系[26]:
$$ \left\{ {\begin{array}{*{20}{l}} {{i_{\rm{u}}} = \dfrac{{{i_{\rm{s}}}}}{2} + {i_{\rm{c}}}} \\ {{i_{\rm{l}}} = - \dfrac{{{i_{\rm{s}}}}}{2} + {i_{\rm{c}}}} \end{array}} \right. $$ (3) 根据每个子模块投入切除状态定义单个子模块j(j=1,2,···,N)投入切除的开关状态数nju,l(为1表示投入,为0表示切除),在单桥臂中所有子模块电压均衡时,可得到单个桥臂总投入子模块等效电压为:
$$ {v_{{\rm{cu,l}}}} = \displaystyle \sum\limits_{j = 1}^N {n_{{\rm{u,l}}}^j} v_{{\rm{cu,l}}}^j = \dfrac{{v_{{\rm{cu,l}}}^\Sigma }}{N}\displaystyle \sum\limits_{j = 1}^N {n_{{\rm{u,l}}}^j} = {n_{{\rm{u,l}}}}v_{{\rm{cu,l}}}^\Sigma $$ (4) 式中:
$v_{{\rm{cu,l}}}^\Sigma$ ——上/下桥臂所有子模块电压之和(kV);N ——上/下桥臂子模块个数;
${n_{{\rm{u,l}}}}$ ——上/下桥臂的总开关函数,nu为上桥臂的总开关函数,nl为下桥臂的总开关函数。 -
考虑每个子模块电容电压波动后将其叠加得到桥臂上所有MMC子模块两端电压波动,以上桥臂为例,有:
$$ C\dfrac{{{\rm{d}}v_{{\rm{cu}}}^j}}{{{\rm{d}}t}} = n_{{\rm{u}}}^j{i_{{\rm{u}}}} $$ (5) $$ C\underbrace {\displaystyle \sum\limits_{j = 1}^N {\dfrac{{{\rm{d}}v_{{\rm{cu}}}^j}}{{{\rm{d}}t}}} }_{{\rm{d}}v_{{\rm{cu}}}^\Sigma /{\rm{d}}t} = \displaystyle \sum\limits_{j = 1}^N {n_{{\rm{u}}}^j} {i_{{\rm{u}}}} = {i_{{\rm{u}}}}\underbrace {\displaystyle \sum\limits_{j = 1}^N {n_{{\rm{u}}}^j} }_{N{n_{{\rm{u}}}}} $$ (6) 式中:
C ——MMC子模块电容容值(F)。
替换下标u为表示下桥臂的l,公式依然成立。将式(6)重写得到上下桥臂的总子模块电容电压波动方程如下:
$$ \left\{ {\begin{array}{*{20}{c}} {\dfrac{C}{N}\dfrac{{{\rm{d}}v_{{\rm{cu}}}^\Sigma }}{{{\rm{d}}t}} = {n_{\rm{u}}}(\dfrac{{{i_{\rm{s}}}}}{2} + {i_{\rm{c}}})} \\ {\dfrac{C}{N}\dfrac{{{\rm{d}}v_{{\rm{cl}}}^\Sigma }}{{{\rm{d}}t}} = {n_{\rm{l}}}( - \dfrac{{{i_{\rm{s}}}}}{2} + {i_{\rm{c}}})} \end{array}} \right. $$ (7) 将式(4)代入到vs、vc的公式中,可得到桥臂的总开关函数为:
$$ {n_{\rm{u}}} = \dfrac{{{v_{\rm{c}}} - {v_{\rm{s}}}}}{{v_{{\rm{cu}}}^\Sigma }} {n_{\rm{l}}} = \dfrac{{{v_{\rm{c}}} + {v_{\rm{s}}}}}{{v_{{\rm{cl}}}^\Sigma }} $$ (8) 结合式(7)和式(8),可以得到上下桥臂电容能量的波动方程:
$$ \left\{ {\begin{array}{*{20}{c}} {v_{{\rm{cu}}}^\Sigma \dfrac{C}{N}\dfrac{{{\rm{d}}v_{{\rm{cu}}}^\Sigma }}{{{\rm{d}}t}} = \underbrace {\dfrac{C}{{2N}}\dfrac{{{\rm{d}}{{(v_{{\rm{cu}}}^\Sigma )}^2}}}{{{\rm{d}}t}}}_{{\rm{d}}{W_{\rm{u}}}/{\rm{d}}t} = ({v_{\rm{c}}} - {v_{\rm{s}}})(\dfrac{{i_{\rm{s}}}}{2} + {i_{\rm{c}}})} \\ {v_{{\rm{cl}}}^\Sigma \dfrac{C}{N}\frac{{{\rm{d}}v_{{\rm{cl}}}^\Sigma }}{{{\rm{d}}t}} = \underbrace {\dfrac{C}{{2N}}\dfrac{{{\rm{d}}{{(v_{{\rm{cl}}}^\Sigma )}^2}}}{{{\rm{d}}t}}}_{{\rm{d}}{W_{\rm{l}}}/{\rm{d}}t} = ({v_{\rm{c}}} + {v_{\rm{s}}})( - \dfrac{{i_{\rm{s}}}}{2} + {i_{\rm{c}}})} \end{array}} \right. $$ (9) 从式(9)进一步得到某相单元中上下桥臂总电容能量的波动及上下桥臂电容能量之差的波动方程为:
$$ \left\{ {\begin{array}{*{20}{c}} {{W_\Sigma } = {W_{\rm{u}}} + {W_{\rm{l}}}} \\ {{W_\Delta } = {W_{\rm{u}}} - {W_{\rm{l}}}} \end{array}} \right. \left\{ {\begin{array}{*{20}{c}} {\dfrac{{{\rm{d}}{W_\Sigma }}}{{{\rm{d}}t}} = 2{v_{\rm{c}}}{i_{\rm{c}}} - {v_{\rm{s}}}{i_{\rm{s}}}} \\ {\dfrac{{{\rm{d}}{W_\Delta }}}{{{\rm{d}}t}} = {v_{\rm{c}}}{i_{\rm{s}}} - 2{v_{\rm{s}}}{i_{\rm{c}}}} \end{array}} \right. $$ (10) 表达式中vc=Vd/2;vs=Vscos(w1t);is=Iscos(w1t−φ)。
