-
1994年,西安交通大学王锡凡院士提出了50/3 Hz的分频输电技术,通过倍频变压器实现低速水轮机接入工频电网,以解决远距离、大功率低频电力送出问题[18]。
实现频率变换是LFAC技术的核心环节,20年以来,国内外学者提出了多种变频方式。早期,以倍频变压器、同步变频器[19]为代表的铁磁、旋转变频方式是主流研究方向。该类变频方式虽然结构简单、造价较低,但效率低、谐波含量大、难以实现大规模功率变换等问题严重限制了其发展应用。因此,学者们逐渐转向研究以电力电子器件为核心的变频器,包括基于半控型晶闸管构成的周波变换器[20]和交交变频器[21]。这些以半控型器件为核心的变频器普遍存在换相失败、动态响应慢、需要无功补偿等问题。基于全控器件的模块化多电平矩阵换流器(Modular Multilevel Matrix Converter,M3C)具有低能量存储、高能量密度的特点,是近来的研究热点,其具体拓扑结构如图1所示。
M3C共有9个桥臂,两侧分别连接工频系统和低频系统,适用于大功率高电压等级的变频场景。M3C虽然控制逻辑较为复杂,但是能实现两侧有功无功解耦控制,具备黑启动能力和较强的故障穿越能力。同时,大量子模块组合和灵活的开关模式能大幅降低谐波含量,实现多电平输出。
-
海上风电低频交流输电系统拓扑图如图2所示。海上风机发出低频电力进行汇集到海上升压站平台,经过海上低频主变压器升压,再通过低频海缆远距离输送到陆上交交换流站,陆上变频器再将低频电能转换为工频接入电网。
图 2 海上风电低频交流输电系统拓扑图
Figure 2. Topology of low-frequency alternating current transmission system for offshore wind power
若忽略海缆电阻,根据线路静态稳定极限功率传输公式(1)和线路电压降落公式(2),当线路频率
$f$ 下降时,线路电抗$X$ 成正比下降,理论上线路静态稳定有功传输极限${P_{\max }}$ 成反比上升,同时线路的电压降落也有所降低。$$ {P_{\max }} = \dfrac{{{U^2}}}{X} = \dfrac{{{U^2}}}{{2{\text{π}}fL}} $$ (1) $$ \Delta U\text{%}=\dfrac{QX}{{U}^{2}}\times 100 $$ (2) 式中:
Pmax ——线路静态稳定有功传输极限(W);
U ——系统线电压(V);
X ——线路感抗(Ω);
$f$ ——系统频率(Hz);L ——线路电感(H);
$ \Delta U% $ ——系统线电压、线路电压降百分数;Q ——线路无功功率(Var)。
实际上,电缆特别是长距离海底电缆,由于容升效应,其传输容量直接受到电缆的充电功率限制,因而远低于静态稳定有功传输极限
${P_{\max }}$ 。根据式(3)和式(4),理论上频率$f$ 下降时,电缆充电无功功率${Q_{\rm{C}}}$ 成正比下降,使得电缆可用于传输的有功功率$P$ 提升。$$ {Q_{\rm{C}}} = {U^2}{X_{\rm{C}}} = 2{\text{π}} fCl{U^2} $$ (3) $$ P = \sqrt {{S_{\rm{N}}}^2 - {Q_{\rm{C}}}^2} $$ (4) 式中:
${X}_{{\rm{C}}}$ ——海缆容抗(Ω);C ——单位长度下的电容值(F/km);
l ——电缆长度(km);
${S}_{{\rm{N}}}$ ——电缆额点视在功率(VA)。除去低频传输能够提升海缆电能传输距离这一特性外,LFAC技术在海上风电送出场景下的应用还有如下优势:
1)大功率海上风机主要采用直驱/半直驱风机,变流器可灵活改变输出频率,不需要改动风机侧变流器本体。
2)在中长距离海上风电送出应用场景下,由于低频送出使得海缆无功充电功率的降低,与HVAC技术相比,采用LFAC技术能减少甚至取消海上无功补偿装置的配置。
3)LFAC技术不需要进行海上变频,无海上换流平台,低频海上升压站与工频升压站相当。因此在一定输送距离范围内,采用LFAC的技术经济性能高于HVDC技术。
黄明煌等[1]从技术性和经济性的角度分析HVAC、HVDC和LFAC技术在海上风电送出场景下的适用性,以400 MW风电场为例,各技术的经济适用区间划分如图3所示。
-
海上低频主变压器是海上风电低频交流输电系统的关键设备之一。LFAC技术仍属于交流输电范畴,研究海上低频变压器,可以先从研究交流变压器的低频特性着手。
-
变压器是主要由原边绕组、副边绕组和铁心(磁芯)构成的能够改变交流电压的装置。其工作原理是基于电磁感应现象,即在变压器原边绕组通上交变的电流后,变压器铁心感应产生主磁通,进一步在主磁通交链的原边绕组和副边绕组都感应出主电动势,通过两侧绕组的匝数不同实现不同电压等级的变换及功率传输。变压器的感应电动势
$E$ 如式(5)。$$ E \approx 4.44fN{\varPhi _{\rm{m}}} \approx 4.44fN{B_{{\rm{sat}}}}{A_{{\rm{core}}}} $$ (5) 式中:
E ——变压器的感应电动势(V);
N ——变压器绕组匝数(匝);
Φm ——绕组内磁通量(Wb);
Bsat ——铁心中的磁通密度(T);
Acore——变压器铁心有效截面积(m2)。
-
变压器本体结构导致其重量和体积的决定性因素是铁心截面