将上述关系代入式(10)中,可得:
$$ \left\{ {\begin{array}{*{20}{l}} {\dfrac{{{\rm{d}}{W_\Sigma }}}{{{\rm{d}}t}} = {V_{\rm{d}}}{i_{\rm{c}}} - \dfrac{{{V_{\rm{s}}}{I_{\rm{s}}}}}{2}\cos \varphi - \dfrac{{{V_{\rm{s}}}{I_{\rm{s}}}}}{2}\cos (2{w_1}t - \varphi )} \\ {\dfrac{{{\rm{d}}{W_\Delta }}}{{{\rm{d}}t}} = \dfrac{{{V_{\rm{d}}}{I_{\rm{s}}}}}{2}\cos ({w_1}t - \varphi ) - 2{V_{\rm{s}}}{i_{\rm{c}}}\cos ({w_1}t)} \end{array}} \right. $$ (11) 从式(11)的第一个公式可以看出,相单元的总能量变化主要由三部分构成:第一部分为直流分量对应到单相中的有功功率;第二部分为交流系统注入MMC换流器的有功功率;第三部分为表示相间交换的有功,其以二倍频为主,表示相间环流以二倍频为主。
将式(11)两边积分得:
$$ \left\{ {\begin{array}{*{20}{l}} {{W_{_\Sigma }} = {W_{_{\sum 0 }}}\underbrace { - \dfrac{{{V_{\rm{s}}}{I_{\rm{s}}}}}{{4{w_1}}}\sin (2{w_1}t - \varphi )}_{\Delta {W_\Sigma }}} \\ {{W_\Delta } = {W_{\Delta 0}} + \underbrace {\dfrac{{{V_{\rm{d}}}{I_{\rm{s}}}}}{{2{w_1}}}\sin ({w_1}t - \varphi ) - \frac{{2{V_{\rm{s}}}{i_{\rm{c}}}}}{{{w_1}}}\sin ({w_1}t)}_{\Delta {W_\Delta }}} \end{array}} \right. $$ (12) 式中:
$ \Delta {W_\Sigma } $ ——相单元总能量的波动量(MJ);$ \Delta {W_\Delta } $ ——上下桥臂能量差的波动量(MJ)。由于能量储存于子模块电容中,假设不考虑实际工程中的子模块冗余个数,则有:
$$ \left\{ {\begin{array}{*{20}{l}} {{W_{\Sigma 0}} = 2N\times \dfrac{1}{2}C{{(\dfrac{{{V_{\rm{d}}}}}{N})}^2} = \dfrac{{CV_{\rm{d}}^2}}{N}} \\ {{W_{\Delta 0}} = 0} \end{array}} \right. $$ (13) 将式(13)代入式(12)可得到上下桥臂总子模块电容能量为:
$$ \left\{ {\begin{array}{*{20}{c}} {{W_{\rm{u}}} = \dfrac{{{W_\Sigma } + {W_\Delta }}}{2} = \dfrac{{{W_{\Sigma 0}} + \Delta {W_\Sigma } + \Delta {W_\Delta }}}{2}} \\ {{W_{\rm{l}}} = \dfrac{{{W_\Sigma } - {W_\Delta }}}{2} = \dfrac{{{W_{\Sigma 0}} + \Delta {W_\Sigma }-\Delta {W_\Delta }}}{2}} \end{array}} \right. $$ (14) 根据桥臂能量与电容电压之间的关系,结合式(12)~式(14)可最终得到上下桥臂MMC子模块电容电压的详细波动关系如下:
$$ \left\{ \begin{split} &v_{{\rm{cu}}}^\Sigma = \sqrt {\dfrac{{2N}}{C}{W_{\rm{u}}}} = {V_{\rm{d}}}\sqrt {1 + \dfrac{N}{{CV_{\rm{d}}^2}}(\Delta {W_\Sigma } + \Delta {W_\Delta })} \approx \\& {V_{\rm{d}}} + \underbrace {\dfrac{N}{{2C{V_{\rm{d}}}}}(\Delta {W_\Sigma } + \Delta {W_\Delta })}_{\Delta v_{{\rm{cu}}}^\Sigma } \\& v_{{\rm{cl}}}^{_\Sigma } = \sqrt {\dfrac{{2N}}{C}{W_{\rm{l}}}} {\kern 1pt} = {V_{\rm{d}}}\sqrt {1 + \dfrac{N}{{CV_{\rm{d}}^2}}(\Delta {W_\Sigma } - \Delta {W_\Delta })} \approx \\& {V_{\rm{d}}} + \underbrace {\dfrac{N}{{2C{V_{\rm{d}}}}}(\Delta {W_{_\Sigma }} - \Delta {W_\Delta })}_{\Delta v_{{\rm{cl}}}^{_\Sigma }} \end{split} \right. $$ (15) 式中:
$\Delta v_{{\rm{cu}}}^\Sigma$ 、$\Delta v_{{\rm{cl}}}^\Sigma$ ——上、下桥臂子模块电容电压之和的波动量(kV)。为定性初步分析基波分量与二倍频分量的规律,在泰勒展开时忽略了更高频分量,从式(15)可初步得到如下结论:
1)桥臂电容电压和的波动与电容C成反比。
2)上下桥臂的电容电压和的波动均含两部分,一部分为
$ \Delta {W_\Sigma } $ 二倍频分量,一部分为$ \Delta {W_\Delta } $ 基频分量。3)二倍频分量在上下桥臂总大小相等,方向相同;基波分量在上下桥臂上大小相等,方向相反。
-
将式(15)泰勒展开后取其任一项有:
$$ \left\{ \begin{array}{l} {(\Delta {W_\Sigma }{\rm{ + }}\Delta {W_\Delta })^n} = \displaystyle \sum\limits_{k = 0}^n {C_n^k \cdot \Delta {W_\Sigma }^k \cdot \Delta {W_\Delta }^{n - k}} \\ {(\Delta {W_\Sigma } - \Delta {W_\Delta })^n} = \displaystyle \sum\limits_{k = 0}^n {C_n^k \cdot \Delta {W_\Sigma }^k \cdot {{( - \Delta {W_\Delta })}^{n - k}}} \end{array} \right. $$ (16) 对典型项
${C}_{n}^{k}\cdot \Delta {{W}_{\Sigma }}^{k}\cdot\Delta {{W}_{\Delta }}^{n-k}$ 及${C}_{n}^{k}\cdot\Delta {{W}_{\Sigma }}^{k}\cdot {(-\Delta {W}_{\Delta })}^{n-k}$ 进行分析,由于$ \Delta {W_\Sigma } $ 为二倍频分量,$ \Delta {W_\Delta } $ 为基波分量,可以看出$ \Delta {W_\Sigma }^k $ 项仍为偶数倍频,谐波电压的奇偶关系与$ \Delta {W_\Delta }^{n - k} $ 或$ {( - \Delta {W_\Delta })^{n - k}} $ 中n−k的奇偶性相同。因此,可以得到上下桥臂的电容电压波动量的奇数次谐波呈谐波大小相等,方向相反的关系;偶数次谐波大小相等,方向相同的关系。由于电容电压的波动会带来桥臂上的谐波电流,因此,我们可以得出桥臂电流上谐波电流分布规律:1)上下桥臂的奇数次谐波大小相等,方向相反。
2)上下桥臂的偶数次谐波大小相等,方向相同。
3)相间环流为偶数次环流,且以二倍频为主。
4)第1)条等同于MMC阀侧出口交流电压电流只含奇数次谐波。
5)第2)条等同于MMC直流侧电压电流只含偶数次谐波。
6)根据
$\Delta {W_\Sigma }$ 和$ \Delta {W_\Delta } $ 的计算公式,可以得到相间环流只含偶数次谐波,其中6k+2次环流呈负序;6k+4次环流呈正序;6k次环流呈零序[12]。从式(17)、式(18)的电容电压波动泰勒展开式出发,考虑取2w1t的相关部分后可以达到二次谐波电流的估算大小。由于高频分量在进行三角函数计算时也有可能产生二倍频分量,这里忽略这些高频分量因中间计算过程带来的二倍频分量的大小,忽略的原因在于随着展开的幂次数的增加,其分量的幅值越来越小,图2给出了泰勒展开式的系数函数随展开阶数的关系。
$$ \begin{split} &v_{{\rm{cu}}}^\Sigma = {v_{\rm{d}}}\sqrt {1 + \dfrac{N}{{Cv_{\rm{d}}^2}}(\Delta {W_\Sigma } + \Delta {W_\Delta })} = {v_{\rm{d}}} + \dfrac{N}{{2C{v_{\rm{d}}}}}(\Delta {W_\Sigma } + \Delta {W_\Delta }) + \cdots + \dfrac{{\dfrac{1}{2} \times \left( {\dfrac{1}{2} - 1} \right) \times \left( {\dfrac{1}{2} - 2} \right) \times \left( {\dfrac{1}{2} - k + 1} \right){v_{\rm{d}}}}}{{k!}} \times \\& {\left[ {\dfrac{N}{{Cv_{\rm{d}}^2}}(\Delta {W_\Sigma }{\text{ + }}\Delta {W_\Delta })} \right]^k} + \cdots \end{split} $$ (17) $$ \begin{split} & v_{{\rm{cl}}}^{_\Sigma } = {v_{\rm{d}}}\sqrt {1 + \dfrac{N}{{Cv_{\rm{d}}^2}}(\Delta {W_\Sigma } - \Delta {W_\Delta })} = {v_{\rm{d}}} + \dfrac{N}{{2C{v_{\rm{d}}}}}(\Delta {W_\Sigma } - \Delta {W_\Delta }) + \cdots + \dfrac{{\dfrac{1}{2} \times \left( {\dfrac{1}{2} - 1} \right) \times \left( {\dfrac{1}{2} - 2} \right) \times \cdots \times\left( {\dfrac{1}{2} - k + 1} \right)}}{{k!}} \times \\& {v_{\rm{d}}}{\left[ {\dfrac{N}{{Cv_{\rm{d}}^2}}(\Delta {W_\Sigma } - \Delta {W_\Delta })} \right]^k} + \cdots \end{split} $$ (18) 得到二次谐波电流的估算大小为:
$$ \begin{split} &{i_\text{2harm}} = \dfrac{C}{N}\frac{{{\rm{d}}\Delta {v_{{\rm{cu}}}}}}{{{\rm{d}}t}} = A\sin (2{w_1}t) + B\cos (2{w_1}t) = \\& \sqrt {{A^2} + {B^2}} \cos(2{w_1}t + \varphi ') \end{split} $$ (19) $$ \begin{split} & A = - \dfrac{{{V_{\rm{s}}}{I_{\rm{s}}}}}{{4{V_{\rm{d}}}}}\sin \varphi - \dfrac{{NV_{\rm{s}}^2i_{\rm{c}}^2}}{{2{w_1}CV_{\rm{d}}^3}} - \dfrac{{NV_{\rm{d}}^2I_{\rm{s}}^2}}{{32{w_1}CV_{\rm{d}}^3}}\cos (2\varphi ) + \\& \dfrac{{N{V_{\rm{d}}}{i_{\rm{c}}}{V_{\rm{s}}}{I_{\rm{s}}}}}{{8{w_1}CV_{\rm{d}}^3}}\cos \varphi \end{split} $$ (20) $$ B = \dfrac{{{V_{\rm{s}}}{I_{\rm{s}}}}}{{4{V_{\rm{d}}}}}\cos \varphi - \dfrac{{NV_{\rm{d}}^2I_{\rm{s}}^2}}{{32{w_1}CV_{\rm{d}}^3}}\sin (2\varphi ) + \dfrac{{N{V_{\rm{d}}}{i_{\rm{c}}}{V_{\rm{s}}}{I_{\rm{s}}}}}{{8{w_1}CV_{\rm{d}}^3}}\sin \varphi $$ (21) -
式(22)、式(23)给出了上、下桥臂子模块电容电压的波动规律,从式子可以知道在忽略高频谐波的情况下桥臂电容电压和的波动与电容C成反比,在直流电压、直流电流、阀侧相电压相电流幅值一定的情况下,子模块电容电压的波动主要取决于阀侧功率因数角φ和时间t。为深入研究,本章节以我国首个海风柔性直流江苏如东工程参数为算列开展,其主参数如表1所示。
表 1 MMC参数
Table 1. Parameters for MMC
参数名 值 额定直流电压/kV ±400 额定直流电流/kA 1.375 额定有功/GW 1.100 额定视在功率/MVA 1230 子模块个数不考虑冗余/个 400 子模块电容容值/mF 4, 6, 8, 9, 10, 12 桥臂电抗器/H 0.133 阀侧相电压峰值/kV 340 阀侧相电流峰值/kA 2.411 $$ v_{{\rm{cu}}}^\Sigma = {v_{\rm{d}}}\sqrt {1 + \dfrac{N}{{Cv_{\rm{d}}^2}}(\Delta {W_\Sigma } + \Delta {W_\Delta })} = {v_{\rm{d}}}\sqrt {1 + \dfrac{N}{{Cv_{\rm{d}}^2}}\left( { - \dfrac{{{V_{\rm{s}}}{I_{\rm{s}}}}}{{4{w_1}}}\sin(2{w_1}t - \varphi ) + \dfrac{{{v_{\rm{d}}}{I_{\rm{s}}}}}{{2{w_1}}}\sin({w_1}t - \varphi ) - \dfrac{{2{V_{\rm{s}}}{i_{\rm{c}}}}}{{{w_1}}}\sin({w_1}t)} \right)} $$ (22) $$ v_{{\rm{cl}}}^{_\Sigma } = {v_{\rm{d}}}\sqrt {1 + \dfrac{N}{{Cv_{\rm{d}}^2}}(\Delta {W_\Sigma } - \Delta {W_\Delta })} = {v_{\rm{d}}}\sqrt {1 + \dfrac{N}{{Cv_{\rm{d}}^2}}\left( { - \dfrac{{{V_{\rm{s}}}{I_{\rm{s}}}}}{{4{w_1}}}\sin(2{w_1}t - \varphi ) - \dfrac{{{v_{\rm{d}}}{I_{\rm{s}}}}}{{2{w_1}}}\sin({w_1}t - \varphi ) + \dfrac{{2{V_{\rm{s}}}{i_{\rm{c}}}}}{{{w_1}}}\sin({w_1}t)} \right)} $$ (23) -
根据式(22)、式(23),假设阀侧电压与阀侧电流的相位差在[−π, π]之间变动,考虑4个工频周期下的波动,得到如下三维关系图,其中x轴坐标为时间t(单位为s),y轴坐标为相角差φ(单位为rad),z轴坐标为桥臂子模块电容电压的波动量
$\Delta v_{{\rm{cu}}}^\Sigma$ (单位为kV),根据前面式子,得到上下桥臂所有投入的子模块电容电压的波动随时间及阀侧电压初始相位差的三维关系图,如图3及图4所示。从上图可知,在φ=0时,MMC换流阀与交流侧没有无功交换,此时桥臂子模块电容电压波动的峰值最小。在φ减小或增大的过程中,波动量均在一定程度上增大。
根据式(8)同样可得到上下桥臂的总开关函数nu、nl随时间及功率因数角φ的曲线图。其中x轴坐标为时间t(单位为s),y轴坐标为相角差φ(单位为rad),z轴坐标为桥臂总子模块开关函数,图5为上桥臂总开关函数图,图6为下桥臂总开关函数图。
从图5和图6可以明显看出,功率因数角φ一定时桥臂总开关函数是时间t的三角工频周期函数,在时间t一定时,开关函数是功率因数角的周期函数,且在φ<0的一定范围内,开关函数的最大值大于1,这是由于φ<0时,换流器向交流系统注入容性无功,在[−90°, 0]范围内,φ越小注入容性无功越大,此时同等有功条件下需要投入的子模块个数越多。将式(15)代入式(8)以后,可得到上下桥臂的开关函数的表达式,这里仅列出下桥臂开关函数:
$$ {n_{\rm{l}}} = \dfrac{{{V_{\rm{d}}}/2 + {V_{\rm{s}}}\cos {w_1}t}}{{{V_{\rm{d}}} + \Delta v_{{\rm{cl}}}^\Sigma }} $$ (24) $$ \begin{split} &\Delta v_{{\rm{cl}}}^\Sigma = \dfrac{N}{{2C{v_{\rm{d}}}}}[ - \dfrac{{{V_{\rm{s}}}{I_{\rm{s}}}}}{{4{w_1}}}\sin (2{w_1}t - \varphi ) - \dfrac{{{v_{\rm{d}}}{I_{\rm{s}}}}}{{2{w_1}}}\sin ({w_1}t - \varphi ) + \\& \dfrac{{2{V_{\rm{s}}}{i_{\rm{c}}}}}{{{w_1}}}\sin ({w_1}t)] \end{split} $$ (25) t=0时刻,有桥臂最大的开关函数为:
$$ {n_{\rm{l}}}{|_{\max}} = \dfrac{{{V_{\rm{d}}}/2 + {V_{\rm{s}}}}}{{{V_{\rm{d}}} + \dfrac{{N{I_{\rm{s}}}}}{{4{w_1}C}}(\dfrac{{{V_{\rm{s}}}}}{{2{V_{\rm{d}}}}} + 1)\sin \varphi }} $$ (26) 在开关函数最大值为1的情况下,此时得出:
$$ \mathrm{sin}\varphi =\dfrac{4{w}_{1}C}{N{I}_{{\rm{s}}}}\times \dfrac{{V}_{\rm{s}}-\dfrac{{V}_{\rm{d}}}{2}}{\dfrac{{V}_{{\rm{s}}}}{2{V}_{\rm{d}}}+1} $$ (27) 由于阀侧相电压最大值小于直流电压的一半,可以看出在开关函数的最大值为1时,功率因数角φ∈[−π/2, 0],这与图中结论一致。
为进一步分析开关函数与模块电容电压随功率因数角的变换关系,给出了不同功率因数角下的开关函数及桥臂子模块电容电压波动的关系图(图7)。从图中及式(24)可得到如下结论:
图 7 不同功率因数角下桥臂开关函数及模块电压波动
Figure 7. Switching function and capacitor voltage ripple for different phi
1)桥臂开关函数的最大值在φ∈[−π/2, π/2]范围内单调递减,且在[−π/2, 0]内某点φ0处其最大值为1。
2)在额定视在功率一定的情况下,桥臂开关函数的最大值在φ<0的某些范围内会呈现大于1的情况,此时功率因数较小,理论交换无功较大,φ=−90°时换流器工作在STATCOM工况下,实际工程中采用限幅环节对开关函数进行限幅。
3)子模块电容电压纹波存在明显的二倍频和基波分量。
4)在低功率因数φ=±90°下,子模块电容电压纹波比高功率因数下的纹波更大,且在低功率因数下子模块电容电压波动呈现正负半周期不对称现象。
-
考虑φ=0时,子模块电容电压及桥臂开关函数随电容容值的变化关系。图8给出了表1参数下的桥臂开关函数及电容电压波动随时间和电容容值的变化。
图 8 不同子模块电容容值下桥臂开关函数及模块电压波动
Figure 8. Switching function and capacitor voltage ripple for different C
从图8中可知,在φ=0时,桥臂开关函数的最大值不随电容电压的变化而变化,进一步从式(20)中可知,在φ≠0时,开关函数的最大值一定程度上随电容容值的变大而变小。子模块电容电压的波动量随着电容容值的变大而减少。
Capacitor Voltage Ripple and Harmonics Analysis in MMC
-
摘要:
目的 柔性直流的快速发展为MMC(Modular Multi-Level Converter,模块化多电平变流器)拓扑确定了实践支撑。文章以半桥MMC换流器为例,研究MMC稳态电容电压波动、谐波交互规律及桥臂开关函数的关系,以对MMC系统设计、控制策略给予理论支持。 方法 通过建立子模块电容电压、桥臂开关函数的解析表达式,得到MMC换流器上下桥臂能量波动及电容电压波动的数学近似表达式,进而研究了上下桥臂电流、交流阀侧、直流侧中各次谐波的分布规律及相间环流的正负序关系,基于谐波公式得到二次环流的估算方法;进一步,采用变量对照法研究了桥臂开关函数、子模块电容电压随阀侧功率因数、子模块电容大小的变化关系;最后基于实际工程参数搭建了详细的PSCAD/EMTDC模型,开展了理论解析与离线仿真的一致性对比。 结果 研究表明:MMC相间环流只含偶数次谐波,且其中6k+2次环流呈负序、6k+4次环流呈正序、6k次环流呈零序特性,同时稳态下MMC阀侧出口交流电压电流只含奇数次谐波,MMC直流侧电压电流只含偶数次谐波,且在功率因数角φ<0的某些范围内桥臂开关函数峰值会大于1,在低功率因数下子模块电容电压波动峰值大于高功率因数下的波动。 结论 可由此开展换流器电容容值的选型设计及暂稳态策略研究,并通过理论解析掌握MMC拓扑的运行本征特性。 Abstract:Introduction The rapid development of VSC-HVDC provides practical support for MMC (Modular Multi-Level Converter) topology. Takes a half bridge MMC converter as an example, the relationship between steady-state capacitor voltage fluctuation, harmonic interaction, and bridge arm switching function of MMC is studied in order to provide theoretical support for MMC system design and control strategy. Method By establishing analytical expressions for the sub module capacitor voltage and bridge arm switch function, the mathematical approximate expressions for the energy fluctuation and capacitor voltage fluctuation of the upper and lower bridge arms of the MMC converter were obtained. Furthermore, the distribution law of harmonics in the upper and lower bridge arms current, AC (Alternating Current ) valve side, and DC (Direct Current) side, as well as the positive