${A_{{\rm{core}}}}$ 和绕组匝数$N$ 。根据变压器感应电动势$E$ 的公式(5)可知,若要求变压器的额定电压${U_1}$ 不变,也就是变压器感应电动势$E$ 不变,变压器运行的频率$f$ 降低时,必然要求绕组匝数$N$ 、绕组内磁通量${\varPhi _{\rm{m}}}$ 增加或者两者均增加。进一步地,交流变压器铁心截面${A_{{\rm{core}}}}$ 与变压器容量的设计经验公式为:$$ {A_{{\rm{core}}}} \approx {K_{\rm{A}}}\sqrt[2]{{P'}} \approx \sqrt[2]{{\frac{{2.52{\phi _{\rm{k}}}\rho k}}{{fB_{{\rm{sat}}}^2{H_{\rm{k}}}{U_{\rm{x}}} \times {{10}^{ - 5}}}}}}\sqrt[2]{{P'}} $$ (6) 式中:
${K_{\rm{A}}}$ ——变压器铁心截面积设计经验系数;$ P' $ ——额定工况下每柱的容量(W);${\phi _{\rm{k}}}$ ——等效漏磁通(Wb);$ \rho $ ——罗氏系数;$ k $ ——横向漏磁通导致的附加电抗系数;${H_{\rm{k}}}$ ——绕组平均电抗(Ω);${U_{\rm{x}}}$ ——电抗压降百分数(%)。根据经验公式(6)可知,
${A_{{\rm{core}}}} \propto {1 \mathord{\left/ {\vphantom {1 {\sqrt[2]{f}}}} \right. } {\sqrt[2]{f}}}$ ,也就是说,在其他条件不变的情况下,交流变压器铁心截面${A_{{\rm{core}}}}$ 与频率的平方成反比。因此,在对变压器进行低频化改造时,常规思路有以下两种:
1)增大铁心的有效截面积
${A_{{\rm{core}}}}$ ;2)增加绕组匝数
$N$ 。显然无论采取上述哪种方式对变压器进行低频化改造,都会使得变压器的质量和体积增加。特别是频率下降到20 Hz之后,变压器的质量、体积都将大幅提升。以1 GW风电场配置2台的220 kV,550/275-275 MVA分裂双绕组变压器(全穿越阻抗电压14%、半穿越阻抗26%)为例。若不进行额外的优化措施,单台变压器重量与体积与频率的关系如图4所示。20 Hz的低频变压器的重量为870 t左右,是同等电气参数工频变压器的1.7倍,体积则是1.5倍。
-
变压器损耗也是影响远距离大容量海上风电低频交流送出方案的一个关键因素。变压器的损耗主要是由空载损耗(铁损)和负载损耗(铜损)两部分组成。空载损耗是由铁心材料的磁滞和涡流现象产生的,铁心损耗密度
${P_{\rm{v}}}$ 可以用Steinmetz经验公式[22]简要表示为:$$ {P_{\rm{v}}} \approx {k_{\rm{h}}}fB_{{\rm{sat}}}^\alpha + {k_{\rm{e}}}{f^2}B_{{\rm{sat}}}^2 $$ (7) 式中:
${P_{\rm{v}}}$ ——铁心损耗密度(W/mm2);${k_{\rm{h}}}$ ——磁滞效应系数,其值与材料有关;${k_{\rm{e}}}$ ——涡流效应系数,其值与材料有关;${B_{{\rm{sat}}}}$ ——铁心中的磁通密度(T);$\alpha $ ——Steinmetz公式的经验参数,其值与材料有关。根据公式(7)可知,铁心材料的磁滞损耗密度与频率成正比,铁心材料的涡流损耗密度与频率的平方成正比。在低频运行情况下,变压器的铁损密度呈指数下降。
变压器的铜损是指基本损耗和附加损耗。其中,由于基本损耗主要是由绕组的直流电阻决定,因此频率变化几乎不引起其数值变化。附加损耗是由漏磁通在绕数内产生的涡流
${k_{\rm{a}}}$ 引起的,如式(8)所示。显然,当绕组相关参数不发生变化时,其附加损耗与频率的平方成正比,频率降低会使得附加损耗也随之下降。$$ {k_{\rm{a}}} = \dfrac{{{{17.8}^2}{{\text{π}}^2} \times {{10}^{ - 9}}}}{{18\rho _{\rm{r}}^2}}{\left( {\dfrac{{fmb\alpha A\rho }}{{{H_{\rm{k}}}}}} \right)^2} $$ (8) 式中:
${k_{\rm{a}}}$ ——附加损耗(W);${\rho _{\rm{r}}}$ ——绕组导线的电阻率(Ω·mm2/m−1);m ——绕组导线的单根净截面(mm2);
${H_{\rm{k}}}$ 、$ \rho $ ——经验公式计算系数。通过上述理论分析可知,在变压器铁心和绕组参数恒定不变的情况下,变压器的空载损耗和负载损耗均能随频率下降而降低。然而为保持额定电压不变,变压器低频化改造势必需要增大铁心截面或增大绕组匝数,因此总体的负载损耗会随之增大。且变压器负载损耗要远高于空载损耗,因而在同一设计磁密下,低频变压器的总损耗要高于工频变压器。赵国亮等[23]指出,20 Hz 220 kV/180 MVA变压器(短路阻抗14%)的空载损耗较工频降低57%,负载损耗则较工频增加61%。
Characteristics Analysis and Technical Prospect of Low-Frequency Main Transformer for Offshore Wind Power
-
摘要:
目的 低频交流输电技术已受到广泛关注,虽然其理论研究在不断深入,但距离其在大容量远距离的海上风电送出场景下的工程实现还有许多问题亟待解决,海上低频主变压器的研发与选型问题就是其中之一。 方法 在详细阐述海上风电低频交流输电系统的结构及工作原理的基础上,分析了海上主变压器的低频运行特性。 结果 若采用增加铁心截面及绕组匝数的常规改造方式,低频变压器在重量体积和总损耗方面均会有所增加,会给海上风电整体送出方案经济性、海上升压站荷载及布置带来极大影响。需要研究海上低频变压器的小型化、轻量化和低损化设计。 结论 最终详述了海上低频变压器改造的关键技术。在铁心改造方面,研发高磁密、低损耗的高性能取向硅钢片是备受关注的低频变压器改造技术。利用海上优势,设计水冷冷却方式及智能监控的变压器冷却方式也可以实现变压器整体质量与体积的优化。酯类高燃点油变压器具有油可降解、难燃、可靠性较高等优点,与常规矿物油变压器相比更适用做海上低频变压器。展望上述关键技术的未来发展,为大容量、高电压等级海上低频变压器的研制与应用提供参考,以推动大容量远距离海上风电低频送出技术的工程实践。 Abstract:Introduction Low-frequency alternating current power transmission technology has attracted wide attention. Although its theoretical research continues to go deeper, there are still many problems to be solved before its engineering implementation in large-capacity long-distance offshore wind power transmission scenarios. The development and selection of offshore low-frequency main transformer is one of such problems. Method Based on the detailed description of the structure and working principle of the low-frequency alternating current transmission system for offshore wind power, the low-frequency operation characteristics of the offshore main transformer were analyzed. Result If the transformer is transformed by increasing the core section and winding turns, the weight, volume and total loss of the low-frequency transformer will be increased greatly, which will have a great impact on the economy of the overall transmission scheme of offshore wind power and the load and layout of offshore step-up station. It is necessary to study the miniaturization, light weight and low loss design of offshore low-frequency transformer. Conclusion The key transformation technologies of offshore low-frequency transformer are discussed in detail. In the aspect of transformer core, the research and development of high-performance oriented silicon steel sheet with high magnetic density or low loss is the most concerned low-frequency transformer transformation technology. With the offshore advantages, the design of water cooling mode and intelligently monitored transformer cooling mode can also optimize the overall quality and volume of transformer. Ester high ignition point insulated oil transformer has the advantages of biodegradability, inflammability and high reliability of oil, which means that it is more suitable for offshore low-frequency transformer compared with the conventional mineral oil transformer. The future development of the above key technologies is expected to provide reference for the development and application of large-capacity and high-voltage class offshore low-frequency transformer, so as to promote the engineering practice of low-frequency technology in the field of large-capacity long-range offshore wind power transmission. -