and negative sequence relationship of inter phase circulation were studied. Based on the harmonic formula, an estimation method for the secondary circulation was obtained; Furthermore, the variable comparison method was used to study the relationship between the switching function of the bridge arm and the voltage of the submodule capacitance with the valve side power factor and the size of the submodule capacitance. Finally, a detailed PSCAD/EMTDC model was built based on actual engineering parameters, and a consistency comparison between theoretical analysis and offline simulation was conducted. Result The research has shown that the inter phase circulating current of MMC only contains even harmonics, with 6k+2 circulating currents exhibiting negative sequence, 6k+4 circulating currents exhibiting positive sequence, and 6k circulating currents exhibiting zero sequence characteristics. At the same time, under steady-state conditions, the AC voltage and current flow at the outlet of MMC valve side only contains odd harmonics, while the DC voltage and current flow at MMC DC side only contains even harmonics, and at the power factor angle φ<0, the peak value of the bridge arm switch function will be greater than 1, and the peak voltage fluctuation of the module capacitor at low power factor is greater than that at high power factor. Conclusion Based on this, we can select and design capacitor for MMC inverters and carry out the transient stability strategies, also, master the operational characteristics of MMC topology through theoretical analysis. -
Key words:
- MMC /
- capacitor voltage ripple /
- switching function /
- harmonic voltage /
- harmonic current
-
表 1 MMC参数
Tab. 1. Parameters for MMC
参数名 值 额定直流电压/kV ±400 额定直流电流/kA 1.375 额定有功/GW 1.100 额定视在功率/MVA 1230 子模块个数不考虑冗余/个 400 子模块电容容值/mF 4, 6, 8, 9, 10, 12 桥臂电抗器/H 0.133 阀侧相电压峰值/kV 340 阀侧相电流峰值/kA 2.411 -
[1] RODRIGUEZ J, LAI J S, PENG F Z. Multilevel inverters: a survey of topologies, controls, and applications [J]. IEEE transactions on industrial electronics, 2002, 49(4): 724-738. DOI: 10.1109/TIE.2002.801052. [2] LESNICAR A, MARQUARDT R. An innovative modular multilevel converter topology suitable for a wide power range [C]//2003 IEEE Bologna Power Tech Conference Proceedings, Bologna, Italy, June 23-26, 2003. New York: IEEE, 2003: 6. DOI: 10.1109/PTC.2003.1304403. [3] LESNICAR A, MARQUARDT R. A new modular voltage source inverter topology [C]//Proceedings of 10th European Conference on Power Electronics and Applications (EPE), Toulouse, France, September 2-4, 2003. Oxfordshire, UK: Taylor & Francis, 2015. [4] NORRGA S, ÄNGQUIST L, ILVES K, et al. Decoupled steady-state model of the modular multilevel converter with half-bridge cells [C]//6th IET International Conference on Power Electronics, Machines and Drives, Bristol, UK, March 27-29, 2012. Hertfordshire, UK: IET, 2012: 1-6. DOI: 10.1049/cp.2012.0232. [5] 王姗姗, 周孝信, 汤广福, 等. 