-
[1] 黄明煌, 王秀丽, 刘沈全, 等. 分频输电应用于深远海风电并网的技术经济性分析 [J]. 电力系统自动化, 2019, 43(5): 167-174. DOI: 10.7500/AEPS20180725005. HUANG M H, WANG X L, LIU S Q, et al. Technical and economic analysis on fractional frequency transmission system for integration of long-distance offshore wind farm [J]. Automation of electric power systems, 2019, 43(5): 167-174. DOI: 10.7500/AEPS20180725005. [2] Global Wind Energy Cocil. GWEC global wind statistics 2017 [EB/OL]. (2018-12-06) [2023-03-29]. http://gwec.net/wp-content/uploads/2018/04/offshore.pdf. [3] 夏云峰. 2017年欧洲海上风电新增并网容量3 148 MW [J]. 风能, 2018(2): 38-43. DOI: 10.3969/j.issn.1674-9219.2018.02.009. XIA Y F. The newly connected capacity of European offshore wind power in 2017 was 3 148 MW [J]. Wind energy, 2018(2): 38-43. DOI: 10.3969/j.issn.1674-9219.2018.02.009. [4] Wind Europe. Offshore wind in Europe key trends and statistics 2017 [EB/OL]. (2018-07-18) [2023-03-29]. https://windeurope.org/wp-content/uploads/files/about-wind/statistics/WindEurope-Annual-Offshore-Statistics-2017.pdf. [5] 姜楠. 深海风力发电技术的发展现状与前景分析 [J]. 新能源进展, 2015, 3(1): 21-24. DOI: 10.3969/j.issn.2095-560X.2015.01.004. JIANG N. Analysis on status and prospect of wind power generation in deep sea [J]. Advances in new and renewable enengy, 2015, 3(1): 21-24. DOI: 10.3969/j.issn.2095-560X.2015.01.004. [6] 迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述 [J]. 中国电机工程学报, 2016, 36(14): 3758-3770. DOI: 10.13334/j.0258-8013.pcsee.152756. CHI Y N, LIANG W, ZHANG Z K, et al. An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power [J]. Proceedings of the CSEE, 2016, 36(14): 3758-3770. DOI: 10.13334/j.0258-8013.pcsee.152756. [7] 王锡凡, 卫晓辉, 宁联辉, 等. 海上风电并网与输送方案比较 [J]. 中国电机工程学报, 2014, 34(31): 5459-5466. DOI: 10.13334/j.0258-8013.pcsee.2014.31.001. WANG X F, WEI X H, NING L H, et al. Integration techniques and transmission schemes for off-shore wind farms [J]. Proceedings of the CSEE, 2014, 34(31): 5459-5466. DOI: 10.13334/j.0258-8013.pcsee.2014.31.001. [8] 徐政, 张哲任. 低频输电技术原理之一−M3C的数学模型与等效电路 [J]. 浙江电力, 2021, 40(10): 13-21. DOI: 10.19585/j.zjdl.202110002. XU Z, ZHANG Z R. Principles of low frequency power transmission technology: part 1- mathematical model and equivalent circuit of M3C [J]. Zhejiang electric power, 2021, 40(10): 13-21. DOI: 10.19585/j.zjdl.202110002. [9] 吴小丹, 朱海勇, 董云龙, 等. 面向柔性低频输电的模块化多电平矩阵变换器分频分层控制 [J]. 