模块化多电平电压源换流器的数学模型 [J]. 中国电机工程学报, 2011, 31(24): 1-8. DOI: 10.13334/j.0258-8013.pcsee.2011.24.005. WANG S S, ZHOU X X, TANG G F, et al. Modeling of modular multi-level voltage source converter [J]. Proceedings of the CSEE, 2011, 31(24): 1-8. DOI: 10.13334/j.0258-8013.pcsee.2011.24.005. [6] SONG Q, LIU W H, LI X Q, et al. A steady-state analysis method for a modular multilevel converter [J]. IEEE transactions on power electronics, 2013, 28(8): 3702-3713. DOI: 10.1109/TPEL.2012.2227818. [7] ILVES K, ANTONOPOULOS A, NORRGA S, et al. Steady-state analysis of interaction between harmonic components of arm and line quantities of modular multilevel converters [J]. IEEE transactions on power electronics, 2012, 27(1): 57-68. DOI: 10.1109/TPEL.2011.2159809. [8] SAEEDIFARD M, IRAVANI R. Dynamic performance of a modular multilevel back-to-back HVDC system [J]. IEEE transactions on power delivery, 2010, 25(4): 2903-2912. DOI: 10.1109/TPWRD.2010.2050787. [9] HARNEFORS L, ANTONOPOULOS A, NORRGA S, et al. Dynamic analysis of modular multilevel converters [J]. IEEE transactions on industrial electronics, 2013, 60(7): 2526-2537. DOI: 10.1109/TIE.2012.2194974. [10] HARNEFORS L, ANTONOPOULOS A, ILVES K, et al. Global asymptotic stability of current-controlled modular multilevel converters [J]. IEEE transactions on power electronics, 2015, 30(1): 249-258. DOI: 10.1109/TPEL.2014.2298560. [11] 刘昇, 徐政. 联于弱交流系统的VSC-HVDC稳定运行区域研究 [J]. 中国电机工程学报, 2016, 36(1): 133-144. DOI: 10.13334/j.0258-8013.pcsee.2016.01.014. LIU S, XU Z. Study on stable operating region of VSC-HVDC connected to weak AC systems [J]. Proceedings of the CSEE, 2016, 36(1): 133-144. DOI: 10.13334/j.0258-8013.pcsee.2016.01.014. [12] KRIGE E. Harmonic interaction between weak AC systems and VSC-based HVDC schemes [D]. Stellenbosch: Stellenbosch University, 2012. [13] ZHANG L D, HARNEFORS L, NEE H P. Modeling and control of VSC-HVDC links connected to island systems [J]. IEEE transactions on power systems, 2011, 26(2): 783-793. DOI: 10.1109/TPWRS.2010.2070085. [14] GIVAKI K, XU L. Stability analysis of large wind farms connected to weak AC networks incorporating PLL dynamics [C]//International Conference on Renewable Power Generation, Beijing, China, October 17-18, 2015. Hertfordshire, UK: IET, 2016: 1-6. DOI: 10.1049/cp.2015.0440. [15] ZHANG L D, HARNEFORS L, NEE H P. Interconnection of two very weak AC systems by VSC-HVDC links using power-synchronization control [J]. IEEE transactions on power systems, 2011, 26(1): 344-355. DOI: 