电力系统自动化, 2021, 45(18): 131-140. DOI: 10.7500/AEPS20201222003. WU X D, ZHU H Y, DONG Y L, et al. Frequency-division and hierarchical control of modular multilevel matrix converter for flexible low-frequency transmission [J]. Automation of electric power systems, 2021, 45(18): 131-140. DOI: 10.7500/AEPS20201222003. [10] 徐政, 张哲任. 低频输电技术原理之三−M3C基本控制策略与子模块电压平衡控制 [J]. 浙江电力, 2021, 40(10): 30-41. DOI: 10.19585/j.zjdl.202110004. XU Z, ZHANG Z R. Principles of low frequency power transmission technology: part 3-basic control strategy for the M3C and sub-module voltage balance control [J]. Zhejiang electric power, 2021, 40(10): 30-41. DOI: 10.19585/j.zjdl.202110004. [11] 宁联辉, 吴再驰, 王锡凡, 等. 基于模块化多电平矩阵式换流器的分频输电系统低频侧阻抗建模及稳定性判别 [J]. 电网技术, 2022, 46(10): 3720-3729. DOI: 10.13335/j.1000-3673.pst.2022.1264. NING L H, WU Z C, WANG X F, et al. Low-frequency side impedance modeling and stability discrimination of fractional frequency transmission system based on modular multilevel matrix converter [J]. Power system technology, 2022, 46(10): 3720-3729. DOI: 10.13335/j.1000-3673.pst.2022.1264. [12] 张扬, 林卫星, 邓才波, 等. 柔性直流输电系统低频振荡机理及抑制策略 [J]. 电网技术, 2021, 45(8): 3134-3144. DOI: 10.13335/j.1000-3673.pst.2020.0848. ZHANG Y, LIN W X, DENG C B, et al. Low-frequency oscillation mechanism and suppression strategy of flexible HVDC transmission system [J]. Power system technology, 2021, 45(8): 3134-3144. DOI: 10.13335/j.1000-3673.pst.2020.0848. [13] 何秉哲. 多端海上风电低频交流接入协调控制及谐波抑制 [D]. 重庆: 重庆大学, 2021. DOI: 10.27670/d.cnki.gcqdu.2021.002056. HE B Z. Coordinated control and harmonic suppression for low frequency AC access of multi terminal offshore windfarms [D]. Chongqing: Chongqing University, 2021. DOI: 10.27670/d.cnki.Gcqdu.2021.002056. [14] 王锡凡, 刘沈全, 宋卓彦, 等. 分频海上风电系统的技术经济分析 [J]. 电力系统自动化, 2015, 39(3): 43-50. DOI: 10.7500/AEPS20140121007. WANG X F, LIU S Q, SONG Z Y, et al. Technical and economical analysis on offshore wind power system integrated via fractional frequency transmission system [J]. Automation of electric power systems, 2015, 39(3): 43-50. DOI: 10.7500/AEPS20140121007. [15] 王秀丽, 赵勃扬, 黄明煌, 等. 大规模深远海风电送出方式比较及集成设计关键技术研究 [J]. 全球能源互联网, 2019, 2(2): 138-145. DOI: 10.19705/j.cnki.issn2096-5125.2019.02.004. WANG X L, ZHAO B Y, HUANG M H, et al. Research of integration methods comparison and key design technologies for large scale long distance offshore wind power [J]. Journal of global energy interconnection, 2019, 2(2): 138-145. DOI: 10.19705/j.cnki.issn2096-5125.2019.02.004. [16] 宁联辉, 王琦晨, 杨勇, 等. 海底电缆的低频特性分析及仿真研究 [J]. 浙江电力, 2021, 40(12): 94-102. DOI: 10.19585/j.zjdl.202112013. NING L H, WANG Q C, YANG Y, et al. Analysis and simulation of low frequency characteristics of submarine cables [J]. Zhejiang electric power, 2021, 40(12): 94-102. DOI: 10.19585/j.zjdl.202112013. [17] 张蕾, 许挺. 世界首个柔性低频输电工程正式落点浙江杭州 [J]. 新能源科技, 2021(6): 11. DOI: 10.3969/j.issn.2096-8809.2021.06.009. ZHANG L, XU T. The world's first flexible low-frequency transmission project officially landed in Hangzhou, Zhejiang [J]. New energy science and technology, 2021(6): 11. DOI: 10.3969/j.issn.2096-8809.2021.06.009. [18] 王锡凡, 王秀丽. 分频输电系统的可行性研究 [J]. 电力系统自动化, 1995, 19(4): 5-13. doi: CNKI:SUN:DLXT.0.1995-04-000 WANG X F, WANG X L. Feasibility study of fractional division transmission system [J]. Automation of electric power systems, 1995, 19(4): 5-13. doi: CNKI:SUN:DLXT.0.1995-04-000 [19] CRARY S B, EASLEY R M. Frequency changers—characteristics, applications, and economics [J]. Transactions of the American institute of electrical engineers, 1945, 64(6): 351-358. DOI: 10.1109/t-aiee.1945.5059151. [20] QIN N, YOU S, XU Z, et al. Offshore wind farm connection with low frequency AC transmission technology [C]//2009 IEEE Power & Energy Society General Meeting, Calgary, Canada, July 26-30, 2009. New York, USA: IEEE, 2009: 1-9. DOI: 10.1109/PES.2009.5275262. [21] 宁联辉, 王锡凡, 滕予非, 等. 风力发电经分频输电接入系统的实验 [J]. 中国电机工程学报, 2011, 31(21): 9-16. DOI: 10.13334/j.0258-8013.pcsee.2011.21.004. NING L H, WANG X F, TENG Y F, et al. Experiment on wind power grid integration via fractional frequency transmission system [J]. Proceedings of the CSEE, 2011, 31(21): 9-16. DOI: 10.13334/j.0258-8013.pcsee.2011.21.004. [22] BERGLUND R. Frequency dependence of transformer losses [D]. Gothenburg: Chalmers University of Technology, 2009. [23] 赵国亮, 陈维江, 邓占锋, 等. 柔性低频交流输电关键技术及应用 [J]. 电力系统自动化, 2022, 46(15): 1-10. DOI: 10.7500/AEPS20220223007. ZHAO G L, CHEN W J, DENG Z F, et al. Key technologies and application of flexible low-frequency AC transmission [J]. Automation of electric power systems, 2022, 46(15): 1-10. DOI: 10.7500/AEPS20220223007. [24] 程灵, 马光, 韩钰, 等. 薄规格取向硅钢电磁特性及在中低频率电力装备中的应用 [J]. 电工钢, 2022, 4(4): 1-8. CHENG L, MA G, HAN Y, et al. Electromagnetic characteristics of thin-gauge grain-oriented silicon steel and its application in medium and low frequency power equipments [J]. Electrical steel, 2022, 4(4): 1-8. [25] 程灵. 高性能取向硅钢在电力装备中的应用技术研究 [D]. 