10.1109/TPWRS.2010.2047875. [16] ADIB A, MIRAFZAL B, WANG X F, et al. On stability of voltage source inverters in weak grids [J]. IEEE access, 2018, 6: 4427-4439. DOI: 10.1109/ACCESS.2017.2788818. [17] HUANG Y H, YUAN X M, HU J B, et al. Modeling of VSC connected to weak grid for stability analysis of DC-link voltage control [J]. IEEE journal of emerging and selected topics in power electronics, 2015, 3(4): 1193-1204. DOI: 10.1109/JESTPE.2015.2423494. [18] HUANG Y H, YUAN X M, HU J B, et al. DC-bus voltage control stability affected by AC-bus voltage control in VSCs connected to weak AC grids [J]. IEEE journal of emerging and selected topics in power electronics, 2016, 4(2): 445-458. DOI: 10.1109/JESTPE.2015.2480859. [19] 黄守道, 彭也伦, 廖武. 模块化多电平型变流器电容电压波动及其抑制策略研究 [J]. 电工技术学报, 2015, 30(7): 62-71. DOI: 10.3969/j.issn.1000-6753.2015.07.008. [20] HUANG S D, PENG Y L, LIAO W. Study of capacitor voltage fluctuation and its suppression for modular multilevel converter [J]. Transactions of China electrotechnical society, 2015, 30(7): 62-71. DOI: 10.3969/j.issn.1000-6753.2015.07.008. [21] ANGQUIST L, ANTONOPOULOS A, SIEMASZKO D, et al. Open-loop control of modular multilevel converters using estimation of stored energy [J]. IEEE transactions on industry applications, 2011, 47(6): 2516-2524. DOI: 10.1109/TIA.2011.2168593. [22] 周月宾, 江道灼, 郭捷, 等. 模块化多电平换流器子模块电容电压波动与内部环流分析 [J]. 中国电机工程学报, 2012, 32(24): 8-14. DOI: 10.13334/j.0258-8013.pcsee.2012.24.002. ZHOU Y B, JIANG D Z, GUO J, et al. Analysis of sub-module capacitor voltage ripples and circulating currents in modular multilevel converters [J]. Proceedings of the CSEE, 2012, 32(24): 8-14. DOI: 10.13334/j.0258-8013.pcsee.2012.24.002. [23] YANG L G, XU Z H, FENG L, et al. Analysis on harmonic resonance of offshore wind farm transmitted by MMC-HVDC system [C]//2019 IEEE Innovative Smart Grid Technologies - Asia, Chengdu, China, May 21-24, 2019. New York, USA: IEEE, 2019: 2296-2301. DOI: 10.1109/ISGT-Asia.2019.8881373. [24] ZOU C Y, RAO H, XU S K, et al. Analysis of resonance between a VSC-HVDC converter and the AC grid [J]. IEEE transactions on power electronics, 2018, 33(12): 10157-10168. DOI: 10.1109/TPEL.2018.2809705. [25] ILVES K, ANTONOPOULOS A, HARNEFORS L, et al. Capacitor voltage ripple shaping in modular multilevel converters allowing for operating region extension [C]//IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, Australia, November 7-10, 2011. New York, USA: IEEE, 2011: 4403-4408. DOI: 10.1109/IECON.2011.6120033. [26] WANG H T, TANG G F, HE Z Y, et al. Efficient grounding for modular multilevel HVDC converters (MMC) on the AC side [J]. IEEE transactions on power delivery, 2014, 29(3): 1262-1272. DOI: 10.1109/TPWRD.2014.2311796.