北京: 钢铁研究总院, 2021. DOI: 10.27027/d.cnki.ggtey.2021.000007. CHENG L. Research on applied technology of high-performance grain-oriented silicon steel in power equipment [D]. Beijing: Central Iron & Steel Research Institute, 2021. DOI: 10.27027/d.cnki.ggtey.2021.000007. [26] 赵云, 郑明, 郑建伟. 海上升压站主变压器冷却方式选择 [J]. 南方能源建设, 2015, 2(3): 91-94,100. DOI: 10.16516/j.gedi.issn2095-8676.2015.03.018. ZHAO Y, ZHENG M, ZHENG J W. Selection of main transformer cooling system in offshore substation [J]. Southern energy construction, 2015, 2(3): 91-94,100. DOI: 10.16516/j.gedi.issn2095-8676.2015.03.018. [27] 戴鹏. 电力变压器智能冷却与经济运行综合控制研究 [D]. 济南: 山东大学, 2013. DAI P. Integrated control of power transformers smart cooling & economic operation [D]. Ji′nan: Shandong University, 2013. [28] 国网电力科学研究院武汉南瑞有限责任公司. VinsOil植物绝缘油 [EB/OL]. (2016-01-20) [2023-04-01]. http://kjfw.Cec.org.cn/jiandingtongbao/jiandingtongbao/2014-05-08/121420.html. State Grid Electric Power Research Institute Wuhan Nanrui Co. , Ltd. VinsOil plant insulating oil [EB/OL]. (2016-01-20) [2023-04-01]. http://kjfw.Cec.org.cn/jiandingtongbao/jiandingtongbao/2014-05-08/121420.html. [29] 韩金华, 韩筛根, 王思宝, 等. 一种基于高燃点植物绝缘油变压器设计方法 [J]. 变压器, 2014, 51(8): 38-42. DOI: 10.19487/j.cnki.1001-8425.2014.08.010. HAN J H, HAN S G, WANG S B, et al. Transformer design method based on high ignition point vegetable insulation oil [J]. Transformer, 2014, 51(8): 38-42. DOI: 10.19487/j.cnki.1001-8425.2014.08.010. [30] 上海市电力公司, 上海电力设计院有限公司. 10 kV 预装式变电站应用设计规程: DGJ08-99-2003 [S]. 上海: 上海市建设和管理委员会, 2003. State Grid Shanghai Municipal Electric Power Company, Shanghai Electric Power Design Institute Co., Ltd. Shanghai engineering constraction code for 10 kV prefabricated substations: DGJ 08-1999-2003 [S]. Shanghai: Shanghai Municipal Commission of Construction and Administration, 2003. [31] 李剑, 姚舒瀚, 杜斌, 等. 植物绝缘油及其应用研究关键问题分析与展望 [J]. 高电压技术, 2015, 41(2): 353-363. DOI: 10.13336/j.1003-6520.hve.2015.02.001. LI J, YAO S H, DU B, et al. Analysis to principle problems and future prospect of research on vegetable insulating oils and their applications [J]. High voltage engineering, 2015, 41(2): 353-363. DOI: 10.13336/j.1003-6520.hve.2015.02.001. [32] 陈江波, 王飞鹏, 蔡胜伟, 等. 变压器植物、矿物绝缘油的微生物降解机制及差异 [J]. 重庆大学学报, 2018, 41(2): 61-68. DOI: 10.11835/j.issn.1000-582X.2018.02.008. CHEN J B, WANG F P, CAI S W, et al. Microbial degradation mechanisms and differences of plant and mineral insulating oil of transformers [J]. Journal of Chongqing University, 2018, 41(2): 61-68. DOI: 10.11835/j.issn.1000-582X.2018.02.008.